Lecture 6: Intermediate macroeconomics, autumn 2012

Lars Calmfors

Literature: Krugman-Obstfeld-Melitz, Chapters 17-18

Topics

- Stabilisation policy under a flexible exchange rate
- Zero interest rates and the liquidity trap
- Systems of fixed exchange rates
- Interest rate parity under a fixed exchange rate
- Stabilisation policy under a fixed exchange rate
- Why devalue?
- Speculative attacks
- The Baltic economies and the current crisis
- China's exchange rate policy
- The gold standard, the Bretton Woods system and the ERM

A permanent change in money supply



Fig. 17-14: Short-Run Effects of a Permanent Increase in the Money Supply

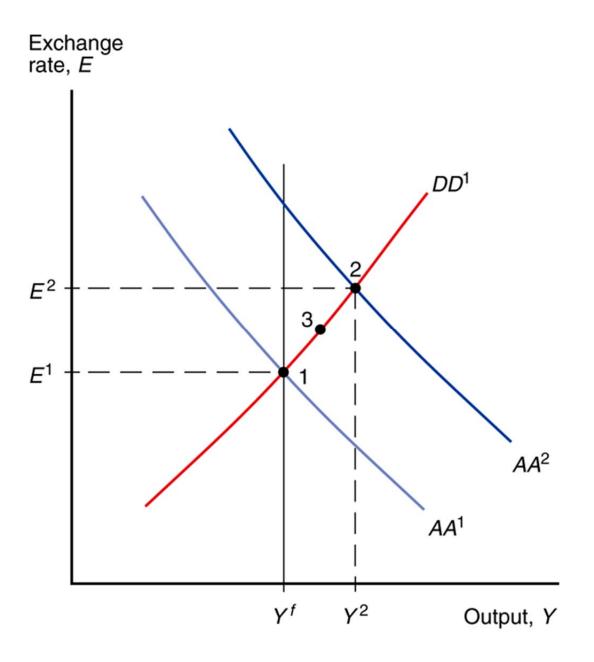


Fig. 17-15: Long-Run Adjustment to a Permanent Increase in the Money Supply

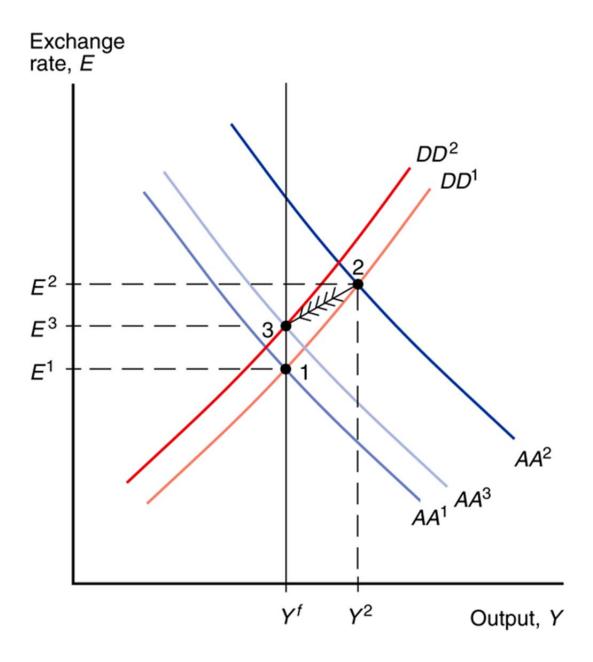
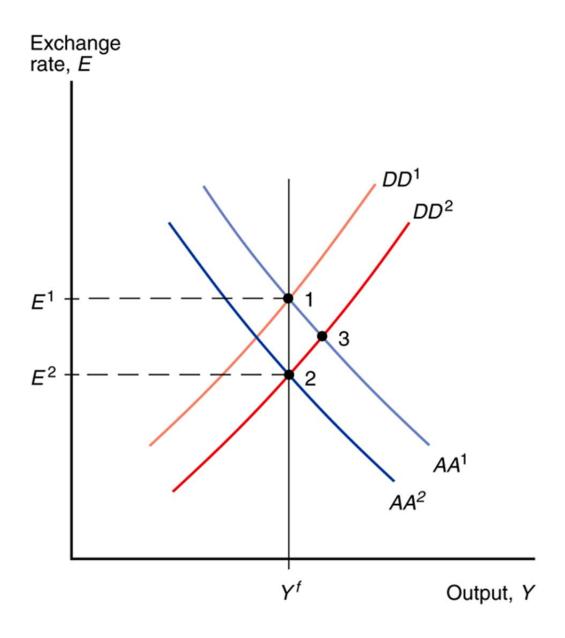



Fig. 17-16: Effects of a Permanent Fiscal Expansion

Why has a permanent fiscal policy no output effects?

