"Information-driven Business Cycles: Primal Approach" Ryan Chahrour & Robert Ulbricht

Alexandre N. Kohlhas¹

¹Institute for International Economic Studies, Stockholm University

Madrid Workshop in Quantitative Macroeconomics, May 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Expectations, Information and Business Cycles

Motivation:

- "Animal Spirits": Coordinated waves of mistaken optimism or pessimism are the source of business cycles (Pigou, 1927)
- But, so far, most estimates of their relevance depend critically on assumption about people's information sets

Question: What if we do not know people's information sets? Can we still quantify the role of Animal Spirits?

This paper: Proposes a novel theoretical resolution Shows how *Animal Spirits* account for the bulk of US business cycles

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Motivation:

- "Animal Spirits": Coordinated waves of mistaken optimism or pessimism are the source of business cycles (Pigou, 1927)
- But, so far, most estimates of their relevance depend critically on assumption about people's information sets
- **Question:** What if we do not know people's information sets? Can we still quantify the role of Animal Spirits?

This paper: Proposes a novel theoretical resolution Shows how *Animal Spirits* account for the bulk of US business cycles

The Importance of Information:

- Macroeconomic outcomes depend on preferences and beliefs
- Estimates of imperfect information are thus necessary for...
- Business cycles, economic policy; most macroeconomic questions

But what information do people rely on when making their choices? ~ an inherently unobserved quantity

Ryan and Robert show how we can use simple tools from business cycle accounting for full-information rational expectation models

 \Rightarrow circumvent our own lack of knowledge

 \Rightarrow estimate the importance of imperfect information

The Importance of Information:

- Macroeconomic outcomes depend on preferences and beliefs
- Estimates of imperfect information are thus necessary for...
- Business cycles, economic policy; most macroeconomic questions

But what information do people rely on when making their choices? ~ an inherently unobserved quantity

Ryan and Robert show how we can use simple tools from business cycle accounting for full-information rational expectation models ⇒ circumvent our own lack of knowledge ⇒ estimate the importance of imperfect information

The Importance of Information:

- Macroeconomic outcomes depend on preferences and beliefs
- Estimates of imperfect information are thus necessary for...
- Business cycles, economic policy; most macroeconomic questions

But what information do people rely on when making their choices? \sim an inherently unobserved quantity

Ryan and Robert show how we can use simple tools from business cycle accounting for full-information rational expectation models

⇒ circumvent our own lack of knowledge

 \Rightarrow estimate the importance of imperfect information

Basic Setup:

- Simplified imperfect information New Keynesian model
- Two-period version: (a) Uncertainty about current realizations at s=t; (b) Then, flex-price full-information outcome for s ≥ t+1.

• Stark information structure: $\Theta_t = a_t + \varepsilon_t^{\Theta}$, $\varepsilon_t^{\Theta} \sim N\left(0, \sigma_{\Theta}^2\right)$

Equilibrium Conditions:

- 1. Demand Block: $y_t = \mathbb{E}_t^c [y_{t+1} i_t + \pi_{t+1}]$
- 2. Supply Block: $\pi_t = \mathbb{E}_t^f \left[\beta \pi_{t+1} + \kappa (y_t a_t)\right]$
- 3. Central Bank: $i_t = \phi \pi_t$

Basic Setup:

- Simplified imperfect information New Keynesian model
- Two-period version: (a) Uncertainty about current realizations at s=t; (b) Then, flex-price full-information outcome for s ≥ t+1.

• Stark information structure: $\Theta_t = a_t + \varepsilon_t^{\Theta}$, $\varepsilon_t^{\Theta} \sim N\left(0, \sigma_{\Theta}^2\right)$

Equilibrium Conditions:

- 1. Demand Block: $y_t = \mathbb{E}_t^{c} [y_{t+1} i_t + \pi_{t+1}]$
- 2. Supply Block: $\pi_t = \mathbb{E}_t^f \left[\beta \pi_{t+1} + \kappa (y_t a_t)\right]$
- 3. Central Bank: $i_t = \phi \pi_t$

Imperfect Information and Information Wedges

Primal Approach:

$$y_t = \mathbb{E}_t^c [\rho a_t - \phi \pi_t] = \rho a_t - \phi \pi_t + \tau_t^c$$
$$\pi_t = \kappa \mathbb{E}_t^f [y_t - a_t] = \kappa (y_t - a_t) + \tau_t^f$$

Information Wedges:

 \sim Isomorphic to standard BCA wedges

$$\tau_t^c \equiv \mathbb{E}_t^c \left[\rho \, a_t - \phi \, \pi_t \right] - \left(\rho \, a_t - \phi \, \pi_t \right) \quad \tau_t^f \equiv \kappa \mathbb{E}_t^f \left[y_t - a_t \right] - \kappa \left(y_t - a_t \right)$$

Implementability Conditions: (a) $\mathbb{E}[\underline{\tau}_t] = 0$ and (b) $\mathbb{C}ov[\underline{\tau}_t, \Theta_{t-j}] = \underline{0}$ Natural consequences of rational information use!

