Lecture 2: Intermediate macroeconomics, autumn 2009

Lars Calmfors

Topics

- **Production**
- Labour productivity and economic growth
- The Solow Model
- Endogenous growth
- Long-run effects of the current recession

Literature: Mankiw and Taylor, Chapters 3, 7 and 8; OECD Economic Outlook, Chapter 4, pp. 231-245.

Position 1970		Index	Pos	sitic
1	Switzerland	154	1	US
2	USA	147	2 3	Sv
3	Luxembourg	119	3	Са
4	Sweden	113 (105*)	4	Lu
5	Canada	111	5	lce
6	Denmark	109	6	Fr
7	France	105	7	No
8	Australia	103	7	Sv
9	Netherlands	102	9	De Be
10	New Zeeland	100	10	Be
11	Great Britain	96	11	Αι
12	Belgium	95	11	Ne
13	Germany	93	11	Αι
14	Italy	89	14	lta
14	Austria	89	14	lta Ge
16	Norway	88	16	
17	Japan	86	17	Ja Gr Fir Ne
18	Finland	85	18	Fi
19	Iceland	83	19	Ne
20	Spain	66	20	Sp
21	Ireland	55	21 21	G
22	Greece	53	21	Ire
23	Portugal	46	23	Po
24	Mexico	40	24	M
25	Turkey	28	25	Τι

GDP per capita, percent of OECD average, PPP-adjusted

Pos	sition 1980	Index
1	USA	140
2	Switzerland	137
3	Canada	118
3 4 5 6 7 7	Luxembourg	115
5	Iceland	110
6	France	109
7	Norway	107
7	Sweden	107 (98*)
9	Denmark	105
10	Belgium	104
11	Australia	101
11	Netherlands	101
11	Austria	101
14	Italy	97
14	Germany	97
16	Japan	95 93 92
17	Great Britain	93
18	Finland	92
19	New Zeeland	89
20	Spain	68
21	Greece	61
21	Ireland	61
23	Portugal	53
24	Mexico	45
25	Turkey	27

* If Mexico and Turkey are excluded.

Position 1990 Index		Pos	sition 1998	Index	
1	Luxembourg	141	1	Luxembourg	156
2	USA	137	2	USA	138
3	Switzerland	131	3	Norway	124
4	Canada	114	4	Switzerland	120
5	Japan	110	5	Denmark	119
6	Norway	108		Iceland	119
7	France	107	7	Canada	111
7	Iceland	107	8	Belgium	109
9	Denmark	105		Japan	109
9	Sweden	105 (94*)	10	Austria	108
11	Belgium	103		Netherlands	104
11	Austria	103	12	Australia	103
13	Finland	100	12	Germany	103
13	Italy	100	14	Ireland	102
15	Australia	99	15	France	100
15	Germany	99	16	Finland	98
17	Netherlands	98	16	Italy	98
17	Great Britain	98	18	Great Britain	96
19	New Zeeland	82	18	Sweden	96 (85*)
20	Spain	73	20	New Zeeland	80
21	Ireland	70	21	Spain	76
22	Portugal	59	22	Portugal	69
23	Greece	57	23	Greece	65
24	Mexico	36	24	Mexico	36
25	Turkey	29	25	Turkey	30

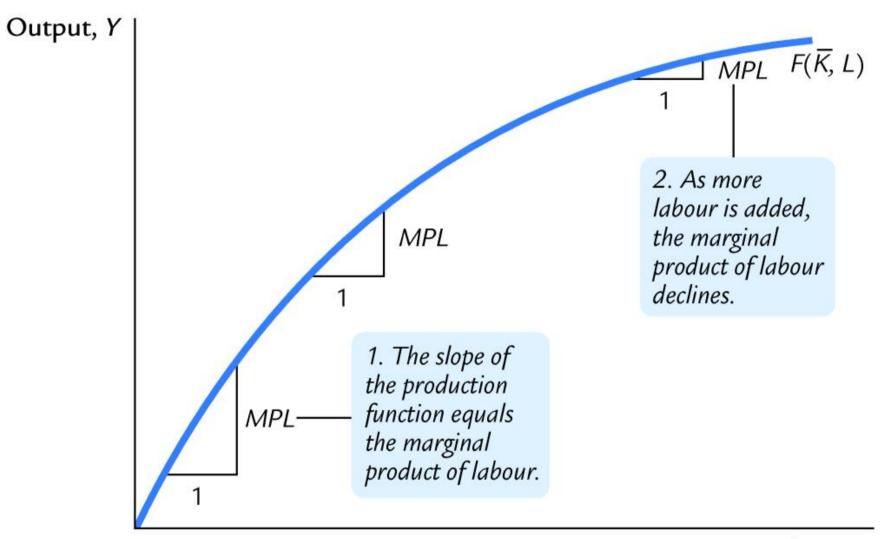
GDP per capita, percent of OECD average, PPP-adjusted

* If Mexico and Turkey are excluded.