- In the long run we have Y = Y_f och R = R* (output and interest rate at their equilibrium levels). Because P = M^s/L(Y_f, R*,) P must be unchanged in the long run.
- In the short run M^s/P is given. Assume that Y↑. Then R↑.
 From interest rate parity we then have (E^e E) 7.
 A nominal exchange rate depreciation is expected.
- But an expected nominal depreciation must also imply an expected real depreciation as P is given in the long run. This cannot be true because Y must then increase even more in the long run than in the short run and can then never return to its equilibrium level Y_f .
- But everything will fit together if Y never changes, so that $Y = Y_f$ even in the short run.

The mathematics of a permanent fiscal expansion

$$\frac{M^s}{P} = L(Y, R) \tag{1}$$

$$R = R^* + (E^e - E)/E \tag{2}$$

$$Y = D(EP*/P, Y-T, I, G, Y*)$$
 (3)

If $\uparrow \Rightarrow E = E^e \downarrow$ so that *Y* remains constant according to equation (3), equations (1) and (2) are also fulfilled.

The liquidity trap

- Monetary policy becomes inefficient when the interest rate reaches zero
- 1930s
- Japan from 1999
- Several economies in the recent recession

The liquidity trap (cont.)

$$R = R^* + (E^e - E)/E$$

$$R = 0 \Rightarrow 0 = R^* + (E^e - E)/E$$

$$E = E^e/(1 - R^*)$$

• When the domestic interest rate has reached zero, further increases in money supply *cannot* affect the exchange rate.

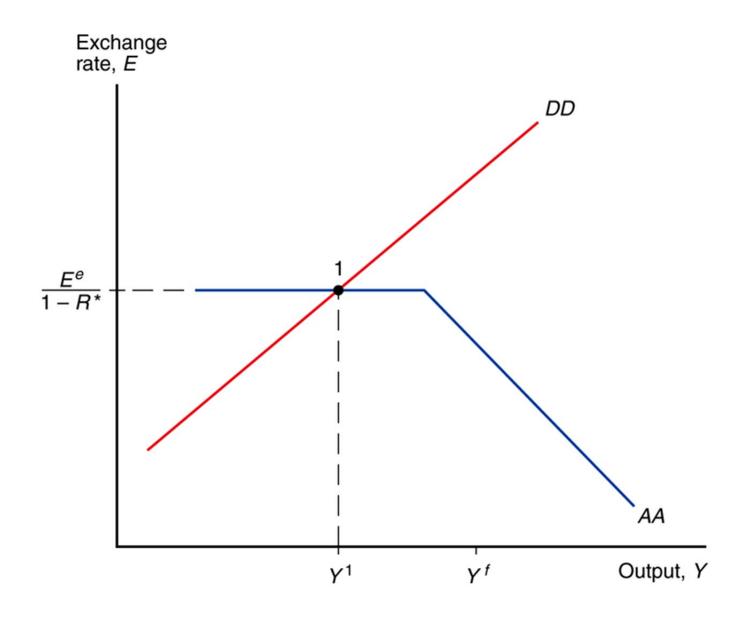
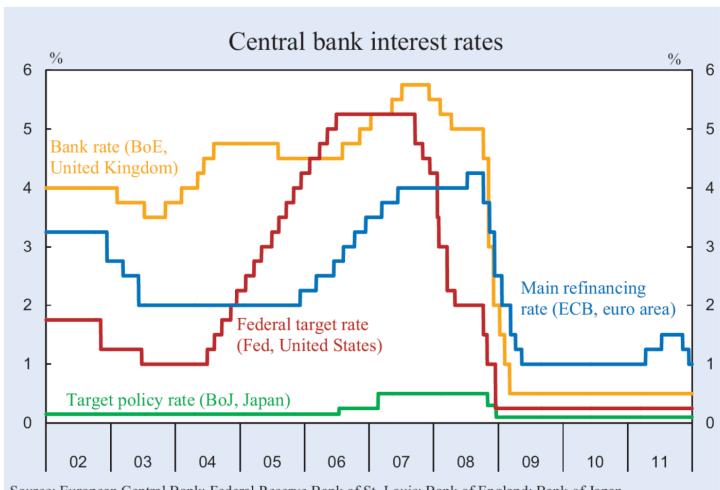




Figure 1.18

Source: European Central Bank; Federal Reserve Bank of St. Louis; Bank of England; Bank of Japan. Last accessed 2 January 2012.

Diagram 35 Reporanta

Procent, dagsvärden

Källor: NASDAQ OMX, Riksbanken och Konjunkturinstitutet.

How to deal with a liquidity trap

- Credible promise to raise the money supply permanently
- Unconventional monetary policy
 - buy long-term bonds to reduce long-term interest rates
 - buy shares
 - buy property
- Use fiscal policy

Fixed exchange rates historically

• Gold standard: 1871-1915

• Failed attempts to restore the gold standard: 1920s

• Bretton-Woods system: 1945 – 1973

Current situation

- From 1973 floating exchange rates between most OECD currencies.
- But many small open economies have chosen to peg their currencies to large currencies (dollar, the British pound, euro – earlier the D-mark or the French franc) or a currency basket (a weighted average of currencies).
- Some countries have a "crawling peg" (depreciation against another currency at a given rate) or a "managed float" (the central bank tries to influence a floating exchange rate but does not change it according to a predetermined plan).