Imperfect Information and Information Wedges

Primal Approach:

$$y_t = \mathbb{E}_t^c [\rho a_t - \phi \pi_t] = \rho a_t - \phi \pi_t + \tau_t^c$$
$$\pi_t = \kappa \mathbb{E}_t^f [y_t - a_t] = \kappa (y_t - a_t) + \tau_t^f$$

Information Wedges:

 \sim Isomorphic to standard BCA wedges

$$\tau_t^c \equiv \mathbb{E}_t^c \left[\rho \, a_t - \phi \, \pi_t \right] - \left(\rho \, a_t - \phi \, \pi_t \right) \quad \tau_t^f \equiv \kappa \mathbb{E}_t^f \left[y_t - a_t \right] - \kappa (y_t - a_t)$$

Implementability Conditions: (a) $\mathbb{E}[\underline{\tau}_t] = 0$ and (b) $\mathbb{C}ov[\underline{\tau}_t, \Theta_{t-j}] = \underline{0}$ Natural consequences of rational information use!

Imperfect Information and Information Wedges

Primal Approach:

$$y_t = \mathbb{E}_t^c [\rho a_t - \phi \pi_t] = \rho a_t - \phi \pi_t + \tau_t^c$$
$$\pi_t = \kappa \mathbb{E}_t^f [y_t - a_t] = \kappa (y_t - a_t) + \tau_t^f$$

Information Wedges:

 \sim Isomorphic to standard BCA wedges

$$\tau_t^c \equiv \mathbb{E}_t^c \left[\rho \, a_t - \phi \, \pi_t \right] - \left(\rho \, a_t - \phi \, \pi_t \right) \quad \tau_t^f \equiv \kappa \mathbb{E}_t^f \left[y_t - a_t \right] - \kappa (y_t - a_t)$$

Implementability Conditions: (a) $\mathbb{E}[\underline{\tau}_t] = 0$ and (b) $\mathbb{C}ov[\underline{\tau}_t, \Theta_{t-j}] = \underline{0}$ Natural consequences of rational information use!

The Importance of Information Wedges

Properties of Information Wedges:

$$y_t =
ho a_t - \phi \pi_t + au_t^c \quad \pi_t = \kappa (y_t - a_t) + au_t^f$$

- Serially correlated
- Correlated across equations

(Extended Quantitative) Model Meets Data:

- BCA shows the necessity of persistent, correlated wedges
- Simple full Information models cannot account for this correlation

• Dispersed imperfect information models can!

Information Frictions Can Explain Business Cycle Dynamics

The Importance of Information Wedges

Properties of Information Wedges:

$$y_t =
ho a_t - \phi \pi_t + au_t^c \quad \pi_t = \kappa (y_t - a_t) + au_t^f$$

- Serially correlated
- Correlated across equations

(Extended Quantitative) Model Meets Data:

- BCA shows the necessity of persistent, correlated wedges
- Simple full Information models cannot account for this correlation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• Dispersed imperfect information models can!

Information Frictions Can Explain Business Cycle Dynamics

The Importance of Information Wedges

Properties of Information Wedges:

$$y_t =
ho a_t - \phi \pi_t + au_t^c \quad \pi_t = \kappa (y_t - a_t) + au_t^f$$

- Serially correlated
- Correlated across equations

(Extended Quantitative) Model Meets Data:

- BCA shows the necessity of persistent, correlated wedges
- Simple full Information models cannot account for this correlation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• Dispersed imperfect information models can!

Information Frictions Can Explain Business Cycle Dynamics

A Residual Explanation:

$$y_t =
ho a_t - \phi \pi_t + \tau_t^c \quad \pi_t = \kappa (y_t - a_t) + \tau_t^f$$

- Wedges create lots of degrees of freedom
- A better fit for macroeconomic data

Composition of Wedges:

- Expectation Errors
- Model Misspecification, Additional Shocks?

Central Questions: (a) Do orthogonality conditions constrain wedges? (b) Can we empirically test estimated wedges?

