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This Online Appendix details additional extensions of the models analyzed in the paper.

Appendix C considers four variations of the baseline model; two pertain to changes in the payoff
structure, one to the information structure, and one to the shock structure. These are: (i) the

introduction of direct strategic complementarity; (ii) the existence of inefficient disturbances;

(iii) the presence of idiosyncratic noise in the policy maker’s instrument rule combined with a

noisy signal of the policy instrument; and (iv) binary signals combined with a beta distributed

fundamental. The analysis confirms that the superiority of instrument policy does not depend

unduly on either of these extensions. Combined, they provide the necessary bridge between the

results from our baseline model and those from the business cycle applications considered in the

paper in addition to in this Online Appendix.

Appendix D considers the micro-founded business cycle model analyzed in Section 5 but supposes

instead that (a) both firms and workers make their employment decisions under incomplete

dispersed information; that (b) the policy maker corresponds to the economy-wide tax authority;

and that (c) firms and workers directly learn from current taxes about expected future tax

rates. Unlike in the main text, equilibrium prices here also clear commodity markets. The

model provides an important example of an economy in which both firm and worker choices

are conditionally efficient, despite the presence of direct strategic interactions and incomplete

dispersed information. The learning externality is the only inefficiency in the use of information.

All results therefore mirror those from the baseline model. I also in this Appendix consider an

additional extension where firms always know their own productivity level before setting prices

in the business cycle model analyzed in Section 5. I show how all results continue to hold.
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Appendix C: Extensions and Variations

This Appendix discusses various extensions and variations of the baseline model.

C. 1 Direct Strategic Complementarity (and the Crudeness of Policy)

An important extension of the baseline model is the introduction of direct strategic complemen-

tarity. As Morris and Shin (2002) first made clear, the presence of direct strategic complemen-

tarity has important consequences for the desirability of public information disclosure. Angeletos

and Pavan (2007) subsequent contribution demonstrates that whether additional public informa-

tion is detrimental or beneficial for welfare depends critically on whether the “equilibrium degree

of coordination” between individual actions is above or below the “socially optimal degree”.

Suppose, for instance, that there is too little coordination between people’s actions compared

to what is socially optimal. Releasing additional public information, in this case, helps people

better coordinate their actions as it informs them about the activities of others. An extension

worthwhile exploring is thus whether our preference for instrument over communication policy

extends to situations like these with insufficient payoff coordination. This extension will also

demonstrate how our main results extend to cases where both communication and instrument

policy are “crude”, in the sense that they attempt to use the policy maker’s information to attain

multiple, rival objectives. The following utility function delivers such an instance,1
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when r 2 (0, 1) and the social loss function equals W = �E
R 1
0 U

i

di. The difference between the

equilibrium degree of payoff coordination and the socially optimal is (r � 1)r < 0.2

In the absence of instrument policy and keeping the informativeness of the economy-wide

outcome constant, (1) makes public information disclosure invariably beneficial. Nevertheless,

despite this counteracting motive, the combination of complete opacity and active instrument

policy is here still optimal. The presence of insufficient payoff coordination does not overturn

the superiority of instrument policy (cf. James and Lawler, 2011).

Proposition. The optimal policy is complete opacity, ⌧?
!

! 0, combined with active instrument
policy, �?

r

2 R+. The informativeness of the endogenous public signal, a, under the optimal
policy can be either above or below that under full disclosure, k?0,r R kd0,r.

In fact, instrument policy has two separate advantages over communication policy in (1) –

the same two advantages as detailed in Section 5. First, it is able to control the emphasis on

private and policy maker information without adding noise to the information structure, the
1This utility function is also used in, for instance, Hellwig and Veldkamp (2009) and Hellwig et al. (2012).
2The equilibrium degree of payoff coordination equals r; the socially optimal is (2� r) r.
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advantage from the baseline model. And second, it can increase the equilibrium emphasis on the

policy maker’s information, even beyond the full disclosure case. (Note that increases to � can

arbitrarily increase the loading on z in (4.3).) This allows the policy maker to create even more

coordination than that achieved with full disclosure.

While the first advantage is present irrespective of parameter values, the second depends

on whether the learning externality dominates the lack of payoff coordination or vice versa.

The learning externality, all else equal, causes the weight on policy maker information under

full disclosure to be above the socially optimal. This induces the policy maker to set �?

r

< ˆ�
r

and ⌧
!

! 0, where � =

ˆ�
r

replicates the full disclosure outcome, such as to increase the

relative emphasis on private information k?0,r > kd0,r but without the introduction of noise to

the information structure. The lack of payoff coordination, by contrast, has almost the exact

opposite implication. It causes, all else equal, the weight on policy maker information under full

disclosure to be below the socially optimal. That is, to alleviate the lack of payoff coordination,

we need less use of private information than under full disclosure. The best means for the policy

maker to achieve an outcome where k?0,r < kd0,r is, however, still only with instrument policy.

Only with �?

r

> ˆ�
r

and ⌧
!

! 0 can the policy maker increase coordination beyond the full

disclosure case and also avoid the added noise from communication policy.3

Thus, while our basic rationale for instrument policy is unaffected by the presence of di-

rect strategic complementarity, its existence does provide instrument policy with yet another

advantage. When the learning externality is relatively strong
�
k?0,r > kd0,r

�
, the exclusive use of

instrument policy is optimal only because it avoids the introduction of noise to the information

structure. When the lack of payoff coordination, by contrast, is relatively severe
�
k?0,r < kd0,r

�
,

the sole use of instrument policy is optimal partially also because it can increase coordination

beyond the full disclosure case. By comparing k?0,r with kd0,r, one can determine the existence of

the second advantage of instrument over communication policy.4

Proof of Proposition: Using (1), an individual’s decision rule becomes,

a
i

= E
i

[(1� r) (✓ �m) + rā] . (3)

Applying a similar guess and verify procedure to that in Subsection 2.2 now shows that the
3Surprisingly, full disclosure combined with active instrument policy is here not optimal. Under full disclosure,

the policy maker cannot increase the equilibrium loading on z above the full disclosure case. The policy instrument
is fully known under full disclosure. So the policy maker cannot use expected instrument policy to further increase
the amount of coordination. Only under partial- or complete opacity can the policy maker increase equilibrium
coordination beyond the full disclosure case. Furthermore, because the value of added payoff coordination depends
on the coefficient r, there can exist a value of r 2 (0, 1) such that k?

0,r = k

d

0,r. With the exception of this knife-edge
case, however, instrument policy is uniquely optimal.

4The alternate case of r 2 (�1, 0) creates direct strategic substitutability. It details the inherently less interest-
ing case where the equilibrium degree of coordination is always above the socially optimal one – both because of
the learning externality and the excess payoff coordination. The learning externality, in this instance, therefore
merely reinforces the conclusions from the setup with only direct strategic substitutability and k

?