Sweden

- 1945 73: Fixed exchange rate within the Bretton Woods system (devaluation 1949)
- 1973 –77: Fixed exchange rate to the D-mark within the European "snake" (devaluation 1976)
- 1977 91: Fixed exchange rate to a trade-weighted basket with extra weight for the dollar (repeated devaluations: 1977, 1981 and 1982)
- 1991 92: Fixed exchange rate to the ecu (weighted average of the currencies within the EU). Abandoned after exchange rate crisis.
- 1992 ?: Freely floating exchange rate with inflation target for the central bank
- ? ?: EMU membership with the euro as the common currency?????

ERM (European Exchange Rate Mechanism) established 1979. Exchange rate band +/- 2.25% around central parity. Widened band after exchange rate crises 1992/93 to +/- 15 %, but Belgium, Denmark, France, Germany and the Netherlands maintained the earlier narrow bands.

ERM 2 after the start of EMU: 1999 – 2000 Denmark + Greece + euro area. Today Denmark, Latvia, Lithuania + euro area. Condition for EMU entry: ERM membership for two years. Slovenia, Cyprus, Malta, Slovak Republic and Estonia have been ERM members but are now in the euro area.

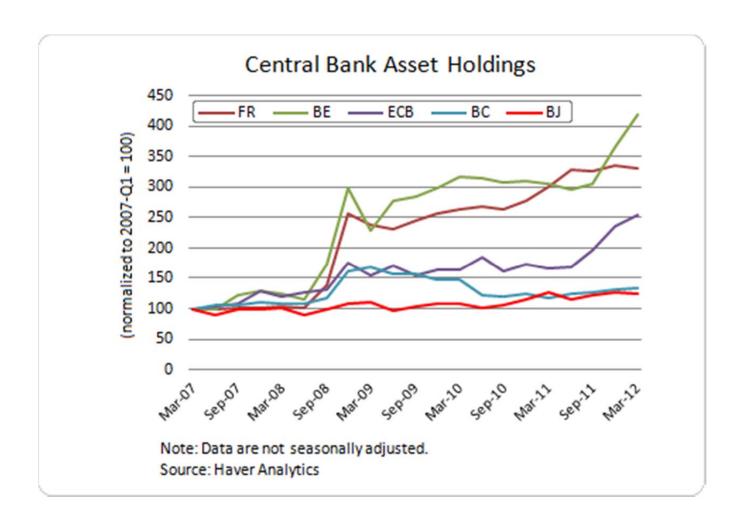
The central bank balance sheet

Assets	Liabilities
Foreign assets	Deposits held by private banks
Domestic assets	Currency in circulation

The central bank balance sheet (cont.)

- Foreign assets: foreign currency bonds owned by the central bank (international reserves). Affected by the central bank's interventions in the foreign exchange market. Gold included.
- Domestic assets: the central bank's claims on its own citizens and domestic institutions. Typically domestic government bonds and loans to domestic private banks.
- Deposits by private bank: may be withdrawn from the central bank at any time
- Currency in circulation: notes and coins
- Assets = liabilities + net worth
- Assume that the bank's net worth is constant: changes in the central bank's assets will be mirrored in the central bank's liabilities ⇒ changes in the central bank's assets affect the domestic money supply.
- Central bank liabilities = the monetary base = central bank money
- The money supply is a multiple of the monetary base

How can the central bank increase the money supply?


- Purchase foreign assets (increase the foreign exchange reserves)
- Purchase domestic assets (the stock of assets held by the private sector decreases)
 - The money the central bank uses to pay for the purchase directly enters the money supply and causes it to expand
 - Repurchase (repo) transactions: if the central bank purchases government bills, it also enters an agreement to sell the bills at a given future date.
 - Repo transactions affect the repo rate, i.e. the short-term interest rate.

Money supply and the current crisis

- Normally central banks only make transactions in shortterm papers
- In the economic crisis central banks have increased the money supply also through transactions in longer-term papers (quantitative easing, unconventional measures)
 - purchase of government and commercial bonds
 - lending to banks against corporate debt collateral
 - lending to banks on longer term
- Huge expansion of central bank balance sheets

A fixed exchange rate and interest rate parity

Interest rate parity: $R = R^* + (E^e - E)/E$

Credible fixed exchange rate $\Rightarrow E^e = E$.