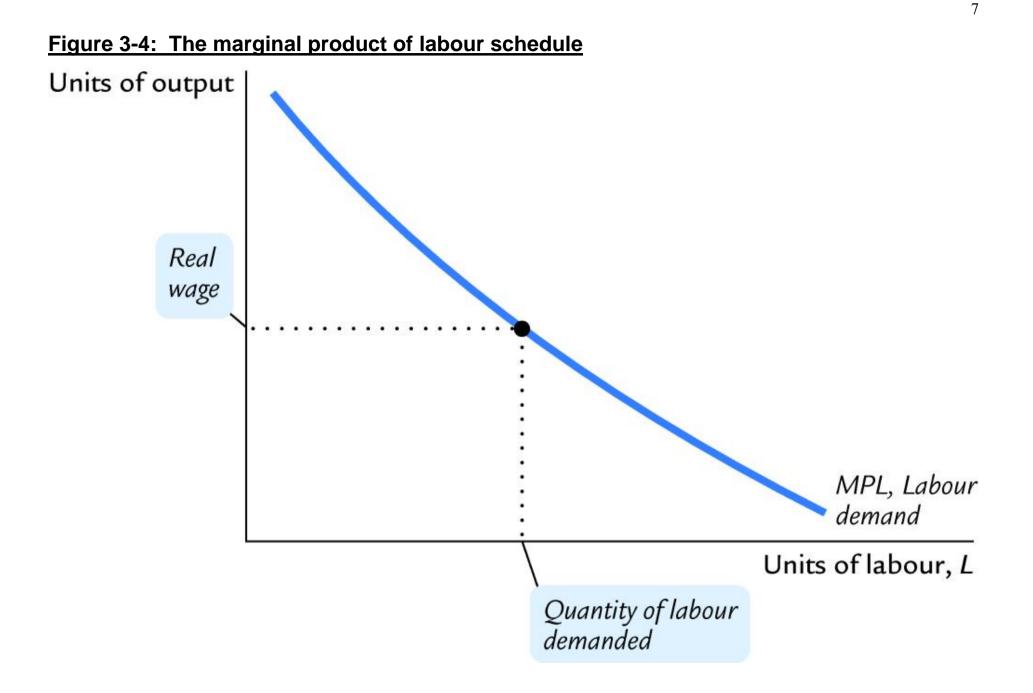
GDP per capita, US dollars, PPP-adjusted, percent of OECD average, ranking by country

		2007
1	Luxembourg	245
2	Norway	163
3	United States	139
4	Ireland	137
5	Switzerland	126
6	Netherlands	120
7	Canada	118
8	Australia	115
9	Austria	114
10	Sweden	112
11	Iceland	111
12	Denmark	110
13	United Kingdom	109
14	Belgium	108
15	Germany	105
16	Finland	106
17	Japan	103
18	Euro area	100
19	France	100
20	Spain	96
21	Italy	93
22	Greece	87
23	New Zealand	82
24	Korea	82
25	Czech Republic	73
26	Portugal	70
27	Hungary	57
28	Slovak Republic	61
29	Poland	49
30	Mexico	43
31	Turkey	40
Source:	OECD	

$$Y = F(K, L)$$


$$MPL = F(K, L + 1) - F(K, L)$$

$$MPL = \frac{dY}{dL} = \frac{dF(K, L)}{dL} = F_L$$


$$MPK = F(K + 1, L) - F(K, L)$$

$$MPK = \frac{dY}{dK} = \frac{dF(K, L)}{dK} = F_K$$

Labour, L

Profit maximisation

General: suppose y = f(x, z). The first-order conditions (FOCs) for maximum of *y* are:

$$\frac{dy}{dx} = f_x = 0$$
$$\frac{dy}{dz} = f_z = 0$$

Profit maximisation

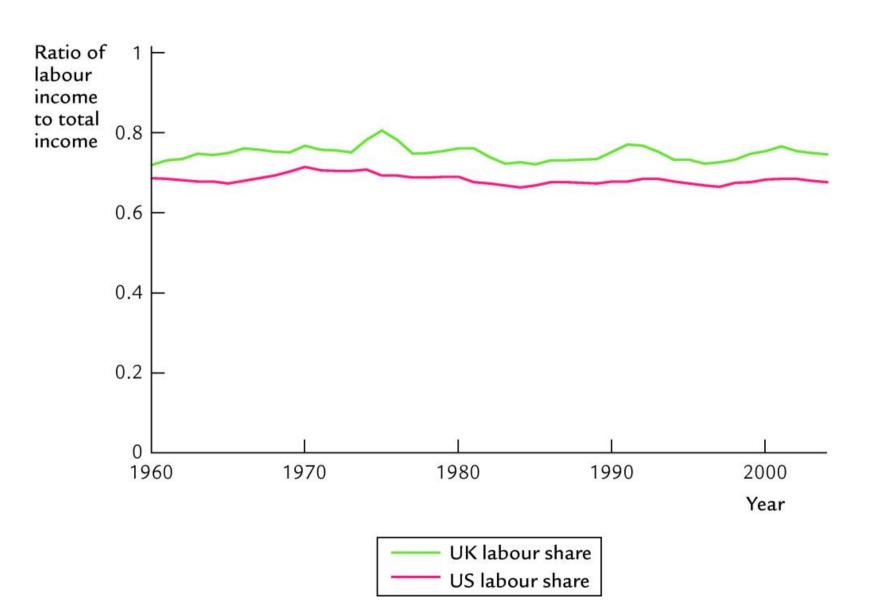
$$\pi = PY - RK - WL = PF(K, L) - RK - WL$$
$$\frac{d\pi}{dL} = PF_L - W = 0 \quad \Leftrightarrow \quad F_L = \frac{W}{P}$$
$$\frac{d\pi}{dK} = PF_K - R = 0 \quad \Leftrightarrow \quad F_K = \frac{R}{P}$$

Production function

$$Y = AF(K, L)$$
 $A = \text{total factor productivity}$

It holds that:

$$\frac{\Delta Y}{Y} \approx \frac{\Delta A}{A} + \alpha \frac{\Delta K}{K} + (1 - \alpha) \frac{\Delta L}{L}$$


 α = capital income share 1- α = labour income share

GDP growth = total factor productivity growth + contribution from growth of the capital stock + contribution from growth of the labour force

Growth accounting

The Solow-residual:

$$\frac{\Delta A}{A} \approx \frac{\Delta Y}{Y} - \alpha \frac{\Delta K}{K} - (1 - \alpha) \frac{\Delta L}{L}$$

Figure 3-5: The ratio of labour income to total income in the US and the UK

Mathematical preliminaries: the natural logarithm

Recall that ln x is the natural logarithm of x. By definition:

$$x = e^a \iff a = \ell n x$$

Properties:

$$ln (xy) = ln x + ln y$$
$$ln \left(\frac{x}{y}\right) = ln x - ln y$$
$$ln x^{\beta} = \beta ln x$$

If y = f(g) and g = g(x) so that

y = f(g(x))

then

$$\frac{dy}{dx} = \frac{\partial f}{\partial g} \frac{dg}{dx} = f_g g_x \tag{1}$$