0 > k

d

0 .
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unique linear Bayesian equilibrium action for person i in this economy equals,5
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To demonstrate the optimality of complete opacity combined with active instrument policy,

I follow the same three step procedure as in the Proof of Theorem 1.

Step 1: Repeated use of the equilibrium coefficients shows that the term which matters for social

welfare equals,
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Step 2 and 3: Consider now the only term that depends on ⌧
!

, k22 (1� r)2 1
⌧

!

. Because this

term is similar to that from Theorem 1, it once more follows that complete opacity combined

with active instrument policy is uniquely optimal iff. k?0,r ⌘ argmin

k0 Wr

(k0, ⌧! ! 0) 6= kd0,r,

where kd0,r uniquely solves kd0,r =
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. All that remains is to characterize k?0,r.

Minimizing W
r

when ⌧
!

! 0 shows that k?0,r > 0 equals the unique solution to,6

k?0,r = D
�
k?0,r

�
⌘ ⌧

x

(1� r)

⌧
x

(1� r) + ⌧
a

k?20,r + ⌧
z

� ⌧
z


⌧

a

k

?2
0,r�r⌧

x

⌧

x

(1�r)+3⌧
a

k

?2
0,r

� R kd0,r, (7)

which is implemented by �?

r

= 1 � ⌧

x

(1�r)+⌧

a

k

?2
0,r

⌧

x

(1�r) k?0,r Q ⌧

z

⌧

x

(1�r)+⌧

a

k

2
0+⌧

z

⌘ ˆ�
r

. When r is small,

(7) shows that the baseline result continues to hold and k?0,r > kd0,r. However, comparing the

fixed-point equations for k?0,r and kd0,r shows that the right-hand side of the equation for kd0,r is

5I derive a

i

in terms of y instead of a, to simplify the subsequent derivations.
6The uniqueness of k?

0,r follows from the strict pseudo-convexity of W
r

when ⌧

!

! 0. A solution to dW
r

dk0
=

0 [or (7)] is therefore the unique global minimum. But such a solution always exists since D (0) > 0 and
lim

k0!1 D (k0) = 0, which combined with the continuity of D ensures a crossing with the 45o�line at k

?

0,r > 0.
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greater than D(kd0,r) whenever r⌧
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)2 , 1
⌘
, we have that k?0,r  kd0,r since the crossing with the

45o-line is in both cases from above (see (7) and the definition of kd0,r). While complete opacity

combined with active instrument policy is always optimal, there can exist a value of r 2 (0, 1)

such that full disclosure also attains the welfare optimum.

.....................................................................................................................................................�

C.2 Inefficient Disturbances

Perhaps a more immediate concern is how our results extend to situations where responses to

the fundamental are inefficient even under full information, as with mark-up shocks in business

cycle models. Hellwig (2005) and Angeletos and Pavan (2007) demonstrate how the optimality of

public information disclosure depends critically on the efficiency of the underlying disturbance.

The following utility function delivers an example of an inefficient disturbance,8
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di. Here, even

if people perfectly observe the fundamental, responses to it are still suboptimal: If ✓ 2 ⌦

i

, the

equilibrium response is aeq
i

= ✓, while the socially optimal is afb
i

=

1+�

2 ✓. People overreact to

the fundamental compared to what is socially optimal. This excess response, in turn, does not

follow from any inefficiency in the amount of payoff coordination. The model, like the baseline

version, has efficient payoff coordination: the equilibrium degree of payoff coordination equals

the socially optimal one.9 Indeed, the source of inefficiency is entirely due to � < 1.

The inefficiency of the fundamental disturbance provides yet another reason for complete

opacity. Even when the instrument is mute and keeping the informativeness of the economy-

wide outcome constant, the optimal policy is ⌧
!

! 0 when � < ⌧

x
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✓

+⌧

x
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2
0
. Providing additional

information, in this case, merely exacerbates the excess response to the fundamental, making

any disclosure suboptimal (see also Angeletos and Pavan, 2007).

Once we allow for the use of the instrument and internalize the informativeness of the

economy-wide outcome, it is thus hardly surprising that the fully optimal policy once more

features complete opacity combined with active instrument policy.10

7The latter follows from the fixed-point equation for kd
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.
8I assume in (8) that ✓ ⇠ N (0, 1/⌧

✓

). This ensures that utility is bounded.
9In both cases, equal to zero.

10The alternate case where � > 1 details a situation where people respond too little to the fundamental. In
this case, the optimal policy is once more complete opacity combined with active instrument policy. But like in
the “Direct Strategic Complementarity” case, there could now be two root causes of the superiority of instrument
policy. Depending on parameter values, it could in part be driven by instrument policy’s ability to create a greater
reaction to z than that achieved with full disclosure. This excess reaction then, in turn, partially alleviates people’s
insufficient response to the fundamental.
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Proposition. The unique optimal policy is complete opacity, ⌧?
!

! 0, combined with active
instrument policy, �?

�

< ˆ�. The informativeness of the endogenous public signal, a, under the
optimal policy is always greater than that under full disclosure, k?0,� > kd0.

The added rationale combines with that identified in the baseline model to make complete

opacity uniquely optimal. Furthermore, because of the excess response to the fundamental,

the optimal level of instrument policy �?

�2(0,1) < �?

�=1. A smaller �, all else equal, increases the

excess response to the fundamental. But this optimally necessitates less use of the policy maker’s

information, to counteract the excess response, and thus a smaller value of �?

�

. Under the optimal

policy, it therefore still holds that �?

�2(0,1) <
ˆ� (and thus that k?0,� > kd0) since �?

�=1 <
ˆ� because

of the learning externality.

Proof of Proposition: Since an individual’s decision rule still equals a
i

= E
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from Proposition 1 that,
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I once more show that complete opacity combined with active instrument policy is optimal by

using the same three step procedure as in the Proof of Theorem 1.

Step 1: Repeatedly using the equilibrium coefficients shows that,
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D (0) > 0 and lim

k0!1 D(k0) = 0, which combined with the continuity of D ensures a crossing with the 45
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Since dk0
d�

< 0, it follows that �?

�

< ˆ� ⌘ ⌧

z
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+⌧

a

k

2
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, where ˆ� replicates the full disclosure

outcome, kd0 . Last, dk0
d�

< 0 from (12).

.....................................................................................................................................................�

C.3 Noisy, Observable Instruments

Last, an equally pressing extension is to abandon a specific assumption that I made for tractability

purposes. Specifically, that because of our one-shot model people cannot learn from the history

of past and current instruments about the policy maker’s beliefs. I here illustrate why this

assumption does not critically affect our main results; I also discuss in more detail why the noise

disturbance ✏
m

does not affect our main rationale for instrument policy. Online Appendix D.1
below expands on this robustness towards the signaling role of policy instruments by studying a

micro-founded business cycle model in which agents directly observe a policy instrument.