This implies: $R = R^*$

Monetary policy must be pursued such that:

$$M/P = L(R^*, Y)$$

 $Y \uparrow \Rightarrow L \uparrow$. This must be matched by $M \uparrow$

Monetary policy and fixed exchange rates

- Under a fixed exchange rate the central bank buys and sells foreign assets to keep the exchange rate fixed and to maintain domestic interest rates equal to foreign interest rates
- Under a fixed exchange rate the central bank is not able to adjust domestic interest rates to attain other goals
- Monetary policy in therefore ineffective in influencing output and employment

Fig. 18-1: Asset Market
Equilibrium with a Fixed

Exchange Rate, E

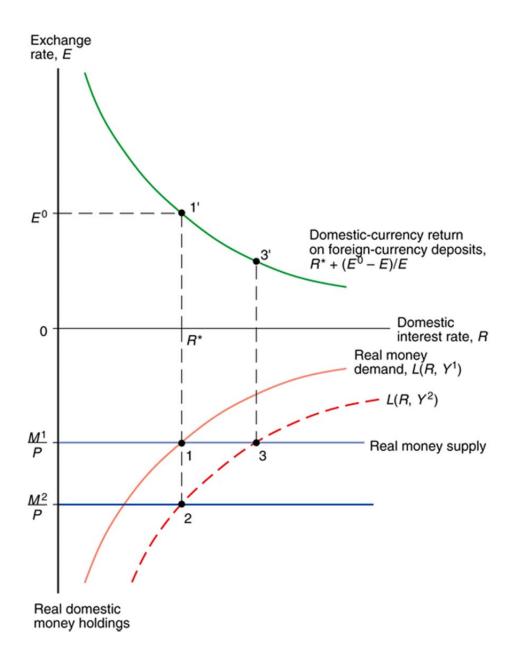
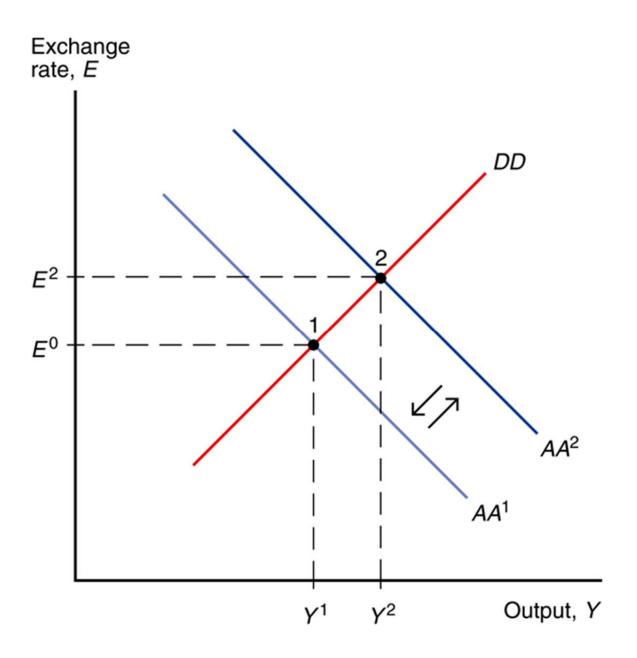
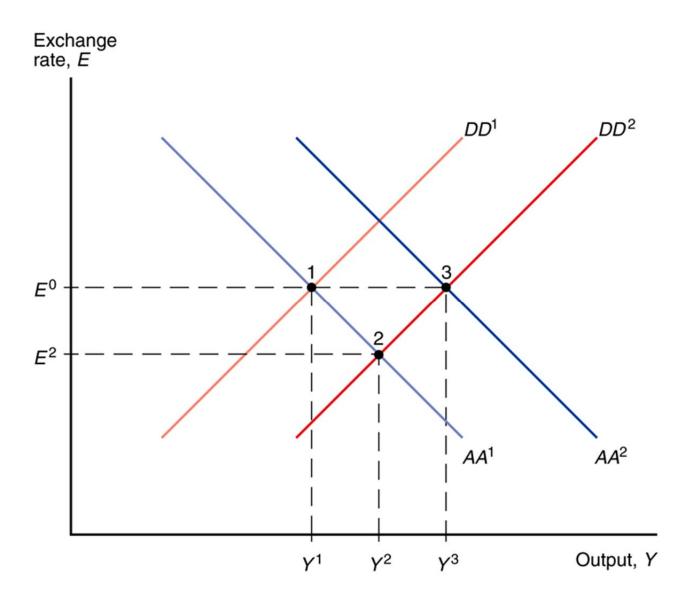



Fig. 18-2: Monetary Expansion Is Ineffective Under a Fixed Exchange Rate



Fiscal policy and fixed exchange rates in the short run

- Expansionary fiscal policy increasing output and income raises demand of real monetary assets, putting upward pressure on interest rates and on the domestic currency.
- To prevent an appreciation of the domestic currency,
 the central bank buys foreign assets, thereby increasing
 the money supply and decreasing interest rates.