Moreover, the derivative of the ln-function is given by:

$$\frac{d(\ln x)}{dx} = \frac{1}{x} \tag{2}$$

and for polynomials:

$$\frac{d(x^{\gamma})}{dx} = \gamma x^{\gamma-1}$$

Cobb-Douglas production function

 $Y = AF(K, L) = AK^{\alpha}L^{1-\alpha}$

K, *L* and *A* and thus also *Y* are functions of time (continuous-time formulation).

$$\therefore \quad Y(t) = A(t)K(t)^{\alpha}L(t)^{1-\alpha}$$

Taking logarithms:

$$ln Y(t) = ln A(t) + ln K(t)^{\alpha} + ln L(t)^{1-\alpha} ln Y(t) = ln A(t) + \alpha ln K(t) + (1-\alpha) ln L(t)$$

Differentiation w.r.t. time gives:

$$\frac{d\ell n Y(t)}{dt} = \frac{d\ell n A(t)}{dt} + \alpha \frac{d\ell n K(t)}{dt} + (1-\alpha) \frac{d\ell n L(t)}{dt}$$
$$\frac{dY}{dt} \cdot \frac{1}{Y} = \frac{dA}{dt} \cdot \frac{1}{A} + \alpha \frac{dK}{dt} \cdot \frac{1}{K} + (1-\alpha) \frac{dL}{dt} \cdot \frac{1}{L}$$
Call $\frac{dY}{dt} = \dot{Y}, \frac{dA}{dt} = \dot{A}, \frac{dK}{dt} = \dot{K} \text{ och } \frac{dL}{dt} = \dot{L}$
$$\therefore \quad \dot{Y}_{\overline{Y}} = \frac{\dot{A}}{A} + \alpha \frac{\dot{K}}{K} + (1-\alpha) \frac{\dot{L}}{L}$$
$$\alpha = \text{profit share}$$
$$1-\alpha = \text{wage share}$$

The discrete-time equivalent is: $\frac{\Delta Y}{Y} \approx \frac{\Delta A}{A} + \alpha \frac{\Delta K}{K} + (1-\alpha) \frac{\Delta L}{L}$ $\Delta Y = Y_{t} - Y_{t-1} \text{ etc.}$

Profit maximisation with Cobb-Douglas production <u>function</u>

$$\pi = PY - RK - WL = PAK^{\alpha}L^{1-\alpha} - RK - WL$$
$$\frac{d\pi}{dK} = \alpha PAK^{\alpha-1}L^{1-\alpha} - R = 0$$
$$\frac{d\pi}{dL} = (1-\alpha)PAK^{\alpha}L^{-\alpha} - W = 0$$

Re-arranging these equations implies:

$$\alpha = \frac{R}{PAK^{\alpha-1}L^{1-\alpha}} = \frac{RK}{PAK^{\alpha}L^{1-\alpha}} = \frac{RK}{PY}$$
$$1-\alpha = \frac{W}{PAK^{\alpha}L^{-\alpha}} = \frac{WL}{PAK^{\alpha}L^{1-\alpha}} = \frac{WL}{PY}$$

Growth in labour productivity

$$\frac{\Delta Y}{Y} = \alpha \,\,\frac{\Delta K}{K} + (1 - \alpha) \,\,\frac{\Delta L}{L} + \frac{\Delta A}{A} \tag{A}$$

GDP growth = contribution from growth of capital stock + contribution from growth of labour + total factor productivity growth

Labour productivity: Y/L

$$\frac{\Delta \left(\frac{Y}{L}\right)}{\left(\frac{Y}{L}\right)} \approx \frac{\Delta Y}{Y} - \frac{\Delta L}{L}$$

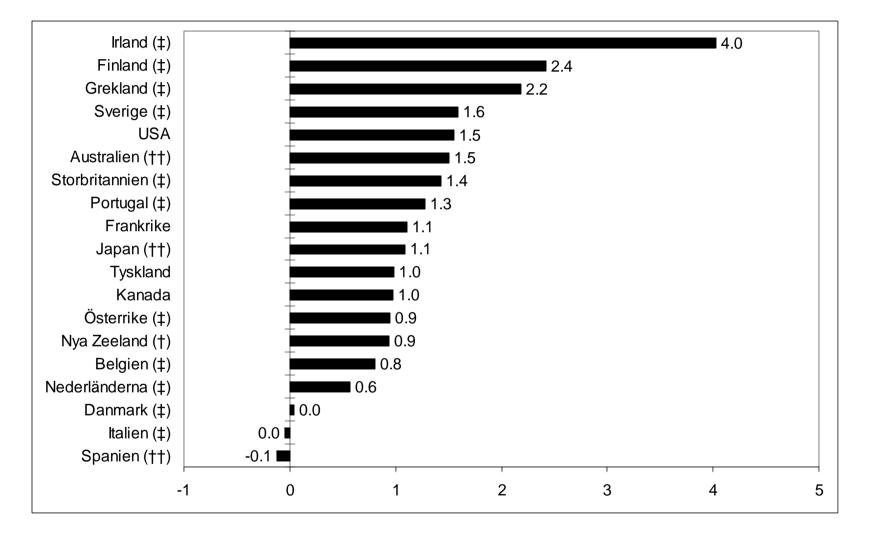
Subtracting $\frac{\Delta L}{L}$ from both sides of equation (A) gives :

$$\frac{\Delta Y}{Y} - \frac{\Delta L}{L} = \alpha \frac{\Delta K}{K} + (1 - \alpha) \frac{\Delta L}{L} + \frac{\Delta A}{A} - \frac{\Delta L}{L}$$

$$\frac{\Delta Y}{Y} - \frac{\Delta L}{L} = \alpha \left(\frac{\Delta K}{K} - \frac{\Delta L}{L}\right) + \frac{\Delta A}{A}$$

Growth in labour productivity = contribution from capital deepening + total factor productivity growth

Capital deepening: Increase in capital intensity (capital relative to labour)


Capital deepening can be decomposed into ICT capital deepening and non-ICT capital deepening