A way to explore the effect of adding past and current instruments to agents’ information

sets still within the confines of our framework is to extend the baseline model with an additional

public signal s,

s = �z + ✏
s

, m = �z + ✏
m

, (13)

where ✏
s

⇠ N (0, 1/⌧
s

) is independent of all other stochastic disturbances. The signal s provides

a crude summary measure that substitutes for the information that in a dynamic setting could be

contained in past and current instruments (see Online Appendix D.1 for an example). When �

is relatively large, s is very informative about the policy maker’s beliefs. This corresponds to the

situation where past and current instruments provide a lot of information about the policy maker

because changes to his instrument to, a large extent, reveal his beliefs. Because of ✏
s

, however,

the summary measure does not perfectly reveal z. This is important; it allows communication

policy to still provide additional information about the policy maker’s beliefs.

While this extension provides additional information about the policy maker’s beliefs it,

however, does not meaningfully alter our results.

Proposition. The unique optimal policy is still complete opacity, ⌧?
!

! 0, combined with active
instrument policy, �? < ˆ�. The informativeness of the endogenous public signal, a, under the
optimal policy is always greater than that under full disclosure, k?0 > kd0.

While s provides a lower-bound to the knowledge about the policy maker’s beliefs, it does

not alter that decreases in � from ˆ� increase the informativeness of the economy-wide outcome,

alleviating the consequences of the learning externality. Increases in ⌧
s

do, of course, diminish

the benefit of decreasing � below ˆ�. Decreases in � come at a more substantial cost in terms

of decreasing the knowledge about the policy makers beliefs. But for a finite ⌧
s

2 R+, it is still

optimal to rely solely on instrument policy since it avoids the introduction of additional noise.

Let me now briefly turn to why the noise disturbance ✏
m

in (13) also does not affect our basic

rationale for instrument policy. The reason is that the welfare costs from ✏
m

do not influence

the welfare benefits of changes to � – precisely as in standard monetary policy rules. Decreases
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in � still directly affect the stability of the effective state of the economy, and hence people’s

incentives to rely on their own private information. And they still do so without the introduction
of additional noise to the information structure, unlike communication policy. The presence of

the added disturbance ✏
m

therefore does not influence the characteristics of the optimal policy.

Proof of Proposition: The unique linear Bayesian equilibrium action for person i now equals,
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Approach: I proceed in four steps: First, I derive an expression for the equilibrium welfare loss.

Second, I use that expression to show how complete opacity combined with active instrument

policy can achieve a strictly lower welfare loss than that any partial disclosure policy where
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is finite. Third, I show that those policies where � =
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the same level of welfare as full disclosure. Last, I show how the best complete opacity policy

dominates the full disclosure case and characterize the optimal policy.

Step 1: Equilibrium Welfare: Using the equilibrium coefficients repeatedly demonstrates that,
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Step 2 and 3: The Weak Optimality of Opacity: Once more applying the equilibrium coefficients

in (14) and (15) repeatedly shows that,12

• All partial disclosure policies where �p 6= ˆ� and ⌧p
!

finite are strictly dominated in welfare

terms by the complete opacity policy �o

= �
✓

+ �p

(1� �
z

), where �
✓

and �
z

denote the
12Alternatively, consider �

i

under partial disclosure. Adjusted for the change in the information structure and
the instrument rule, this expression equals when �

p 6= ˆ

� and ⌧

p

!

is finite,

�

p

i

= Eo

i

[✓]� ✓ + [�

✓

+ �

p

(1� �

z

)] (z � Eo

i

[✓]) + (�

✓

� �

p

�

z

) ✏

!

+ ✏

m

, (17)

where Eo

i

[✓] denotes the expectation of ✓ based on the complete opacity information set, ⌦o

i

= {x
i

, y, s̃}, and I
have once more used the decomposition Ep

i

[·] = Eo

i

[·] + � (! � Eo

i

[·]) for both Ep

i

[✓] and Ep

i

[z]. Now consider the
expression for �

i

under complete opacity,

�

o

i

= Eo

i

[✓]� ✓ + �

o

(z � Eo

i

[✓]) + ✏

m

. (18)

Comparing (17) and (18) shows that when �

o

= �

✓

+ �

p

(1� �

z

),

W (�

p

, ⌧

p

!

)�W (�

o

, ⌧

!

! 0) = (�

✓

� �

p

�

z

)

2 1

2⌧

p

!

> 0 8�p 6= �

✓

�

z

=

ˆ

�.

But when �

p

=

ˆ

�, W (�

p

, ⌧

p

!

) = W
⇣
ˆ

�, ⌧

!

! 0

⌘
= W

⇣
� 2 (0, 1) , ⌧

!

! 1
⌘
.
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projection coefficients of ✓ and z onto F
!

=

�
! � P⌦o

i

!
 
, respectively.

• Those partial disclosure policies where �p

=

ˆ�, however, all attain the same welfare outcome

as full disclosure, which outcome can also be replicated under complete opacity with �o

=

ˆ�.

Step 4: The Strict Optimality of Opacity: Consider the policy maker’s problem under complete

opacity,

min

�

o

W
s

=

1

2

"
⌧
x

+ ⌧
a

k20
⌧2
x

k20 +

✓
⌧
x

+ ⌧
a

k20
⌧
x

k0 � 1

◆2
1

⌧
z

+

✓
k2
�o

◆2
1

⌧
s

+

1

⌧
m

#
. (19)

s.t. (14) and (15).

Next, let us decompose,

2W
s

= f (k0) +

✓
k2
�o

◆2
1

⌧
s

+

1

⌧
m

,

where f is the strictly pseudo-convex welfare function from the Proof of Theorem 1,

f (k0) ⌘
⌧
x

+ ⌧
a

k20
⌧2
x

k20 +

✓
⌧
a

k20
⌧
x

k0 + k0 � 1

◆2
1

⌧
z

.

It follows that k?0,f > kd0 , where k?0,f denotes the unique value of k0 that minimizes f .

Suppose now that we start at �o

=

ˆ�, and hence with k0 = kd0 . In that case,

W
s

= f
⇣
kd0

⌘
+ 0 +

1

⌧
m

,

since k2 = 0 when �o

=

ˆ�. Consider now an infinitesimal increase in k0 from kd0 to k00 consistent

with (14). Since k?0,f > kd0 and f is strictly pseudo-convex, it follows that f (k00) < f
�
kd0
�
.

However, it also implies that k22 (k00)
1

�

o

(

k

0
0)

2
⌧

s

> 0. But since �o

=

ˆ� attains the global minimum

for k22
1

�

2
o

⌧

s

, this latter effect is only of second order. By contrast, the former effect is of first order.