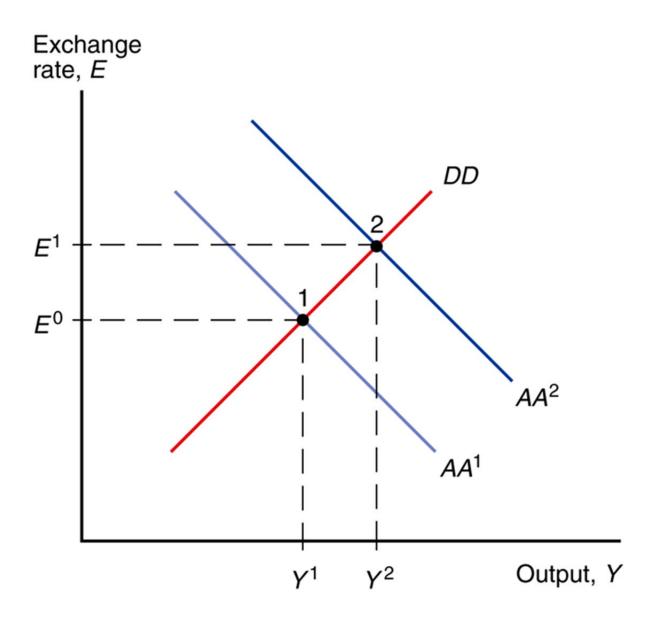
Fig. 18-3: Fiscal Expansion Under a Fixed Exchange Rate

Conclusions on stabilisation policy

- Flexible exchange rate
 - Monetary policy is the primary stabilisation tool
 - Fiscal policy is not so effective (exchange rate offset)
- Fixed exchange rate
 - Monetary policy is ineffective (tied down by interest rate parity)
 - Fiscal policy is the only effective stabilisation tool

Devaluations and revaluations

- Depreciations and appreciations: changes in the value of a currency under a floating exchange rate. Governed by markets.
- Devaluations and revaluations: changes in the value of a currency under a fixed exchange rate. Governed by the central bank.
- Devaluation: a unit of domestic currency is made less valuable, so that more units must be exchanged for one unit of foreign currency.
- Revaluation: a unit of domestic currency is made more valuable, so that fewer units need to be exchanged for one unit of foreign currency.

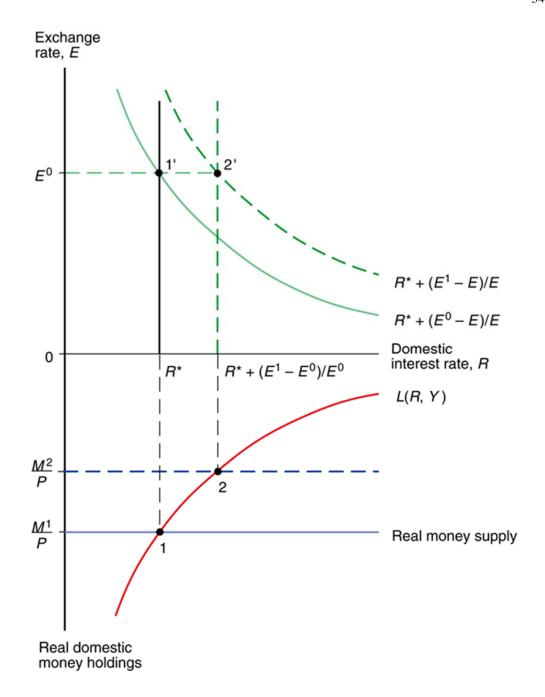


Devaluation

- The central bank buys foreign assets ⇒ the money supply increases and domestic interest rates fall, causing a fall in the rate return on domestic currency deposits.
- Domestic products become less expensive relative to foreign products ⇒ aggregate demand and output increase.
- Official international reserve assets, i.e. foreign bonds, increase.

Fig. 18-4: Effect of a Currency Devaluation

Why does a country devalue?


- 1. Expansionary fiscal policy may be impossible because of large budget deficits and large government debt: Sweden 1992 or Argentina 2001.
- 2. Under a fixed exchange rate and free capital movements an exchange rate devaluation is the only way of using monetary policy.
- 3. Past inflation may have deteriorated international competitiveness and "priced a country out of international markets".
- 4. Foreign exchange reserves may be depleted, for example because of large current account deficits.

