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Abstract. Income and wealth differ over the life cycle. In cross-sectional distri-
butions of income or wealth, classical inequality measures such as the Gini could
therefore find substantial inequality even if everyone has the same lifetime income
or wealth. We describe the adjusted Gini index (Alm̊as and Mogstad, 2012, Scan-
dinavian Journal of Economics 114: 24–54), which is a generalization of the clas-
sical Gini index with attractive properties, and we describe the adgini command,
which provides the adjusted Gini index and the classical Gini index. The adgini

command also provides options to produce other well-known age-adjusted inequal-
ity measures, such as the Paglin–Gini (Paglin, 1975, American Economic Review
65: 598–609) and the Wertz–Gini (Wertz, 1979, American Economic Review 69:
670–672), and provides efficient estimation of the classical Gini coefficient.

Keywords: st0266, adgini, inequality, life cycle, age adjustments, Gini coefficient,
Paglin–Gini, Wertz–Gini

1 Introduction

Because of data availability, many researchers are forced to work on cross-sectional
distributions of income and wealth. For example, all the frequently used datasets in
both the Luxembourg Income Surveys and the Luxembourg Wealth Surveys are cross-
sectional. This is problematic because both theoretical models and empirical results
suggest a strong relationship between age and income and age and wealth holdings (see,
for example, Davies and Shorrocks [2000]). Both relationships are firmly established as
increasing to a certain midlife age and then decreasing thereafter.1 Hence a snapshot
of inequality within a country or other geographical area runs the risk of providing a
misleading picture of the differences in lifetime wealth or income of its citizens. Because
the income and wealth profiles differ across countries, the inequality ranking of coun-
tries may also be affected by differences in transitory income or wealth attributable to

1. The income profile is likely to have its peak earlier than the wealth profile.

c© 2012 StataCorp LP st0266



394 Adjusting for age effects in cross-sectional distributions

life-cycle factors. For these reasons, it has long been argued that age adjustments of in-
equality measures based on cross-section data are necessary (see, for example, Atkinson
[1971]).2

Alm̊as and Mogstad (2012) propose the adjusted Gini (AG) index, a new method to
adjust for age effects, which unlike existing methods considers that individuals differ
both in age and in other wealth-generating factors. For example, an individual’s edu-
cation is strongly correlated not only with wealth but also with age. Existing methods
(such as the Paglin and Wertz–Gini [WG]) assume that differences between age groups
in the unconditional distribution represent age effects and will, therefore, eliminate not
only wealth inequality attributable to age but also differences owing to wealth-generating
factors correlated with age, such as education. By contrast, the AG index eliminates
inequality due to age, yet preserves inequality arising from other factors. To this end,
a multivariate regression model is used, allowing isolation of the net age effects and
holding other determinants of wealth constant. Perfect equality for the AG measure
requires that each individual receive a share of total wealth equal to the proportion
that the individual would hold if all wealth-generating factors except age were the same
for everyone in the population.

Similar procedures have been developed and used by Alm̊as (2008), Alm̊as et al.
(2011), and Alm̊as, Havnes, and Mogstad (2011). The first two articles focus on fairness
and allow the isolation of the effect from factors other than age. The third article
describes how age adjustments may influence trends in earnings inequality, focusing on
Norway from 1967 to 2000. Note that the adgini command is general in the sense that
it can be used to isolate the effects of any factor influencing income or wealth, not just
the age factor.

The idea of an age-adjusted Gini index was first put forward in the seminal work
of Paglin (1975). Numerous comments were written as responses to his article, among
them the comment by Wertz (1979). While the Paglin–Gini (PG) is easy to implement,
it fails to meet some attractive conditions met by Wertz’s suggested measure (WG).
However, WG fails to control for the correlation of other variables with age, because it
takes the differences in mean wealth by age to represent the age effect.

Section 2 describes different age-inequality measures with specific focus on the AG

index. Section 3 describes the adgini command, and section 4 provides examples of how
the adgini command can be used and how age adjustment affects inequality results.