ICT = Information and Communications Technology

	Growth in GDP per hour	Contribution from ICT capital deepening	Contribution from non-ICT capital deepening	Total factor productivity growth
Denmark				
1990–94	2.4	0.6	0.5	1.3
1995-99	1.8	1.0	0.5	0.3
2000-04	1.4	0.5	1.0	- 0.1
Finland				5 mm
1990-94	2.1	0.5	1.1	0.5
1995-99	2.7	0.5	- 0.7	2.8
2000-04	2.8	0.6	0.2	2.0
Sweden				2010/02/
1990-94	2.0	0.5	0.7	0.7
1995-99	2.4	1.0	0.2	1.2
2000-04	2.6	0.4	0.3	1.9
Average Scandinavian				
countries				
1990-94	2.2	0.5	0.8	0.9
1995-99	2.3	0.9	0.0	1.4
2000-04	2.3	0.5	0.5	1.3
Austria				
1990-94	0.9	0.3	0.6	0.0
1995-99	3.2	0.6	0.8	1.8
2000-04	1.4	0.4	0.8	0.2
Belgium				
1990-94	2.9	0.5	0.9	1.6
1995-99	2.7	0.9	0.2	1.5
2000-04	0.6	0.4	- 0.1	0.3
France				
1990-94	1.5	0.2	1.3	0.0
1995-99	2.1	0.4	0.6	1.1
2000-04	1.5	0.2	0.9	0.5
Germany				
1990-94	3.0	0.4	0.9	1.8
1995-99	1.9	0.5	0.4	1.0
2000-04	1.2	0.3	0.3	0.6

Table 4.5

Contributions to avera	ae annual growth	in GDP per hour	percentage points, 1990-2004
Contributions to avera	se unnnu stown	I III GDT per nour.	percentage points, 1990-2004

Annual growth of total factor productivity in OECD countries, 1995-2005

Explanations of high productivity growth in Sweden

- Large contributions from both ICT-producing and ICT-using sectors
- Encompassing deregulations of product and service markets
 - low level of regulation
 - early deregulations
- High educational level (complementarity between ICT technology and high-skilled labour)
- High R&D expenditures (Research and development)
- Creative destruction in the 1990s

$$Y = F(K, L)$$
$$zY = zF(K, L) = F(zK, zL)$$

10 % larger input of capital and labour raises output also by 10 %.

$$z = \frac{1}{L} \Rightarrow$$

$$\frac{Y}{L} = F(\frac{K}{L}, 1)$$

$$\frac{Y}{L} = y = \text{output per capita}$$

$$\frac{K}{L} = k = \text{ capital intensity (capital stock per capita)}$$

$$y = F(k, 1) = f(k)$$

Output per capita is a function of capital intensity

The Cobb-Douglas case

Suppose that $Y = K^{\alpha} L^{1-\alpha}$:

$$y = \frac{Y}{L} = \frac{K^{\alpha}L^{1-\alpha}}{L} = K^{\alpha}L^{-\alpha} = \left(\frac{K}{L}\right)^{\alpha} = k^{\alpha}$$

Including total factor productivity (A) so that $Y = AK^{\alpha}L^{1-\alpha}$:

$$y = \frac{Y}{L} = \frac{AK^{\alpha}L^{1-\alpha}}{L} = AK^{\alpha}L^{-\alpha} = A\left(\frac{K}{L}\right)^{\alpha} = Ak^{\alpha}$$

The Solow model

(1)	y = c + i	Goods market equilibrium
(2)	c = (1-s) y	Consumption function, <i>s</i> is the savings rate
(3)	y = f(k)	Production function
(4)	$d = \delta k$	Capital depreciation, δ is the rate of depreciation
(5)	$\Delta k = i - \delta k$	Change in the capital stock

Change in the capital stock = Gross investment – Depreciation

The Solow model (cont.)

Substituting the consumption function (2) into the goods market equilibrium condition (1) gives:

$$y = (1-s)y + i$$
$$i = sy$$

Investment = Saving

Substitution of the production function into the investmentsavings equality gives:

$$i = sf(k)$$

 $\therefore \quad \Delta \mathbf{k} = i - \delta k = sf(k) - \delta k$

In a steady state, the capital stock is unchanged from period to period, i.e. $\Delta k = 0$ and thus:

$$sf(k) = \delta k$$

Convergence of GDP per capita

- Countries with different initial GDP per capita will converge (if they have the same production function, the same savings rate and the same depreciation rate).
- The catch-up factor
- Strong empirical support for the hypothesis that GDP growth is higher the lower is initial GDP per capita