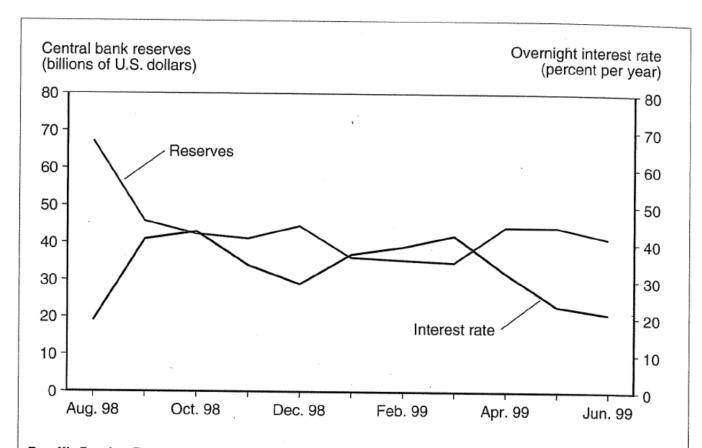
Balance of payment crisis

- A balance of payments crisis arises if the central bank does not have enough international reserves to maintain the fixed exchange rate.
- To sustain a fixed exchange rate the central bank must have enough foreign assets to sell to meet the demand for the national currency at the fixed exchange rate.
- If investors expect that the domestic currency will be devalued, they will demand foreign assets instead of domestic assets (whose value is expected to fall).
- This fear exacerbates the crisis:
 - Investors exchange domestic currency for foreign currency depleting the foreign exchange reserves even more.
 - Financial capital is moved to foreign assets: capital flight. The government can seek to keep capital in the country by raising the interest rate, i.e. by decreasing the money supply.
- The outcome is high interest rates, low money supply, low aggregate demand, low output and low employment.

Fig. 18-5: Capital Flight, the Money Supply, and the Interest Rate

Speculative attacks

- 1. Response to future unavoidable development
- 2. Self-fulfilling expectations (multiple equilibria)


It is always "<u>technically possible</u>" to defend a fixed exchange rate through selling foreign currency from foreign exchange reserves or currency obtained from borrowing: the problem is the goal conflicts caused by high interest rates

- Lower employment
- Higher interest rates on government debt and thus larger government budget deficits
- Private sector bankruptcies (banks and financial firms)

Examples: Sweden 1992, Mexico 1994, Brazil 1998-99, Argentina 2001

- Dramatic increases in unemployment
- Huge government budget deficits
- Bankruptcies of banks, financial firms and real estate firms

Brazil's Foreign Reserves and Interest Rates, August 1998–June 1999

As devaluation fears intensified during 1998, Brazil's reserves fell and its interest rates rose. The interest rate shown is that on overnight loans.

Source: Central Bank of Brazil.

The Baltic economies

- Fixed exchange rates vis-à-vis the euro
 - currency boards
 - all outstanding central bank debt backed by foreign currency reserves
- Typical emerging-market crisis
 - earlier large current-account deficits and capital inflows (Swedish banks)
 - reckless lending by Swedish banks
 - high inflation and lost cost competitiveness
 - capital flow reversals
 - expectations of exchange rate depreciations
 - interest rate hikes
 - deep recessions
- Need to restore competitiveness through wage and price cuts

$$-\frac{EP^*}{P} \uparrow$$
 by lowering P at constant E

Why didn't the Baltic economies devalue?

- Violation of EMU entry criterion
- Fixed exchange rate seen as anchor for low inflation
- Most of private-sector debt is in euros (foreign currency)
- Devaluation would increase the domestic-currency value of debt denominated in euros

$$D = ED^*$$

• But what matters is the <u>real</u> burden of debt

$$\frac{D}{P} = \frac{ED^*}{P}$$

- The real burden of debt increases also if $P \downarrow$
- <u>Main difference</u>: it takes longer time to achieve real exchange rate depreciation through wage/price cuts than through exchange rate devaluation
- But surprisingly large cuts in nominal wages and unit labour costs

GDP change

	2007	2008	2009	2010	2011
Estonia	6.9	-5.1	-13.9	3.1	4.9
Lavia	10.0	-4.2	-18.0	-0.3	3.3
Lithuania	9.8	2.9	-14.7	1.3	5.0

Change in nominal wage cost

	2007	2008	2009	2010	2011
Estonia	24.6	10.1	-3.3	-0.2	4.4
Lavia	35.1	15.7	-12.2	-6.5	1.5
Lithuania	13.9	14.3	-11.1	-1.3	3.4

Nominal unit labour cost (2000 = 100)

	2007	2008	2009	2010	2011
Estonia	153.0	177.8	179.8	165.6	171.9
Lavia	184.1	224.5	208.8	186.6	186.1
Lithuania	127.5	140.6	136.7	126.3	127.0

Nominal unit labour cost = Cost per unit produced = WL/Q

W = Wage cost per worker

L = Number of Workers

Q = **Output**

Current account balance (as a percentage of GDP)

	2007	2008	2009	2010	2011
Estonia	-17.2	-8.8	4.5	2.8	1.8
Lavia	-22.3	-13.1	8.6	3.6	-0.3
Lithuania	-15.1	-13.1	2.6	1.8	0.2