2 Age-adjusted inequality measures

The method underlying the AG index may be described as a three-step procedure. First,
a generalization of the Gini formula is derived. Second, a multivariate regression model
is used, allowing us to isolate the net age effects while holding other determinants of

2. For expositional convenience, we will from here consider inequality in wealth only. However, the
method applies equally to income, earnings, or any other variable for which one is estimating
inequality. For an application to earnings, see Almås, Havnes, and Mogstad (2011).
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income or wealth constant (hereafter, just wealth). Third, the wealth distribution that
characterizes perfect equality in age-adjusted wealth is determined. We describe the
three steps below before showing that the AG index can be viewed as a generalization
of the classical Gini coefficient (G).3

2.1 AG—a generalization of the Gini formula

Consider a society consisting of n individuals where every individual i is characterized by
the pair (wi, w̃i). wi denotes the actual wealth level, and w̃i is an equalizing wealth level.
If actual and equalizing wealth are the same for all individuals and if all individuals live
equally long, then there is perfect equality of lifetime wealth in this society. As will be
clear when we formally define the equalizing wealth level in section 2.3, the equalizing
wealth is the same for all individuals belonging to the same age group in this society;
it is a function of individual i’s age but not of any other individual characteristics. If
none of the wealth-generating factors (except age) are correlated with age, then the
equalizing wealth is simply the mean wealth of each age group. Further, if there are
no age effects on wealth, the equalizing wealth will be equal to the mean wealth for all
individuals in the society.

The joint cross-sectional distribution Y of actual and equalizing wealth is given by

Y = {(w1, w̃1), (w2, w̃2), . . . , (wn, w̃n)}
Let Ξ denote the set of all possible joint distributions of actual and equalizing wealth
such that the sum of actual wealth equals the sum of equalizing wealth. Suppose that
the social planner imposes the following modified versions of the standard conditions on
an inequality-partial ordering defined on the alternatives in Ξ, where A 
 B represents
that there is at least as much age-adjusted inequality in B as in A.4 Let μ denote
the mean wealth of the population as a whole. Let the distributions of differences
(Δi’s) between actual wealth wi and equalizing wealth w̃i for the two distributions
[Δi(A) = wi(A)− w̃i(A) and Δi(B) = wi(B)− w̃i(B)] be sorted in ascending order such
that Δi ≤ Δi+1.
Condition 1 Scale Invariance: For any a > 0 and A,B ∈ Ξ, if A = aB, then
A ∼ B.

Condition 2 Anonymity: For any permutation function ρ : n→ n and for A,B ∈ Ξ,
if {wi(A), w̃i(A)} = {wρ(i)(B), w̃ρ(i)(B)} for all i ∈ n, then A ∼ B.

Condition 3 Unequalism: For any A,B ∈ Ξ such that μ(A) = μ(B), if Δi(A) =
Δi(B) for every i ∈ n, then A ∼ B.

Condition 4 Generalized Pigou–Dalton: For any A,B ∈ Ξ, if there exist two
individuals s and k such that Δs(A) < Δs(B) ≤ Δk(B) < Δk(A), Δi(A) = Δi(B) for
all i �= s, k, and Δs(B) − Δs(A) = Δk(A) − Δk(B), then A � B.

3. This section relies heavily on Almås and Mogstad (2012), and we refer interested readers to that
work for further details.

4. See Almås et al. (2011) for analogous conditions imposed to study equality of opportunity.
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Scale invariance states that if all actual and equalizing wealth levels are rescaled by
the same factor, then the level of age-adjusted inequality remains the same. Anonymity
implies that the ranking of alternatives should be unaffected by a permutation of the
identity of individuals. Unequalism entails that the social planner is only concerned
with how unequally each individual is treated, with “unequal” defined as the difference
between actual and equalizing wealth. Finally, the generalized version of the Pigou–
Dalton criterion states that any fixed transfer of wealth from an individual i to an
individual j, where Δi > Δj , reduces age-adjusted inequality.