Thus, we can conclude that k?0 > kd0 and �? < ˆ�; the latter follows from that dk0
d� |k0=k

d

0

< 0.13

Finally, it follows from (15) and (19) that when ⌧
s

! 0 the optimal policy tends towards that

from Section 4; for ⌧
s

! 1 the optimal policy, in contrast, tends towards full disclosure.

.....................................................................................................................................................�

C.4 Alternative Shock Structures

Several of the convenient properties of normal distributions that I used in Sections 2 and 3 are

enjoyed by many other pairs of prior and likelihood. In fact, Ericson (1969), DeGroot (1970)

and Vives (2010) show how the pair normal-normal is merely one example of the class for which

conditional expectations are linear, and hence the main decomposition used to arrive at Theorem

1 holds exactly. The decomposition, for instance, holds for many of the most commonly used

13The uniqueness of k

?

0 follows from the strict pseudo-convexity of W
s

when using that
⇣

k2
�

⌘2
=

⇣
1
�

⌘2 ⇣
�+

p

a

k

2
0

p

x

k0 + k0 � 1

⌘2

and from the quasi-convexity of the constraint (14).
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distributions when combined with natural priors, in addition to the important case where we

restrict agents to only construct linear-best predictors (see Brockwell and Davis, 2009).14 Below,

I provide a simple example with binary signals.

Suppose that ✓ is drawn from a beta distribution between zero and one, where ↵ > 0 and

� > 0. The private information of individual i is summarized by an independent bernoulli trial

x
i

with parameter ✓. Consistent with Section 2, the policy maker’s own private information

is also assumed to be an independent bernoulli trial z with ✓. I here discount the presence

of an endogenous public signal a for simplicity. The key step is to demonstrate how complete

opacity combined with active instrument policy can replicate the full disclosure outcome. When

full disclosure does not attain the constraint efficient outcome, complete opacity then dominates

because it avoids the added obfuscation associated with partial disclosure. The rest of the model

follows that in Section 2.

Complete Opacity: To start, let me define ⌧ ⌘ E [V [x
i

| ✓]]�1
=

1
↵+�

⌧
✓

, where ⌧
✓

denotes

the precision of ✓. A simple application of bayes’ rule shows that the posterior distribution of ✓

conditional on x
i

is beta(↵+ x
i

, � + 1� x
i

). Thus,

E [✓ | x
i

] =

↵+ x
i

1 + ↵+ �
=

⌧

⌧ + ⌧
✓

x
i

+

⌧
✓

⌧ + ⌧
✓

E [✓] .

Consider now the deviation from the effective state of the economy, �
i

, under complete opacity,

�

o

i

= E [✓ | x
i

]� ✓ +m� E [m | x
i

] = E [✓ | x
i

]� ✓ + � (z � E [✓ | x
i

]) + ✏
m

. (20)

Full Disclosure: Suppose that the policy maker instead fully discloses his own information,

and notice that E [V [z | ✓]]�1
= ⌧ . We can then apply bayes’ rule one more time to show that

the posterior distribution of ✓ conditional on x
i

and z also is beta(↵ + x
i

+ z, � + 2 � x
i

� z)

with,

E [✓ | x
i

, z] =
↵+ x

i

+ z

2 + ↵+ �
=

⌧

2⌧ + ⌧
✓

x
i

+

⌧

2⌧ + ⌧
✓

z +
⌧
✓

2⌧ + ⌧
✓

E [✓]

= E [✓ | x
i

] +

⌧

2⌧ + ⌧
✓

(z � E [✓ | x
i

]) .

We can now compute the deviation from the effective state of the economy under full disclosure,

�

d

i

= E [✓ | x
i

, z]� ✓ + ✏
m

= E [✓ | x
i

]� ✓ +
⌧

2⌧ + ⌧
✓

(z � E [✓ | x
i

]) + ✏
m

. (21)

All that is left is to compare (20) and (21) from which the below Proposition follows.

Proposition. Complete opacity with active instrument policy, where � =

ˆ� ⌘ ⌧

2⌧+⌧

✓

, replicates
the full disclosure outcome under the beta-binomial, affine information structure.

14The decomposition, for example, holds for affine information structures with beta-binomial or gamma-poisson
combinations of prior and likelihood. Other cases are when the observations are negative binomial, gamma or
exponential when assigned natural conjugate priors.
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Appendix D: Alternative Business Cycle Applications

This Appendix discusses the alternative business cycle applications mentioned in the paper.

D.1. An RBC Model of Tax Policy

The model is identical to that from Section 5 with the exception of (a) the timing and information

structure; (b) the set of policy instruments available to the policy maker – in this case, the

economy-wide tax authority; and (c) that workers and firms here directly observe and learn

from a policy instrument. The model resembles that of Angeletos et al. (2016).15

Timing Structure: I alter the timing structure as follows: I assume that workers are now sent

to each island at the first stage of each period. At that moment, local labor markets open, workers

decide how much labor to supply and firms how much to demand. The local wage adjusts to clear

the market and labor taxes are paid. At this stage, firms and workers have perfect information

about local productivity but imperfect information about the productivity of, and hence demand

from, other islands. After employment and production decisions are made, the economy moves to

the second stage, where all information that was previously dispersed becomes publicly known.

Commodity markets now open and commodity prices adjust to clear them. Firm sales taxes are

here also paid.

Households and Firms: The economy-wide tax authority sets labor income taxes and firm

sales taxes. The household’s budget constraint is therefore now given by,

Z 1

0
P
it

C
it

di+Md

t


Z 1

0
⇧

it

di+ (1� T
wt

)

Z 1

0
W

it

L
it

di+Md

t�1 + T
t

, (22)

where T
wt

denotes the economy-wide labor income tax. Firm profits by contrast now equal,

⇧

it

= (1� T
st

)P
it

Y
it

�W
it

L
it

, (23)

where T
st

denotes the economy-wide sales tax.

Active Tax Policy (and Constant Monetary Policy): The economy-wide tax authority has

access to three separate tools: (i) labor taxes T
wt

, (ii) sales taxes T
st

, and last (iii) the precision

of its disclosure !
t

about its own beliefs z
t

about aggregate productivity. In line with the baseline

model and its extensions, I assume that sales and labor income taxes are set in accordance with,

log(1� T
wt

) = �
w

z
t

+ ✏
wt

, log(1� T
st

) = �0 + �
s

z
t

, (24)

where {�0, �w

, �
s

} 2 R3 and z
t

= ✓
t

+ ✏
zt

.16 The error terms ✏
wt

and ✏
zt

are assumed white

noise normal with precision ⌧
w

and ⌧
z

and independent of all other random disturbances. Com-
15I also here consider only one level of CES aggregator with elasticity �. This is merely to simplify the exposition

as I do not consider inefficient disturbances within this model.
16Here, �0 denotes the standard optimal production subsidy.
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munication policy is set as in the baseline model. To make the exposition as simple as possible,

I assume that �
w

= ��
s

= � in what follows.17

Because commodity prices can freely adjust to clear commodity markets, the central bank,

unlike the tax authority, cannot here influence equilibrium outcomes through changes in its

instrument, the money supply M s

t

. I therefore, for simplicity, assume that it keeps the money

supply constant and does not disclose any information.