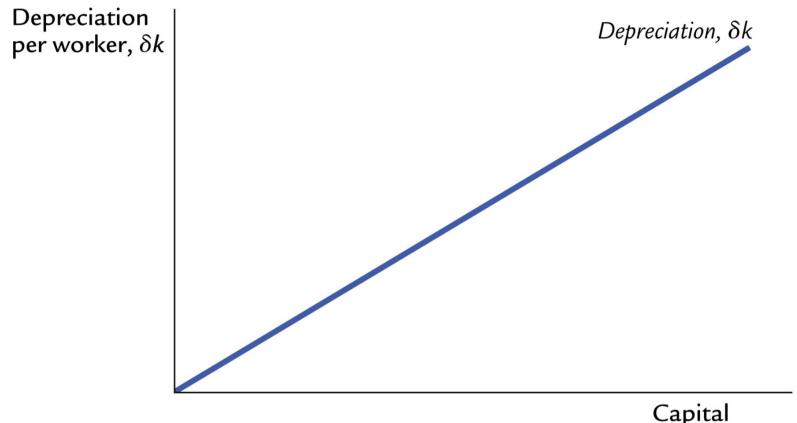



Figure 7-2: Output, consumption and investment

Capital per worker, *k*

Figure 7-3: Depreciation

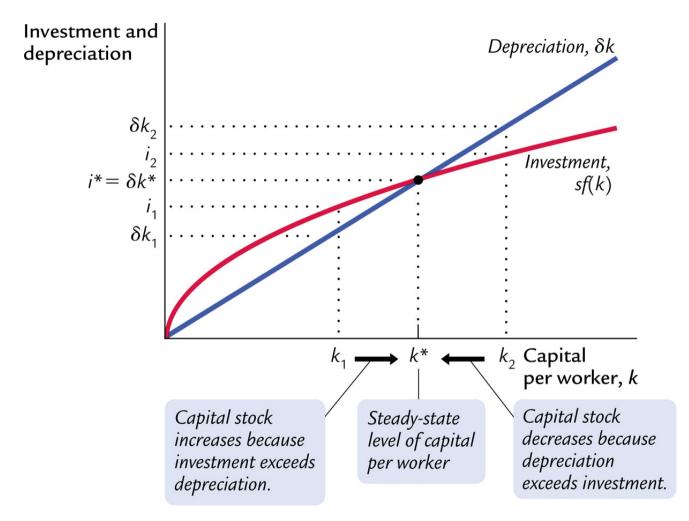
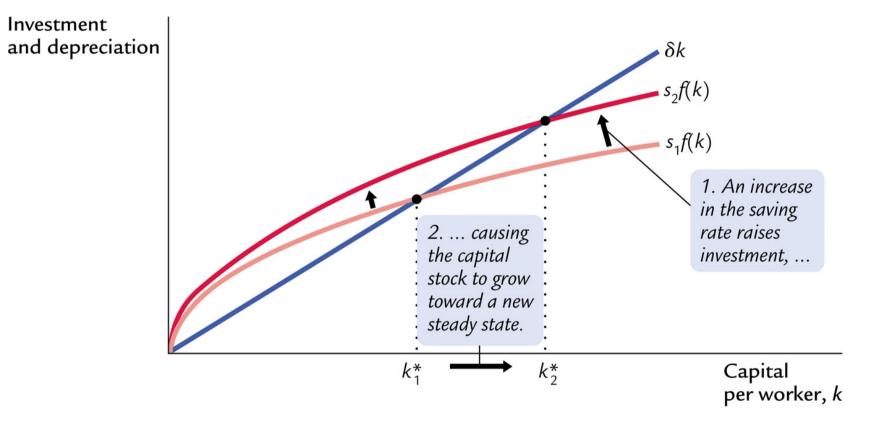
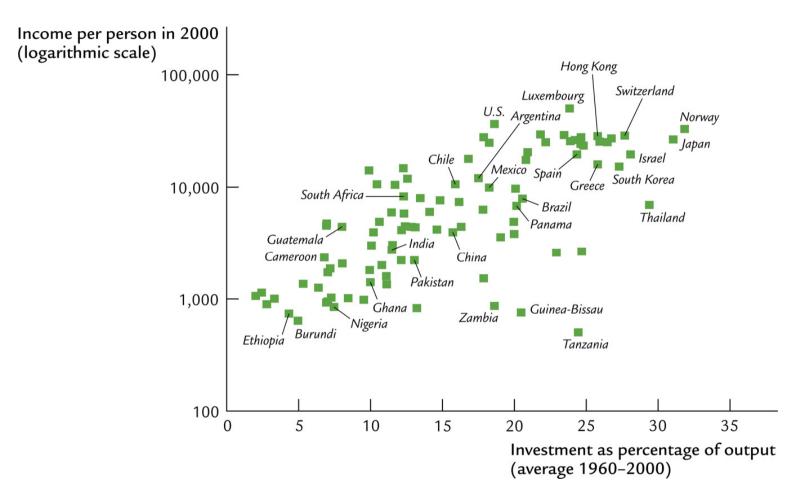




Figure 7-4: Investment, depreciation and the steady state

Figure 7-5: An increase in the saving rate

Golden rule of capital accumulation

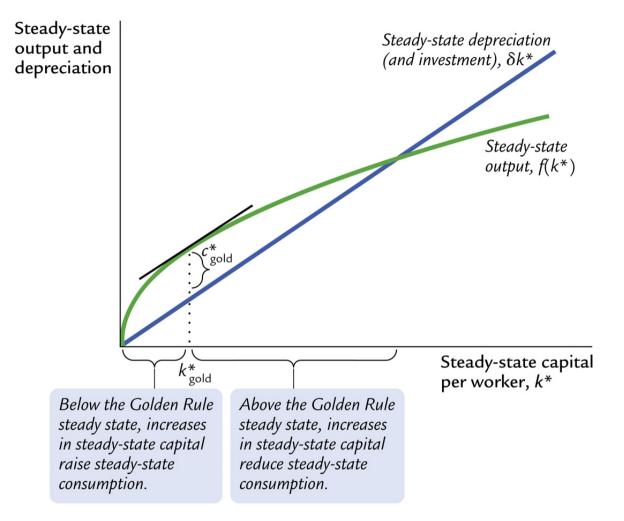
Which savings rate gives the highest per capita consumption in the steady state?

$$y = c + i$$
$$c = y - i$$

In a steady state, gross investment equals depreciation:

 $i = \delta k$

Hence:


 $c = f(k) - \delta k$

Consumption is maximised when the marginal product of capital equals the rate of depreciation, i.e. $MPC = \delta$

Mathematical derivation

The first-order condition for maximisation of the consumption function:

$$\partial c / \partial k = f_k - \delta = 0$$

 $f_k = \delta$

Figure 7-7: Steady-state consumption

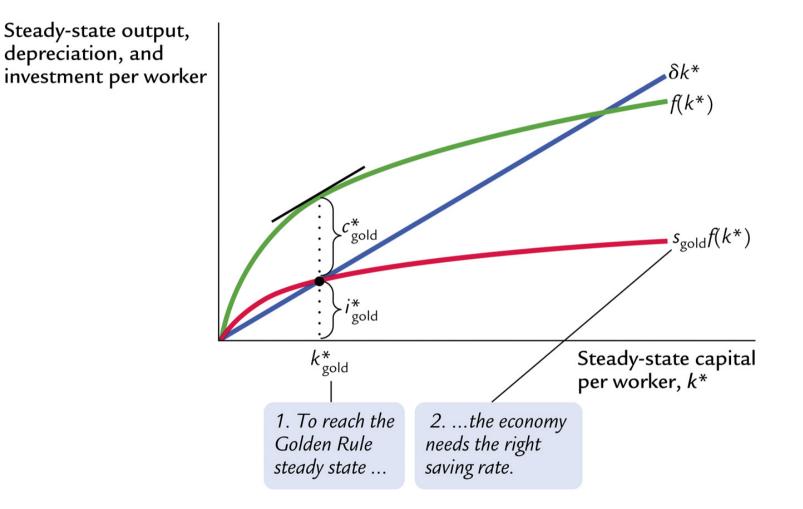
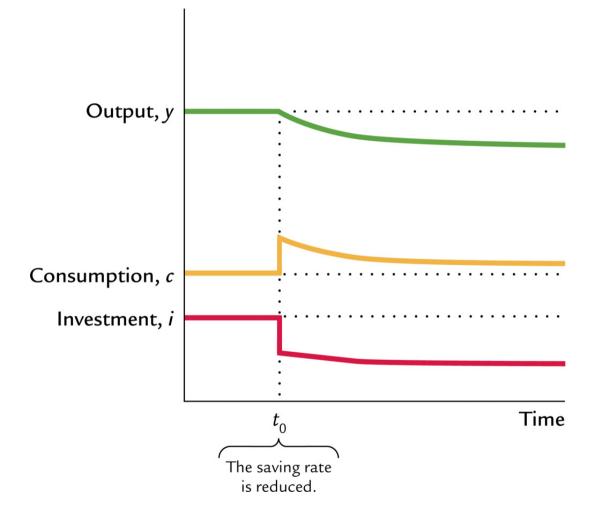



Figure 7-8: The saving rate and the golden rule

Figure 7-9: Reducing saving when starting with more capital than in the golden rule steady state

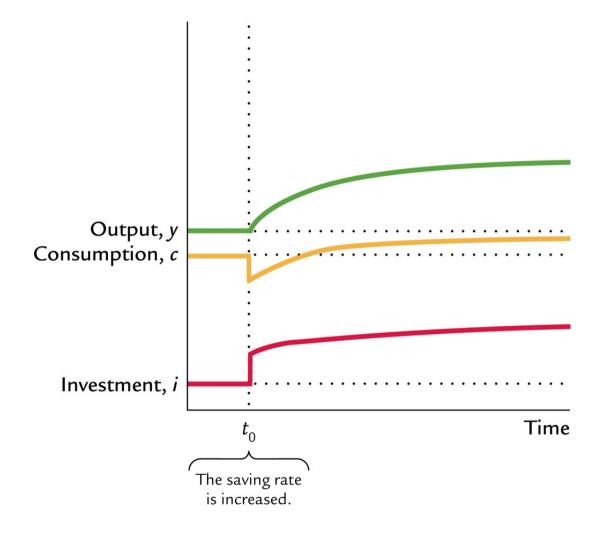


Figure 7-10: Increasing saving when starting with less capital than in the golden rule steady state

A steady state with population growth

$$n = \frac{\Delta L}{L} =$$
 population growth

$$\Delta k = i - \delta k - nk$$

Change in capital intensity (k = K/L) = Gross investment – Depreciation – Reduction in capital intensity due to population growth

In a steady state:

 $\Delta k = i - \delta k - nk = 0$, i.e. $i = (\delta + n)k = 0$

Derivation of the capital growth equation

K = capital stock, I = gross investment, L = population k = K/L = capital stock per worker (capital intensity) i = I/L = gross investment per worker

$$\Delta K = I - \delta K$$

$$\frac{\Delta K}{K} = \frac{I}{K} - \delta$$

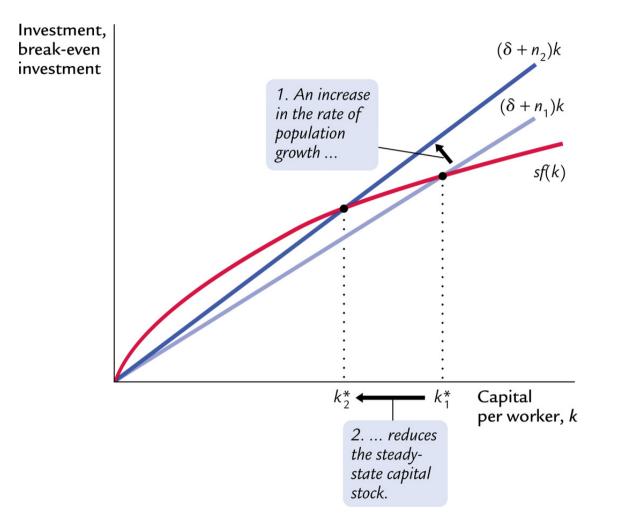
Use that:

$$\frac{\Delta k}{k} \approx \frac{\Delta K}{K} - \frac{\Delta L}{L} \text{ and } \frac{\Delta L}{L} = n$$

$$\frac{\Delta k}{k} \approx \frac{I}{K} - \delta - n$$

Hence:

$$\frac{\Delta k}{k} \approx \frac{I}{L} \cdot \frac{L}{K} - \delta - n$$


$$\frac{\Delta k}{k} \approx \frac{i}{k} - \delta - n$$

Multiplying by *k* gives:

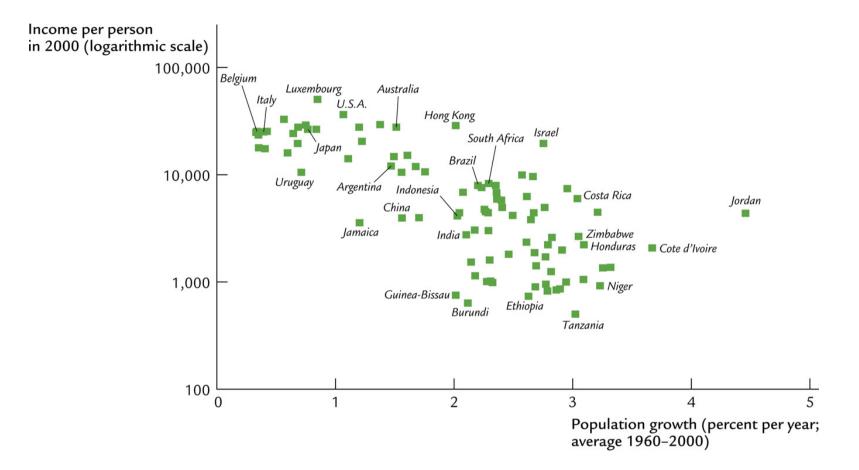

 $\Delta k \approx i - \delta k - nk = i - (\delta + n)k$

Figure 7-11: Population growth in the Solow model

Figure 7-12: The impact of population growth

Figure 7-13: International evidence on population growth and income per person

$$Y = F(K, L)$$
$$\frac{\Delta Y}{Y} \approx \alpha \frac{\Delta K}{K} + (1 - \alpha) \frac{\Delta L}{L}$$