The generalized Gini formula is based on a comparison of the absolute values of the
differences in actual and equalizing wealth between all pairs of individuals. It is defined
as follows:

AG(Y ) =

∑
j

∑
i | (wi − w̃i) − (wj − w̃j) |

2μn2
(1)

The AG index satisfies conditions 1–4. These conditions are similar to those underlying
G in all respects but one: the equalizing wealth is not given by the mean wealth in the
society as a whole but instead depends on the age of the individuals.

2.2 Identifying the net age effects

Suppose that the wealth level of individual i at a given point in time depends on the
age group a that i belongs to and on i’s lifetime resources given as a function h of a
vector X of individual characteristics:

wi = f(ai)h(Xi)

The functional form of f depends on the underlying model of wealth accumulation.
In the simplest life-cycle model, there is no uncertainty: individuals earn a constant in-
come until retirement age, and the interest rate, as well as the rate of time preference, is
0. In this model, the wealth of an individual increases until retirement and decreases af-
terward. If the earnings profile slopes upward, the model predicts borrowing in the early
part of the life cycle. The fact that this is not always observed could be explained by
credit market imperfections. Introducing lifetime uncertainty and noninsurable health
hazard induces the elderly to hold assets for precautionary purposes, which reduces the
rate at which wealth decreases during retirement. If the sole purpose of saving is to
leave a bequest to children, individuals behave as if their horizons were infinite and
wealth does not decline with age.

Empirically, we can specify a flexible, functional form of f , yielding the wealth-
generating function5

lnwi = ln f(ai) + lnh(Xi) = δi +X ′
iB (2)

5. The default of the adgini command is the log-linear distribution, though adgini provides other
distributions as options.
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where δi gives the percentage wealth difference of being in the age group of individual i
relative to some reference age group, holding all other variables constant. The adgini
command will give an error message if negative values are used and will add one unit
to observations with 0 values in the dependent variable. Because wealth may be neg-
ative, it is possible to adjust the location of the distribution by adding to each wealth
observation a constant equal to the absolute value of the minimum wealth observation
when estimating the log-linear specification.

We must emphasize that the objective of the estimation of (2) is not to explain as
much variation as possible in wealth holdings, but simply to attain an empirically sound
estimate of the effects of age on wealth, δi.

2.3 Defining equalizing wealth

To eliminate wealth differences attributable to age but preserve inequality arising from
all other factors, the adgini command uses the so-called general proportionality prin-
ciple proposed by Bossert (1995) and Konow (1996) and further studied by Cappelen
and Tungodden (2010). The absence of age-adjusted inequality requires that any two
individuals belonging to a given age group have the same wealth level. Moreover, in
any situation where everyone has the same wealth-generating factors except age, there
should be no lifetime wealth inequality.6

More formally, the equalizing wealth level of individual i depends on age and every
other wealth-generating factor of all individuals in the society; it is formally defined as

w̃i =
μn

∑
j f(ai)h(Xj)∑

k

∑
j f(ak)h(Xj)

=
μneδi∑

k e
δk

where eδk gives the net age effect of belonging to the age group of individual k after
integrating out the effects of other wealth-generating factors correlated with age. No
age-adjusted inequality corresponds to every individual i receiving w̃i, which is the share
of total wealth equal to the proportion of wealth that an individual from i’s age group
would hold if all wealth-generating factors except age were the same for everyone in the
population. If there is no age effect on wealth, the equalizing wealth level is equal to
the mean wealth level in the society.

6. In a study of income inequality in the United States, Bishop, Formby, and Smith (1997) use a
method to make age adjustments that disregards that the underlying income function is not ad-
ditively separable. First, they estimate a multiplicative separable income function, which can be
expressed as ln Y = α0 + βAge + Z′γ + ε, where α0 is a constant, Age is the age, and Z is a
set of controls. Second, they use the prediction ln Y ∗ = ln Y − βAge as their age-adjusted in-
come measure. However, the net age effect is given by dY/dAge, which is generally different from
β = d ln Y/dAge = (dY/Y )(1/dAge), because Y is a function of Z. If Z is correlated with Age,
then Bishop, Formby, and Smith’s approach will fail to capture the net age effects.
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2.4 Relationship to the classical Gini coefficient

From (1), we can see that the AG index is closely linked to G. Both measures are based on
a comparison of the absolute values of the differences in the actual and equalizing wealth
levels between all pairs of individuals. The distinguishing feature is how equalizing
wealth is defined. For G, the equalizing wealth level is assumed to be μ. Perfect equality
requires not only that individuals have equal lifetime wealth but also that individuals
of all ages have the same wealth holding in any given year, which can be realized only
if there is a flat age–wealth profile.