Information Structure: To close the model, I need to specify the information structure.

Similar to the baseline model and its extensions, firms’ and workers’ information sets equal,

⌦

it

= {x
i⌧

, !
⌧

, y
⌧

, log(1� T
wt

)}⌧=t

⌧=�1 , (25)

where y
t

= log(Y
t

)+✏
at

and ✏
at

⇠ WN (0, 1/⌧
a

) is independent of all other shocks. I hence assume

that firms and workers observe a noisy signal of the economy-wide level of output and use this

signal to estimate demand from other islands.18 Importantly in (25), neither firms nor workers

observe the sales tax at the time of decision making. Labor supply and demand decisions are

therefore partially pre-determined and expected tax policy thus matters for equilibrium outcomes,

even within periods. Unlike the baseline model, however, firms and workers here also observe

and learn about the tax authority’s beliefs from the current setting of a policy instrument, the

income tax. This allows current tax choices to signal the tax authority’s beliefs and hence future

second-stage tax rates. Specifically, the more active the income tax is, that is the larger |�| is,

the more informative the income tax is of the tax authority’s private information, and thus about

the future sales tax. This is similar to the outcome of the quantitative framework used by Melosi

(2016) to study the signaling effects of monetary policy rates.

Equilibrium Characterization: Solving for the labor market equilibrium on island i allows

us to show that the level of output in the economy is pinned down by:

Lemma 1 (D). The equilibrium level of output on island i is determined by,

y
it

= &x
it

+ (1� &)E
it

[ȳ
t

] +

�&

1 + ⌘
(z

t

� E
it

[z
t

]) +

&

1 + ⌘
✏
wt

, (26)

where & ⌘ (1+⌘)�
1+⌘�

> 1 and ȳ
t

= log (Y
t

).19

Equation (26) closely resembles the decision rule analyzed in Section 5. First, since & > 1,

there are direct strategic interactions between individual island outputs. And second, because

of the noisy income tax, individual island output is noisy; it depends directly on the disturbance

✏
wt

. Both features resemble those we saw firm prices exhibit in Section 5.
17This does not crucially affect our main results. Relaxing the constraint allows the tax authority to better

internalize the learning externality. This, in turn, allows the policy maker to optimally make endogenous public
statistics more informative than that achieved under the optimal policy with the constraint in place. However, all
comparisons to the full disclosure outcome remain the same. Despite the added degree of freedom, the optimal
policy when �

w

6= �

s

still does not attain the constrained efficient outcome.
18The noise in the observation of y

t

can once more be attributed to the statistical error that occurs when island
inhabitants observe only a random sample of other islands outputs (cf. Lorenzoni, 2010).

19Equation (26), for simplicity, ignores unimportant constant terms (see Proof below).
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Optimal Tax Policy: The tax authority seeks to maximize the ex-ante expected utility of the

representative household by adjusting its three tools: (i) labor taxes, (ii) sales taxes, and last

(iii) the precision of the signal that it sends about its own beliefs about aggregate productivity.

Conditional on an optimal production subsidy, welfare in the economy equals:

Lemma 2 (D). There exists a function f : R+ ! R such that the ex-ante level of welfare equals,

W = f (⇤) , ⇤ = E [ȳ
t

� y?
t

]

2
+

1

&
E [(y

it

� y?
it

)� (ȳ
t

� y?
t

)]

2 (27)

where y?
it

and y?
t

= ✓
t

denote the first-best levels of local and economy-wide output, respectively.
Moreover, W attains its maximum (the first best level) at ⇤ = 0 and is strictly decreasing in ⇤.

The social welfare loss function ⇤ is identical to that studied in Section 5. Equation (5.2) and

(5.9) can directly be used to re-write (5.11) into (27). Using an identical approach to that applied

in Section 5 to solve for optimal policy, then once more shows that the unique best policy features

complete opacity combined with active instrument policy:

Proposition. The unique optimal policy is complete opacity, ⌧
!

! 0, combined with active tax
policy, � = �?

tp

2 (0, 1 + ⌘). The informativeness of economy-wide output, y
t

, under the optimal
policy is always above that achieved with full disclosure, k?0 > kd0.

Unlike in Section 5, however, the informativeness of the endogenous public signal y
t

is here

always above that achieved with full disclosure. It holds for all parameter values that k?0 > kd0 ,

exactly like in the baseline model. Since k?0 > kd0 , we moreover conclude that it is always the

absence of added noise associated with communication policy that causes instrument policy to

dominate. In contrast, instrument policy’s ability to also produce more coordination than that

achieved with full disclosure does not here contribute to its superiority.

The sharpness of the above Proposition is a result of the direct strategic interactions between

islands being conditionally efficient : conditional on the informativeness of output, the equilibrium

degree of coordination between local islands always equals the socially optimal one (see also

Angeletos et al., 2016).20 Any wedge between the overall equilibrium and the socially optimal

degree of coordination is therefore entirely due to the learning externality, and hence optimally

k?0 > kd0 . This business cycle application thus closely resembles the baseline model. In both

cases, the key inefficiency is the learning externality. This, in turn, pushes the policy maker

towards making the endogenous public statistic more informative than what would be achieved

with full disclosure, and to use instrument policy to do so because it avoids the introduction of

added noise to the information structure.

Last, notice how the close similarity to the results from the baseline model occurs despite that

workers and firms here learn from current income taxes about subsequent sales taxes. Although,

the current income tax signals the tax authority’s information, it does not alter that decreases in

� increase the informativeness of output, alleviating the consequences of the learning externality.
20Both are, in this case, equal to 1� & < 0.
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Clearly, the better a signal current income taxes provide of the tax authority’s information (the

lower ⌧
!

is, for instance) the less benefit there is to decrease � below the level which replicates

kd0 under complete opacity. But so long as the income tax does not perfectly reveal the tax

authority’s information, it is still optimal to rely exclusively on instrument policy since it avoids

the introduction of additional noise.

Proof of Lemma 1(D): The steps used to prove Lemma 1(D) follow those in Angeletos et al

(2016). But I here extend the proof to deal with the explicitly endogenous information structure

as well as the separate labor and sales taxes.21

The representative firm on island i’s problem is to,

max

Y

i

E
i

[⇧

i

] = E
i


U 0

(Y )

P

✓
DY

1� 1
�

i

�W
i

N
i

◆�

s.t. Y
i

= X
i

L
i

, D ⌘ (1� T
s

)PY
1
� ,

where for convenience I have dropped time subscripts and Y = C. The sufficient first order

condition to this problem is,

E
i


U 0

(Y )

P

�
W

i

=

✓
1� 1

�

◆
X

i

E
i


(1� T

s

)Y
� 1

�

i

Y
1
�

�1

�
. (28)

The worker sent to island i maximizes its contribution to the representative household’s utility.