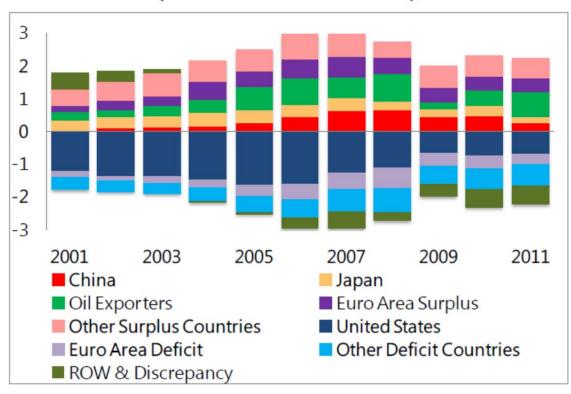
Source: EU Commission Forecasts, Statistical Annex

China's exchange rate policy

- Undervalued exchange rate has been maintained through central bank purchases of dollar: accumulation of dollar assets by the central bank
 - Large current account surpluses
 - The largest foreign currency reserves in the world:
 20 percent of world reserves

• Explanations

- High private savings because of underdeveloped social security and pension system
- Undervalued exchange rate helps industrialisation through strategy of "export-led growth"
- Precautionary motive for accumulating assets: ability to meet capital outflows (cf Asian crisis)


• Problems:

- Distorted relative prices: imports are too expensive
- Overinvestment in export sector
- Low purchasing power for domestic consumers
- Problems associated with appreciation
 - Exchange rate losses on accumulated dollar reserves
 - Many export firms that are profitable today would become unprofitable
 - Risks of financial crisis

Figure 1. Global Current Account, 2001–11

All Countries: Actual Unadjusted Current Account, 2001–11 (Percent of world GDP)

Source: IMF, World Economic Outlook Database

Figure 1.25

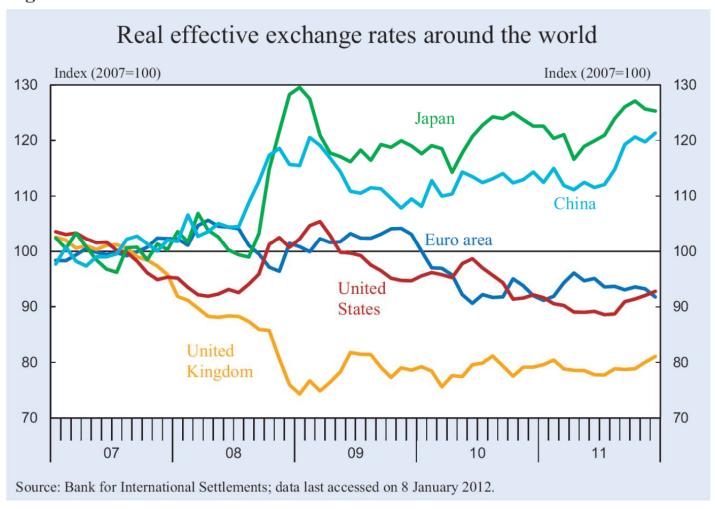
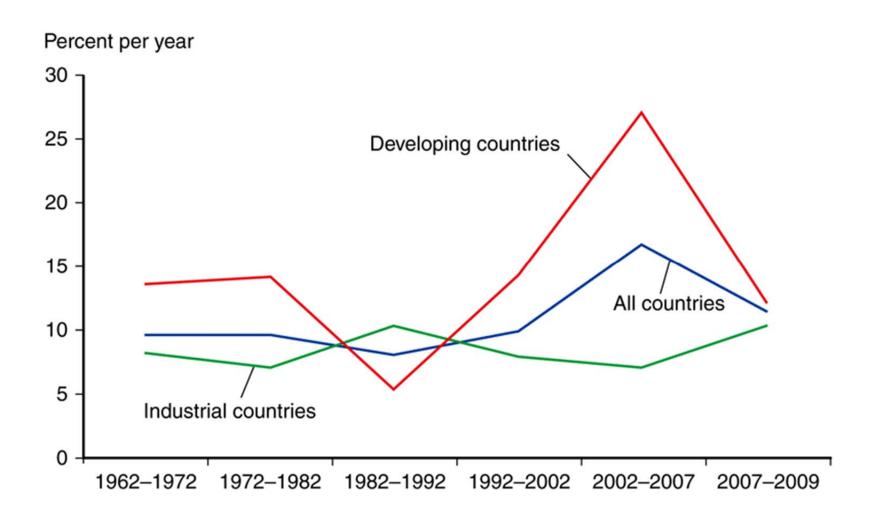
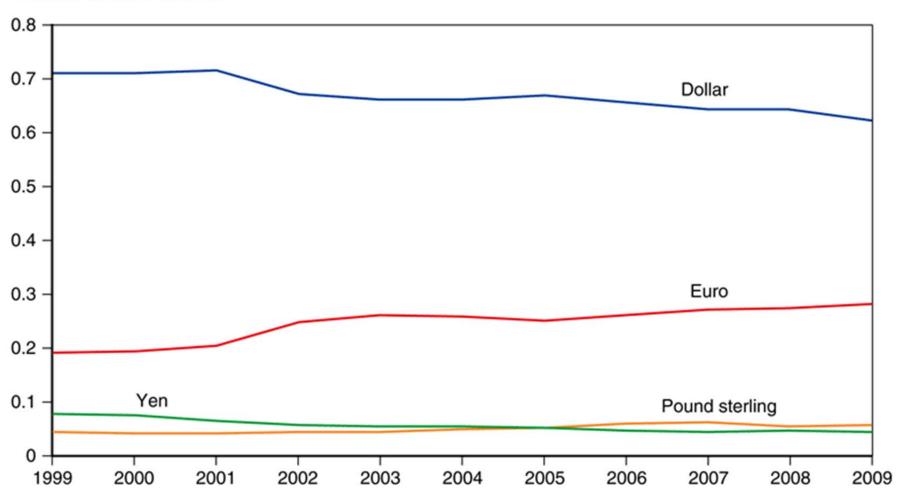