However, a flat age–wealth profile runs counter to consumption needs over the life
cycle as well as to productivity variation depending on human capital investment and
experience. Indeed, the relationship between wealth and age can produce wealth in-
equality at a given point in time even if everyone is completely equal in all respects
except age. Because differences in transitory wealth even out over time, a snapshot
of inequality produced by G runs the risk of producing a misleading picture of actual
variation in lifetime wealth. In comparison, the AG index abandons the assumption of
a flat age–wealth profile and allows equalizing wealth to depend on the age of the indi-
viduals. By doing this, the AG index purges the cross-sectional measure of inequality of
its interage or life-cycle component. If w̃i = μ for all individuals in every age group, the
age–wealth profile is flat and the AG index coincides with G. If there is a relationship
between age and wealth, the AG index will, in general, differ from G.

To get further intuition on the similarities and differences between G and the AG

index, we should see the correspondence between the standard representation of the
Lorenz curve and a Lorenz curve expressed in differences between actual wealth and
mean wealth in the society as a whole. Figure 1 displays standard and difference-based
Lorenz curves for the same wealth distribution. The area between the standard Lorenz
curve and the diagonal of the upper diagram (the line of equality) is identical to the area
between the difference-based Lorenz curve and the horizontal axis (the line of equality)
in the lower diagram. The classical Gini coefficient is in both cases equal to twice the
area A between the Lorenz curve and the line of equality.
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Figure 1. Two representations of the standard Lorenz curve. The figure displays two
representations of the standard Lorenz curve: the classical representation relies on cu-
mulative income shares, and the difference-based representation relies on cumulative
shares of the difference between the average income and the actual income. The area A
is the same in both panels.

In a similar vein, we can draw the age-adjusted Lorenz curve underlying the AG

index, expressing the differences between actual wealth and the equalizing wealth in the
population. And just as for G, the AG index is equal to twice the area between this
difference-based Lorenz curve and the horizontal axis (line of equality). When drawing
age-adjusted Lorenz curves, however, one orders individuals not by their wealth per
se, as in figure 1, but by the difference between their actual wealth holdings and the
equalizing wealth in their age group. Both G and the AG index reach their minimum
value of 0 if all individuals receive their equalizing wealth. Moreover, both measures
reach their maximum when the difference between actual and equalizing wealth is at its
highest possible level. Specifically, G reaches its maximum value of 1 if one individual
holds all the wealth. In comparison, the AG index reaches its maximum of 2 in the
hypothetical situation where the equalizing wealth of the individual who has all the
wealth is 0 and where the equalizing wealth of one of the individuals with no wealth
is equal to the aggregate wealth in the economy. That G and the AG index range over
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different intervals is therefore a direct result of their different views of perfect equality:
age-adjusted inequality is not only due to differences in individual wealth holdings but
also due to differences in equalizing wealth across individuals in different age groups.

2.5 Relationship to WG and PG

There are two distinguishing aspects of age-adjusted inequality measures. First, they
hold different views on how equalizing wealth should be measured. Second, the formulas
for calculating the differences between individuals’ actual and equalizing wealth levels
differ. The adgini command gives two alternative age-adjusted inequality measures
as options: PG and WG. They both have the same objective as the AG index, namely,
to purge the classical Gini coefficient applied to snapshots of wealth inequality of its
interage or life-cycle component. In particular, the condition of a flat age–wealth profile
is abandoned. We use the above conditions below to assess the properties of PG and
WG and to characterize their relationship to the AG index.