She therefore supplies labor until,

(1� T
w

)E
i


U 0

(Y )

P

�
W

i

=

✓
Y
i

X
i

◆
⌘

. (29)

Equating (28) and (29) provides us with,

✓
Y
i

X
i

◆
⌘

=

✓
1� 1

�

◆
(1� T

w

)X
i

E
i


(1� T

s

)Y
� 1

�

i

Y
1
�

�1

�
. (30)

To show Lemma 1, and hence characterize island i output, we thus need to derive expressions

for the different terms in (30). To do so, I first conjecture and later verify that,

y
i

= k + k0xi + k1y
s

+ k2 ˜Tw

+ k3! + k4 log (1� T
w

) , (31)

where k
j

, j = {·, 0, 1, 2, 3, 4}, ys = ✓+ 1
k0
✏
a

denotes the orthogonalized version of y = log (Y )+✏
a

and ˜T
w

= z + 1
�

✏
s

.22 It follows from (31) and (5.2) that Y is log-normal. Using this conjecture

combined with U 0
(Y ) = Y �1 and our tax rules from the body of this paper allows us to re-state

21I once more use that if Q ⇠ LN

�
µ, �

2
�

then E
⇥
Q

�

⇤
= E [Q]

�

exp

⇥
�

2 (� � 1)�

2
⇤
.

22Indeed, to also account for the possibility of any additional information about the tax authority’s beliefs
besides the observation of the income tax and the tax authority’s own disclosure, I assume that firms and workers
learn from ˜

T

w

instead of log(1 � T

w

), where ✏

s

⇠ N
�
0, ⌧

�1
s

�
with ⌧

s

� ⌧

w

. As the Proof shows, neither of my
main results are affected by the presence of additional information.
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(30) as, ✓
⌘ +

1

�

◆
y
i

= H + (1 + ⌘)x
i

+

✓
1

�
� 1

◆
E
i

[ȳ] + � (z � E
i

[z]) + ✏
w

, (32)

where ȳ ⌘ log (Y ) , H ⌘ �0 + log

�
1� 1

�

�
+

�

2
D

2 and �2
D

⌘ V

(1� T

s

)Y
� 1

�

i

Y
1
�

�1

�
.

What remains to show is to verify (31) and characterize the coefficients k
j

, j = {·, 0, 1, 2, 3, 4}.
Solving island inhabitants’ signal extraction problem yields,

E
i

[✓] = w
x

x
i

+ w
y

ys + w
T

˜T
w

+ w
!

!, w
x

=

⌧
x

�
⌧
!

+ ⌧
z

+ �2⌧
s

�

(⌧
!

+ �2⌧
s

)

�
⌧
✓

+ ⌧
x

+ ⌧
a

k20 + ⌧
z

�
+ ⌧

z

�
⌧
✓

+ ⌧
x

+ ⌧
a

k20
�

E
i

[z] = v
x

x
i

+ v
y

ys + v
T

˜T
w

+ v
!

!, v
x

=

⌧
x

⌧
z

(⌧
!

+ �2⌧
s

)

�
⌧
✓

+ ⌧
x

+ ⌧
a

k20 + ⌧
z

�
+ ⌧

z

�
⌧
✓

+ ⌧
x

+ ⌧
a

k20
� .

Combined with (5.2), (32) and the conjecture in (31) this in turn shows that,

✓
⌘ +

1

�

◆
y
i

= H � 1

2

✓
1� �

�

◆2

V [ȳ] +

✓
1

�
� 1

◆
k + (1 + ⌘)x

i

+ �
h
z �

⇣
v
x

x
i

+ v
y

ys + v
T

˜T
w

+ v
!

!
⌘i

+

✓
1

�
� 1

◆h
k0

⇣
w

x

x
i

+ w
y

ys + w
T

˜T
w

+ w
!

!
⌘
+ k1y

s

+ k2 ˜Tw

+ k3! + k4 log (1� T
w

)

i
+ ✏

w

,

and hence that,

k0 = & + (1� b) k0wx

� �
&

1 + ⌘
v
x

(33)

k1 = (1� &) (k1 + k0wy

)� �
&

1 + ⌘
v
y

(34)

k2 = (1� &) (k2 + k0wT

)� �
&

1 + ⌘
v
T

(35)

k3 = (1� &) (k3 + k0w!

)� �
&

1 + ⌘
v
!

(36)

k4 = (1� &) k4 +
&

1 + ⌘
(37)

k = (1� &) k +

&

1 + ⌘

"
H � 1

2

✓
1� �

�

◆2

V [ȳ]

#
, (38)

where & ⌘ �(1+⌘)
1+⌘�

. This verifies our conjecture in (31), and thus that ys = ✓ + 1
k0
✏
a

.23

The equilibrium described by (33) to (38) is, moreover, unique. Equation (33) implies that

k0 solves L (k0) = R (k0), where,

L (k0) ⌘ (1 + ⌘) &
⇥�
⌧
!

+ ⌧
z

+ �2⌧
s

�
⌧
a

k20 +
�
⌧
!

+ �2⌧
s

�
(⌧

✓

+ ⌧
x

+ ⌧
z

) + ⌧
z

(⌧
✓

+ ⌧
x

)

⇤

R (k0) ⌘ �b⌧
z

⌧
x

+ (1 + ⌘) k0
⇥�
⌧
!

+ ⌧
z

+ �2⌧
s

�
⌧
a

k20 +
�
⌧
!

+ �2⌧
s

�
(⌧

✓

+ ⌧
x

+ ⌧
z

) + ⌧
z

(⌧
✓

+ ⌧
x

)

⇤
.

But since L (0) > R (0) > 0, R (b) > L (b) > 0 and both L and R are strictly convex, it follows

that there exists a unique solution k0 2 (0, &). Furthermore, since @R

@k0
> 0 and L achieves its

23I assume that � 2 [0, 1 + ⌘]. As I show below, the optimal � will always be within this range.
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minimum at k0 = 0 where L (0) > R (0), we can rule out any negative solutions. Finally, since
@

2
R

@k

2
0
> @

2
L

@k

2
0
> 0 whenever k0 > & shows that there are also no further solutions above &. Since

(33) thus has a unique solution, so too does (34) to (38).

....................................................................................................................................................�

Proof of Lemma 2(D): See Angeletos et al (2016) and the Appendix to this paper.