In a steady state, k = K/L is constant. Because

$$\frac{\Delta k}{k} \approx \frac{\Delta K}{K} - \frac{\Delta L}{L} = 0,$$

We have

$$\frac{\Delta K}{K} = \frac{\Delta L}{L} = n$$

$$\therefore \text{ är } \frac{\Delta Y}{Y} \approx \alpha \frac{\Delta K}{K} + (1 - \alpha) \frac{\Delta L}{L} = \alpha n + (1 - \alpha)n = n$$

GDP growth = Population growth

Golden rule with population growth

 $c = y - i = f(k) - (\delta + n)k$

Consumption per capita is maximised if $MPC = \delta + n$, i.e. if the marginal product of capital equals the sume of the depreciation rate and population growth

<u>Alternative formulation</u>: The net marginal product of capital after depreciation ($MPK - \delta$) should equal population growth (*n*)

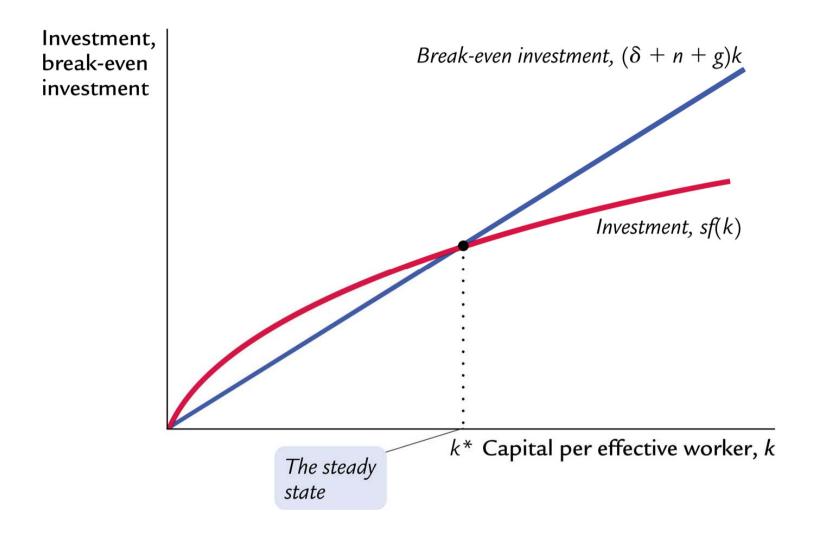
<u>Mathematical derivation</u> Differentiation of c-function w.r.t *k* gives:

$$\partial c / \partial k = f_k - (\delta + n) = 0$$

 $f_k = \delta + n$

Labour-augmenting technical progress

- $Y = F(K, L \bullet E)$
- E =labour efficiency
- $L \bullet E =$ efficiency units of labour


$$y = \frac{Y}{LE} = F(\frac{K}{LE}, 1) = F(k, 1) = f(k)$$
$$k = \frac{K}{LE}$$

Steady state

- *L* grows by n % per year
- *E* grows by g % per year

 $\Delta k = sf(k) - (\delta + n + g)k = 0$

Gross investment = Depreciation + Reduction in capital intensity because of population growth + Reduction in capital intensity because of technological progress

Figure 8-1: Technological progress and the Solow growth model

Growth and labour-augmenting technological progress

$$Y = K^{\alpha} (LE)^{1-\alpha}$$
$$\frac{\Delta Y}{Y} \approx \alpha \frac{\Delta K}{K} + (1-\alpha)(\frac{\Delta L}{L} + \frac{\Delta E}{E})$$

In a steady state *K*/*LE* is constant

$$(\Delta L/L + \Delta E/E) = n + g \implies \Delta K/K = n + g.$$

$$\frac{\Delta Y}{Y} \approx \alpha(n + g) + (1 - \alpha)(n + g) = n + g.$$

GDP growth = population growth+ technological progress

$$\frac{\Delta y}{y} \approx \frac{\Delta Y}{Y} - \frac{\Delta L}{L} = n + g - n = g$$

Growth in GDP per capita = rate of technological progress

<u>Table 8-1</u>: Steady-State growth rates in the Solow model with technological progress

Variable	Symbol	Steady-state growth rate
Capital per effective worker	$\boldsymbol{k} = \boldsymbol{K} / (\boldsymbol{L} \times \boldsymbol{E})$	0
Output per effective worker	$y = Y/(L \times E)$	0
Output per worker	$(Y/L) = y \times E$	g
Total output	$Y = y \times E \times L$	n + g

Golden rule with technological progress

 $c = f(k) - (\delta + n + g)k$

Consumption per efficiency unit is maximised if $MPK = \delta + n + g$

The marginal product of capital should equal the sum of depreciation, population growth and technological progress

<u>Alternative formulation</u>: The net marginal product (*MPK* - δ) should equal GDP growth (*n* + *g*).

Mathematical derivation Differentiation w.r.t. *k*:

$$\partial c / \partial k = f_k - (\delta + n + g) = 0$$

 $f_k = \delta + n + g$

Real world capital stocks are smaller than according to the golden rule. The current generation attaches a larger weight to its own welfare than according to the golden rule.