Because of its close relationship to the AG index, we will first consider WG, which
was proposed by Wertz (1979). WG can be expressed as follows:

WG(Y ) =

∑
j

∑
i |(wi − μi) − (wj − μj)|

2μn2

where μi and μj denote the mean wealth level of all individuals belonging to the age
group of individuals i and j, respectively. Like the AG index, WG is based on a com-
parison of the absolute values of the differences in actual and equalizing wealth levels
between all pairs of individuals and ranges over the interval [0, 2]. It also satisfies
conditions 1–4. However, WG defines the equalizing wealth of an individual i as the
unconditional mean wealth levels in i’s age group, μi, and will therefore eliminate not
only wealth inequality due to age but also differences due to wealth-generating factors
correlated with age, such as education. The standard omitted-variables-bias formula
tells us that WG will be equal to AG whenever age is uncorrelated with omitted wealth-
generating factors. Hence, AG may be viewed as a generalization of WG, important in
situations where omitted variables bias is a major concern.

Next consider the much-used PG, which can be expressed as

PG(Y ) =

∑
j

∑
i(|wi − wj | − |μi − μj |)

2μn2

where μi and μj denote the mean wealth level of all individuals belonging to the age
group of individuals i and j, respectively. Applying the standard Gini decomposition,
we can rewrite PG as

PG = G −Gb =
∑

i

θiGi +R

where Gb represents the Gini coefficient that would be obtained if the earnings of each
individual in every age group were replaced by the relevant age group mean μi; Gi is
the Gini coefficient of earnings within the age group of individual i; θi is the weight
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given by the product of this group’s earnings share niμi/μn and population share ni/n
(ni being the number of individuals in the age group of individual i); and R captures
the degree of overlap in the earnings distributions across age groups (see, for example,
Lambert and Aronson [1993]).7

Similarly to the case of WG, PG also defines the equalizing wealth of an individual
i as the unconditional mean wealth level in i’s age group, μi, disregarding that other
wealth-generating factors are correlated with age.

In addition, PG is based on a comparison of differences in the absolute values of actual
and equalizing wealth levels between all pairs of individuals, |(wi − wj)| − |(μi − μj)|.
This violates the unequalism condition because |(wi − wj)| − |(μi − μj)| = 0 does not
necessarily imply that |(wi − μi) − (wj − μj)| = 0.8

Because |(wi −wj)− (μi −μj)| provides an upper bound for |(wi −wj)|− |(μi −μj)|,
it follows that WG ≥ PG. As stated in proposition 1 in Alm̊as and Mogstad (2012),
PG will differ from WG if there is any age effect on wealth, provided that there is some
within-age-group wealth variation. Moreover, overlap in the wealth distributions across
age groups, that is, R > 0, is a sufficient condition for WG > PG. A corollary is therefore
that PG is likely to yield a different ranking than WG in situations where countries differ
substantially in the degree of overlap.

This result speaks to a main controversy surrounding the PG, namely, whether
R should be treated as an interage or a within-age-groups component.9 Until re-
cently, the issue was unsettled simply because little was known about the overlap
term. Shorrocks and Wan (2005), for example, refer to R as a “poorly specified” el-
ement of the Gini decomposition. However, Lambert and Decoster (2005) provide a
novel characterization of the properties of R, showing first that R unambiguously falls
as a result of a within-group progressive transfer and second that R increases when
the wealth holding in the poorer group is scaled up, reaching a maximum when means
coincide. Lambert and Decoster (2005, 378) conclude: “The overlap term in R is at
once a between-groups and a within-groups effect: it measures a between-groups phe-
nomenon, overlapping, that is generated by inequality within groups.” Therefore, R = 0
is necessary for PG to net out the interage component—and nothing but the interage
component—from cross-sectional inequality measures.

7. Overlap implies that the wealth holding of the richest person in an age group with a relatively low
mean wealth level exceeds the wealth holding of the poorest person in an age group with a higher
mean wealth level; that is, wi < wj and μi > μj for at least one pair of individuals i and j.