The first best full information level of local-island and economy-wide output equal, respectively,24

y?
i

= &x
i

+ (1� &) y?, y? = ✓.

.................................................................................................................................�

Proof of Proposition: I use a similar approach to that applied to the “Noisy, Observable
Instrument” extension in Appendix C.

Step 1: Equilibrium Welfare: Using the expression for the social welfare loss function combined

with (31) and (33) to (37) shows after some straightforward but tedious algebra that,

⇤ =

⌧
✓

+ b⌧
x

+ ⌧
a

k20
⌧2
x

✓
k0 � b

b

◆2

(39)

+

✓
⌧
✓

+ ⌧
a

k20
⌧
x

k0 � b

b
+ k0 � 1

◆2
1

⌧
z

+ k22
1

�2⌧
s

+ k23
1

⌧
!

+ k24
1

⌧
w

,

where k24
1
⌧

w

is independent of policy.

Step 2 and 3: The Weak Optimality of Opacity: Repeatedly using the equilibrium conditions

(33), (35) and (36) combined with the social welfare loss function in (39) then shows that,

• All partial disclosure policies where �p 6= k0
�
1��

�

�
⌧

z

⌧

✓

+⌧

x

+⌧

a

k

2
0+⌧

z

are strictly dominated in

welfare terms by the complete opacity policy �o

= k0
�
1��

�

�
�
✓

+ �p

(1� �
z

), where �
✓

and

�
z

denote the projection coefficients of ✓ and z onto F
!

=

�
! � P⌦o

i

!
 
, respectively.

• Those partial disclosure policies where �p

= k0
�
1��

�

�
⌧

z

⌧

✓

+⌧

x

+⌧

a

k

2
0+⌧

z

, in contrast, achieve

the same level of welfare loss as any full disclosure policy, which outcome can also be

replicated under complete opacity with �o

= k0
�
1��

�

�
⌧

z

⌧

✓

+⌧

x

+⌧

a

k

2
0+⌧

z

.

Step 4: The Strict Optimality of Opacity: All that is left to show is that �o,?

tp

6= k0
�
1��

�

�
⌧

z

⌧

✓

+⌧

x

+⌧

a

k

2
0+⌧

z

,

or equivalently that the optimal k0 coefficient differs from kd0 = b
⌧

✓

+⌧

x

+⌧

a

(

k

d

0)
2
+⌧

z

⌧

✓

+b⌧

x

+⌧

a

(

k

d

0)
2
+⌧

z

. To do so,

consider the social loss function under complete opacity,

⇤ = f (k0) + k22
1

�2⌧
s

+ k24
1

⌧
w

, (40)

where I have used that k23
1
⌧

!

! 0 when ⌧
!

! 0 and f is the strictly pseudo-convex function,

f (k0) ⌘
⌧
✓

+ b⌧
x

+ ⌧
a

k20
⌧2
x

✓
k0 � b

b

◆2

+

✓
⌧
✓

+ ⌧
a

k20
⌧
x

k0 � b

b
+ k0 � 1

◆2
1

⌧
z

.

24I here ignore some unimportant constant terms for brevity.
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Similar steps to those from the Proof of Theorem 1 then demonstrate that k?0,f > kd0 , where k?0,f

denotes the unique value of k0 that minimizes f .

Suppose now that we start at k0 = kd0 , and hence with �o

= k0
�
1��

�

�
⌧

z

⌧

x

+⌧

a

k

2
0+⌧

z

. In that

case,

⇤ = f
⇣
kd0

⌘
+ 0 + k24

1

⌧
w

,

since k2 = 0 when k0 = kd0 . Consider now an infinitesimal increase in k0 from kd0 to k00. Since

k?0,f > kd0 and f is strictly-pseudo convex, it follows that f (k00) < f
�
kd0
�
. However, it also implies

that k22 (k00)
1

�

2
⌧

s

> 0. But since k0 = kd0 achieves the global minimum for k22
1

�

2
⌧

s

, this latter effect

is only of second order. By contrast, the former effect is of first order. Hence, we conclude that

k?0 > kd0 and �o,?

tp

< k0
�
1��

�

�
⌧

z

⌧

✓

+⌧

x

+⌧

a

k

2
0+⌧

z

, where the latter follows from that dk0
d� |k0=k

d

0

< 0.25

....................................................................................................................................................�

D.2. Known Productivity Levels

The model is identical to that from Section 5 with the exception that firms here always observe

their own island-specific productivity level before setting prices. That is, �
it

= x
it

2 ⌦

it

(see

also Section 5.3 and Online Appendix D.1 for related examples where x
it

2 ⌦

it

).

Equilibrium Characterization: Following the same two-step procedure detailed in Section 5

shows after some straightforward-but-tedious derivations that:

Lemma 3 (D). The unique linear equilibrium price that firms on island i 2 [0, 1] set equals,

p
it

= E
it

h
⇠p̄

t

+ (1� ⇠)m
t

i
� (1� ⇠)x

it

= 0xit + 1pt + 2!t

+ 3m̂t

, (41)

where p̄
t

= log (P
t

) and ⇠ ⌘ ⌘(⇢�1)
1+⇢⌘

2 (0, 1) determines the extent of strategic complementarity.
The coefficients 1, 2 and 3 are functions of 0 2 R and the parameters of the model.

The only difference between Lemma 3(D) and Lemma 2 is that firms now always set prices

after observing their own productivity level; x
it

is known to firms on island i.

Optimal Policy: The central bank once more seeks to maximize the ex-ante expected utility

of the representative household (5.11) by adjusting its two levers: (i) the money supply and (ii)
the precision of the signal that it sends about its own beliefs about aggregate productivity. Using

once more the primal approach shows that:

Proposition. The optimal policy when x
it

2 ⌦

it

is complete opacity, ⌧
!

! 0, combined with
active monetary policy, � = �?

mp

> 0. The informativeness of the price level, p
t

, under the
optimal policy is either greater or smaller than that achieved with full disclosure, | ?0 |R| ?0 |.

The combination of complete opacity and active monetary policy is thus once more optimal.

It once more allows the central bank to better trade-off, on the one hand, the use of its own
25The uniqueness of k?

0 follows from an identical argument to that applied to “Noisy, Observable Instrument”
extension. It remains to check that �

o,?

tp

 1 + ⌘. This, however, follows immediately from k

?

0 > k

d

0 .
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information versus, on the other hand, the use of firms’ own private information. That firm

private information is here comprised of physical productivity does not matter for our rationale;

it is only of consequence for the precise parameters for which | ?0 |R| ?0 | (see Proof below).