Endogenous or exogenous growth

- In the Solow model growth is exogenously determined by population growth and technological progress
- Recent research has focused on the role of human capital
- A higher savings rate or investment in human capital do not change the rate of growth in the steady state
- The explanation is decreasing marginal return of capital (*MPK* is decreasing in *K*)

The AK-model Y = AK $\Delta K = sY - \delta K$

Assume A to be fixed! $\Delta Y/Y = \Delta K/K$ $\Delta K/K = sAK/K - \delta K/K = sA - \delta$ $\Delta Y/Y = sA - \delta$

- A higher savings rate *s* implies permanently higher growth
- Explanation: constant returns to scale for capital
- Complementarity between human and real capital

A two-sector growth model

- Business sector
- Education sector

Y = F[K, (1-u)EL]Production function in business sector $\Delta E = g(u)E$ Production function in education sector $\Delta K = sY - \delta K$ Capital accumulation

u = share of population in education

 $\Delta E/E = g(u)$

- A higher share of population, *u*, in education raises the growth rate permanently (cf *AK*-model here human capital)
- A higher savings rate, *s*, raises growth only temporarily as in the Solow model

Human capital in growth models

- 1. Broad-based accumulation of knowledge in the system of education
- 2. Generation of ideas and innovations in research-intensive R&D sector
- 3. Learning by doing at the work place

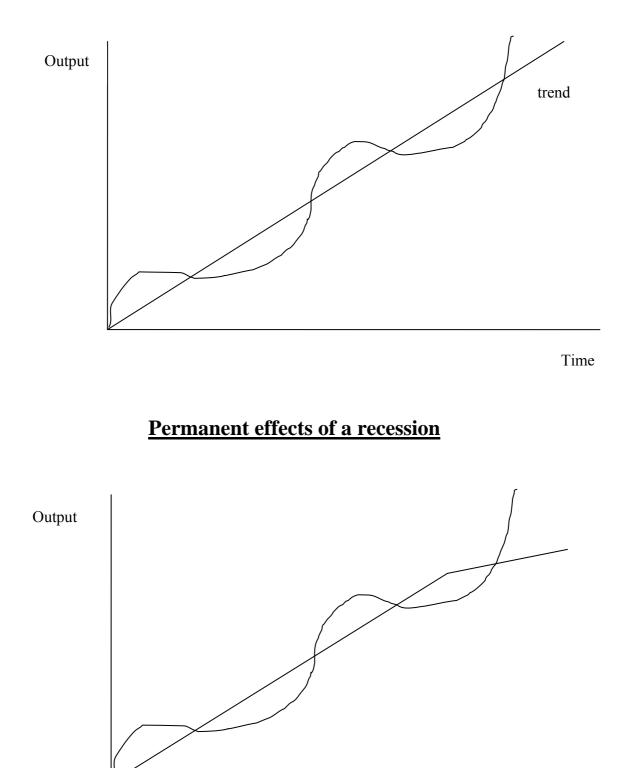
Policy conclusions

- 1. Basic education incentives for efficiency in the education system incentives to choose and complete education
- 2. Put resources in top-quality R&D
- 3. Life-long learning in working life

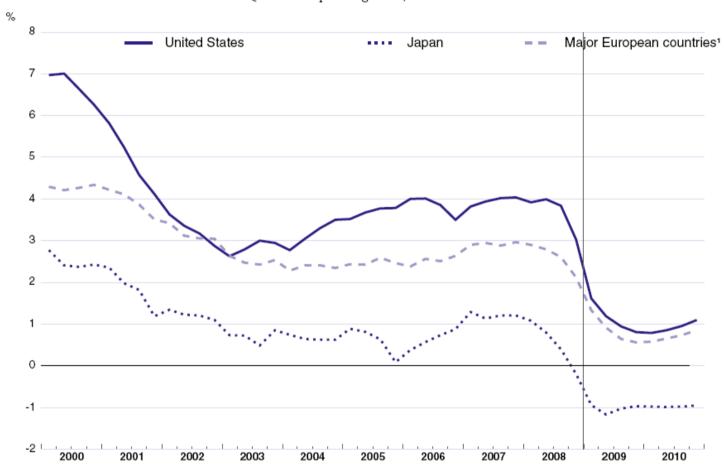
Technological externalities / knowledge spillovers

Role of institutions

- Quality of institutions determine the allocation of scarce resources
- Legal systems secure property rights
 - "helping hand" from government (Europe)
 - "grabbing hand" from government
- Acemoglu / Johnson /Robinson
 - European settlers in colonies preferred moderate climates (US, Canada, NZ)
 - European-style institutions
 - Earlier institutions strongly correlated with today's institutions


Will the current recession have long-run growth effects?

- Traditional view: a recession only represents a temporary reduction in resource utilisation
- Modern view a recession can have "permanent" effects on potential output growth


Effects on potential growth

- Slower growth of capital input
 - lower investment because of lower output and credit crunch in the short run and because of higher risk premia (higher interest rates and thus higher capital costs) in the medium run
 - capital becomes obstacle
- Higher structural unemployment
- Slower growth in total factor productivity
 - lower R&D expenditure
 - but also closing down of least efficient firms

Temporary effects of a recession

Time

Figure 4.1. Growth in capital services, 2000-10

Quarter-on-quarter growth, annualised rate

1. Weighted average of Germany, France, Italy and the United Kingdom. Source: OECD Economic Outlook 85 database.

Contributions to changes in potential output growth, 2009-10

Percentage point pa differences in the potential growth rate

		2009			2010				
	from Potential Employmnet	from Total Factor Productivity	from Capital	Total	from Potential Employmnet	from Total Factor Productivity	from Capital	Total	Cumulative Contribution 2009-10
Ireland	-1.5	-1.1	-1.7	-4.3	-2.1	-1.1	-2.8	-6.1	-10.4
Spain	-1.4	0	0.1	-1.3	-1.3	0.1	-0.2	-1.4	-2.7
Sweden	-0.1	0	-0.3	-0.3	-0.3	0	-0.8	-1.1	-1.4
US	-0.1	0	-0.5	-0.6	-0.1	0	-0.8	-0.9	-1.5
Simple OECD average	-0.2	-0.1	-0.4	-0.7	-0.4	-0.1	-0.8	-1.3	-2.0
Weighted OECD average	-0.2	0	-0.4	-0.6	-0.3	0	-0.7	-1.0	-1.5

Source: OECD Economic Outlook 85