8. See Almås and Mogstad (2012) for further discussion and a simple numerical example.
9. Nelson (1977) and others argue that R is part of interage inequality and should thus be netted out

when constructing age-adjusted inequality measures. Paglin (1975), however, maintains that R is
capturing within-group inequality and that PG is accurately defined.
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3 The adgini command

3.1 Syntax

adgini depvar
[
effectvars

] [
if
] [

in
] [

, controls(varlist) estname(string)

equalizing(varname) all paglin regress options
]

3.2 Description

The adgini command estimates alternative Gini coefficients for depvar, adjusting for
effectvars, while holding controls() constant. adgini always estimates the classical
Gini coefficient. If one or more effectvars are specified but controls() are not specified,
adgini also estimates WG by default (Wertz 1979) or PG if the option paglin is activated
(Paglin 1975). If paglin is activated, the Between–Gini (BG) is stored but not reported.
If both effectvars and controls() are specified, adgini also estimates the AG. If the
all option is activated, adgini estimates G, WG, PG, BG, and AG (when relevant).

3.3 Options

controls(varlist) specifies a set of control variables (correlated with effectvars) that
are not to be adjusted for when calculating AG.

estname(string) requests that regression results be stored in memory under the name
specified.

equalizing(varname) specifies a variable in memory containing equalizing values to
be used in calculating AG. In this case, effectvars and controls() are not used in
the estimation even if specified.

all requests calculation of all relevant Ginis (G, WG, PG, BG, and AG).

paglin requests calculation of PG (the default is WG).

regress options are any of the options documented in [R] regress.

3.4 Saved results

adgini saves the following in r():

Scalars
r(N) number of observations r(pg) PG
r(gini) Gini r(bg) BG
r(wg) WG r(ag) AG

Macros
r(cmd) adgini r(equalizing) name of variable with
r(depvar) name of dependent variable equalizing values
r(effectvars) list of variables in effectvars r(regoptions) regress options
r(controls) list of variables in controls()
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4 Examples

We provide two examples. The first example is a straightforward application of the
method and the adgini command, namely, to correct for age effects without simulta-
neously eliminating effects from education (which is likely to be correlated with age).
The second example illustrates the generality of the procedure as it demonstrates how
we can use the adgini command to show the dispersion of prices corrected for qual-
ity effects without simultaneously eliminating the effect from other variables correlated
with quality.

Example: Income inequality (mother’s labor income)

The most standard use of inequality indices concerns income distributions. In the
current example, we use an instructional dataset from Wooldridge (2001) on the labor
income of mothers. We are interested in the inequality of labor income when we adjust
for the individual age. However, we do not want to remove the effect of education, which
is likely correlated with age. To account for age and education in the most flexible way,
we control for indicator variables for every value of age and education by using factor
variables.

. use http://fmwww.bc.edu/ec-p/data/wooldridge2k/LABSUP

. adgini labinc i.age, controls(i.educ) all
==================================================
Gini: .654
Between-Gini: .114
Paglin: .539
Wertz: .666
AG: .654

==================================================

Example: Gini as a measure of dispersion

Gini coefficients may also be used as a measure of dispersion in contexts other than
income or wealth. For instance, we may be interested in summarizing the dispersion of
prices for comparable goods. However, we may not want our measure of price dispersion
to reflect differences in the observable quality between goods. adgini can be used to
calculate such a measure of dispersion: we enter price as depvar, quality variables as
effectvars, and nonquality variables correlated with quality in controls(). The impact
of quality variables on price should be properly identified in the empirical model.
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. sysuse auto
(1978 Automobile Data)

. adgini price mpg length turn trunk, controls(foreign weight) all
==================================================
Gini: .232
Between-Gini: .133
Paglin: .099
Wertz: .215
AG: .305

==================================================

5 Concluding remarks

We have provided a description of the method for age adjustment in cross-sectional
distributions and of the adgini command, which provides corresponding inequality
statistics in Stata. As a by-product, the adgini command provides a faster estimation
of the classical Gini coefficient than do the existing algorithms, using Stata’s built-in
matrix language, Mata. We believe that the adgini command will serve as a useful tool
for statistical bureaus and individual researchers studying wealth, earnings, or income
distributions.
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