Fig. 18-7: Growth Rates of International Reserves

Source: Economic Report of the President, 2010.

The historical gold standard

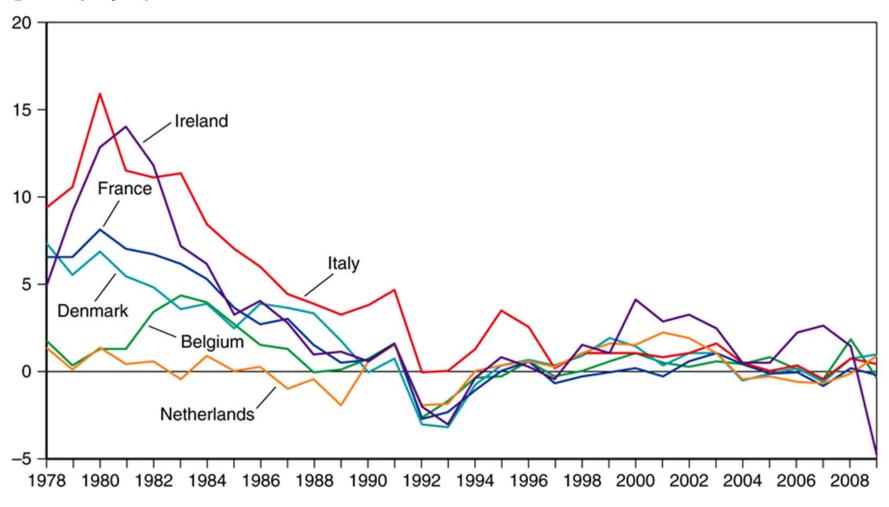
- During the gold standard central banks guaranteed that currencies could be converted into gold at a fixed price
- The gold standard thus implied a fixed price of different currencies in gold: this locked all cross exchange rates between different currencies
- The gold standard tied changes in money supply to changes in the gold stock: this ensured that inflation would not run away
- The gold standard was abandoned only during deep crises (usually wars): implicit commitment to return to earlier parities afterwards
- Long-run price movements tied to changes in the gold stock associated with swings in gold production
- Monetary policy could not be used for stabilisation of the business cycle


Gold-dollar exchange standard in the Bretton Woods system

- The dollar functioned as a <u>reserve currency</u>
- N-1-problem: With N currencies only N-1 countries need to maintain fixed exchange rates (because there are only N-1 exchange rates)
- The reserve currency country (the US) can choose any rate of change of money supply: the others must adjust their money supply increases and interest rates so that they maintain fixed exchange rates vis-à-vis the dollar.
- The system worked until the US started printing money and create inflation in the 1960s (financing of the Vietnam war and domestic social reforms)
- Other countries (Germany, France, Japan) were not prepared to maintain fixed exchange rates, as this implied that they would import inflation
- The Bretton-Woods system broke down after a series of serious exchange rate crises

Fig. 18-8: Currency Composition of Global Reserves

Source: International Monetary Fund, Currency Composition of Foreign Exchange Reserves (as of June 30, 2010), at http://www.imf.org/external/np/sta/cofer/eng/index.htm. These data cover only the countries that report reserve composition to the IMF, the major omission being China.


ERM system in the 1980s and 1990s

- Germany functioned as reserve currency country
- Germany determined the inflation rate in the ERM area (other countries could import price stability from Germany)
- But German monetary policy aimed at stabilising the German business cycle
- In the early 1990s after German unification there was a strong boom in Germany at the same time as Europe went into recession. German high interest rates to keep down domestic inflation aggravated the recession in the rest of Europe.
- EMU was seen by many (France in particular) as a way of replacing German control of European monetary policy with common European decision making in a common European Central Bank.

Fig. 20-2: Inflation Convergence for Six Original EMS Members, 1978–2009

Country's annual inflation less Germany's annual inflation (percent per year)

Source: CPI inflation rates from International Monetary Fund, International Financial Statistics.