Proof of Lemma 3(D): The steps used to prove Lemma 3(D) follow those used to show Lemma

2. The price that island i 2 [0, 1] firms set is equal to,

p
i

=

✓
+ �

1 + �⌘

◆
+ E

i


⌘ (� � 1)

1 + �⌘
p̄+

1 + ⌘

1 + �⌘
(m� x

i

)

�
,

⌘ ̄+ E
i

[⇠p̄+ (1� ⇠) (m� x
i

)] , (42)

I first conjecture and later verify that,

p
i

= ̃+ 0xi + 1y
s

+ 2m̃+ 3!, (43)

where 
j

2 R, j = {˜·, 0, 1, 2, 3}, ys = ✓ +

1
0
✏
a

denotes the orthogonalized version of p =

log (P
t

) + ✏
a

and m̃ = z + 1
�

✏
s

.

Solving firms’ signal extraction problem now provides us with,

E
i

[✓] = w
x

x
i

+ w
y

ys + w
m

m̃+ w
!

!, w
x

=

⌧
x

�
⌧
!

+ ⌧
z

+ �2⌧
s

�

(⌧
!

+ �2⌧
s

)

�
⌧
✓

+ ⌧
x

+ ⌧
a

20 + ⌧
z

�
+ ⌧

z

�
⌧
✓

+ ⌧
x

+ ⌧
a

20
�

E
i

[z] = v
x

x
i

+ v
y

ys + v
m

m̃+ v
!

!, v
x

=

⌧
x

⌧
z

(⌧
!

+ �2⌧
s

)

�
⌧
✓

+ ⌧
x

+ ⌧
a

20 + ⌧
z

�
+ ⌧

z

�
⌧
✓

+ ⌧
x

+ ⌧
a

20
� .

Using these expressions in conjunction with (43), (42) and (6.2) then shows that,

p
i

= ̄+

1� �

2

⇠V [p̄]� (1 + ⇠)x
i

+ E
i

[⇠ (̃+ 0✓ + 1y
s

+ 2m̃+ 3!) + (1� ⇠) (m�1 + �0 + �z)] ,

and hence that,

p
i

= ̄+

1� �

2

⇠V [p̄] + (1� ⇠) (m�1 + �0)� (1 + ⇠)x
i

+ ⇠ (̃+ 1y
s

+ 2m̃+ 3!)

+ ⇠0 (wx

x
i

+ w
y

ys + w
m

m̃+ w
!

!) + (1� ⇠)� (v
x

x
i

+ v
y

ys + v
m

m̃+ v
!

!) .

Thus,

0 = ⇠ � 1 + ⇠0wx

+ (1� ⇠)�v
x

(44)

1 = ⇠1 + ⇠0wy

+ (1� ⇠)�v
y

(45)

2 = ⇠2 + ⇠0wm

+ (1� ⇠)�v
m

(46)

3 = ⇠3 + ⇠0w!

+ (1� ⇠)�v
!

(47)

̃ = ⇠̃+ ̄+ ⇠
1� �

2

V [p̄] + (1� ⇠) (m�1 + �0) , (48)
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where the uniqueness of 0, and thus of the solution to (44) to (48), follows from a similar argu-

ment to that used to prove Lemma 2.

....................................................................................................................................................�

Proof of Proposition: The approach used is identical to that employed in Section 5. I therefore

only provide a sketch of the Proof.

Step 1: Equilibrium Welfare: Using the expression for ⇤ combined with Y
i

= (P
i

/P )

��Y ,

(43) and (44) to (48) shows after some routine algebra that,

⇤ =

✓
⌧
✓

+ ⌧
a

20 + �⌧
x

(1� ⇠)

⌧2
x

(1� ⇠)2

◆
(0 + 1� ⇠)2 (49)

+


1 + 0 +

⌧
✓

+ ⌧
a

20
(1� ⇠)⌧

x

(0 + 1� ⇠)

�2
1

⌧
z

+

✓
2
�

◆2
1

⌧
s

+ 23
1

⌧
!

.

Step 2 and 3: The Weak Optimality of Opacity: Repeated use of the equilibrium conditions

(44), (46) and (47) combined with the loss function in (49) then shows that:

• All partial disclosure policies where �p 6= 0

⇣
⇠

⇠�1

⌘
⌧

z

⌧

✓

+⌧

x

+⌧

a



2
0+⌧

z

are strictly dominated

by the complete opacity policy �o

= 0

⇣
⇠

⇠�1

⌘
�
✓

+ �p

(1� �
z

), where �
✓

and �
z

denote

the projection coefficients of ✓ and z onto F
!

=

�
! � P⌦o

i

!
 
, respectively, where ⌦

o

i

=

{x
i⌧

, p
⌧

, �m̂
⌧

, m
⌧�1}⌧=t

⌧=�1.

• Those partial disclosure policies where �p

= 0

⇣
⇠

⇠�1

⌘
⌧

z

⌧

✓

+⌧

x

+⌧

a



2
0+⌧

z

, by contrast, achieve

the same level of welfare loss as any full disclosure policy, which outcome can also be

replicated under complete opacity with �o

= 0

⇣
⇠

⇠�1

⌘
⌧

z

⌧

✓

+⌧

x

+⌧

a



2
0+⌧

z

.

Step 4: The Strict Optimality of Opacity: It remains to check when �o,mp

?

6= 0

⇣
⇠

⇠�1

⌘
⌧

z

⌧

✓

+⌧

x

+⌧

a



2
0+⌧

z

,

or equivalently when mp

?,0 6= d0 = ⇠�1+⇠d0
⌧

x

⌧

✓

+⌧

x

+⌧

a

(



d

0)
2
+⌧

z

. To do so, consider ⇤ when ⌧
!

! 0,

⇤ = f (0) +

✓
2
�

◆2
1

⌧
s

,

where I have used that 23
1
⌧

!

! 0 when ⌧
!

! 0 and f is the strictly pseudo-convex function,

f (0) ⌘
✓
⌧
✓

+ ⌧
a

20 + �⌧
x

(1� ⇠)

⌧2
x

(1� ⇠)2

◆
(0 + 1� ⇠)2 +


1 + 0 +

⌧
✓

+ ⌧
a

20
(1� ⇠)⌧

x

(0 + 1� ⇠)

�2
1

⌧
z

.

Now, consider the unique value of 0 that minimizes f ,

?,f0 = ⇠ � 1 + ⇠?,f0
⌧
x

⌧
✓

+ ⌧
x

+ ⌧
a

⇣
?,f0

⌘2
+

⌧

✓

+⇢(1�⇠)⌧
x

+2
⇣


?,f

0

⌘2
+⌧

a



?,f

0 (1�⇠)

⌧

✓

+(1�⇠)⌧
x

+3
⇣


?,f

0

⌘2
+2⌧

a



?,f

0 (1�⇠)
⌧
z

Q d0 (50)

An identical line of argument to that used in the “Noisy, Observable Instrument” extension in

Appendix C, also used in Section 5, then establishes the rest of the Proposition.

....................................................................................................................................................�
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