A Residual Explanation:

$$y_t =
ho a_t - \phi \pi_t + \tau_t^c \quad \pi_t = \kappa (y_t - a_t) + \tau_t^f$$

- Wedges create lots of degrees of freedom
- A better fit for macroeconomic data

Composition of Wedges:

- Expectation Errors
- Model Misspecification, Additional Shocks?

Central Questions: (a) Do orthogonality conditions constrain wedges? (b) Can we empirically test estimated wedges?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

A Residual Explanation:

$$y_t =
ho a_t - \phi \pi_t + \tau_t^c \quad \pi_t = \kappa (y_t - a_t) + \tau_t^f$$

- Wedges create lots of degrees of freedom
- A better fit for macroeconomic data

Composition of Wedges:

- Expectation Errors
- Model Misspecification, Additional Shocks?

Central Questions: (a) Do orthogonality conditions constrain wedges? (b) Can we empirically test estimated wedges?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Empirically Credible Wedges?

Figure 5: Correlation between information-wedges and aggregate statistics. Note.—The plot shows the (auto) correlation coefficients of the estimated information-wedges vis-à-vis output growth, inflation, the fed funds rate and productivity growth. The order of the autocorrelation is on the x-axis. Shaded areas depict

Construct Plausibility Test with Expectations Data

Empirical Evidence: Coibion and Gorodnichenko (2012, 2015) Inflation expectations appear consistent with noisy information models

Reduced Form Evidence in favor of Animal Spirits?

But...

- Expectations also seem extrapolative (Gennaioli et al, 2016)
- Revisions to fixed-term forecasts are serially correlated
- Inconsistent with rational information models

Imperfect Rational Expectations or Extrapolative Expectations?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Empirical Evidence: Coibion and Gorodnichenko (2012, 2015) Inflation expectations appear consistent with noisy information models

Reduced Form Evidence in favor of Animal Spirits?

But...

- Expectations also seem extrapolative (Gennaioli et al, 2016)
- Revisions to fixed-term forecasts are serially correlated
- Inconsistent with rational information models

Imperfect Rational Expectations or Extrapolative Expectations?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Micro-Consistent Reduced Form Evidence

Enders et al (2017): Growth Expectations and Short-run Fluctuations

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Wedges with Endogenous Learning

Parametric Assumptions:

$$au_t = \psi au_{t-1} + \eta_t ~\sim~ VAR_2(1)$$

Extended Model with heta ightarrow 1

- Dispersed private information $s_t^i = a_t + \varepsilon_t^i$
- Endogenous public signal $\tilde{y}_t = y_t + \varepsilon_t^y$

Solutions & Reduced Form

$$y_t^{RR} = ka_t + \tau_t \sim ARMA(2,1) \qquad y_t^{MS} = \alpha' X_t^{(0:k)} \sim ARMA(k,k)$$
$$X_t^{(0:k)} = \begin{bmatrix} a_t & \bar{\mathbb{E}}a_t & \bar{\mathbb{E}}^{(2)}a_t & \dots & \bar{\mathbb{E}}^{(k)}a_t \end{bmatrix}' \sim VAR_k(1)$$

Rule Out Ex-Ante "Plausible" Information Structures?

Wedges with Endogenous Learning

Parametric Assumptions:

$$au_t = \psi au_{t-1} + \eta_t ~\sim~ VAR_2(1)$$

Extended Model with heta ightarrow 1

- Dispersed private information $s_t^i = a_t + \varepsilon_t^i$
- Endogenous public signal $\tilde{y}_t = y_t + \varepsilon_t^y$

Solutions & Reduced Form

$$y_t^{RR} = ka_t + \tau_t \sim ARMA(2,1) \qquad y_t^{MS} = \alpha' X_t^{(0:k)} \sim ARMA(k,k)$$

• $X_t^{(0:k)} = \begin{bmatrix} a_t & \bar{\mathbb{E}}a_t & \bar{\mathbb{E}}^{(2)}a_t & \dots & \bar{\mathbb{E}}^{(k)}a_t \end{bmatrix}' \sim VAR_k(1)$

Rule Out Ex-Ante "Plausible" Information Structures?

Conclusion:

- Since Arthur Pigou (1927) focus on how erroneous coordinated waves of optimism and pessimism can create business cycles
- Yet the mere presence of **imperfect information** begs the question of what **information sets** people rely on?
- Robert and Ryan turn our attention to how simple **orthogonality conditions** allow us to estimate the role of imperfect information
- without any assumptions about the information structure

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A Key Step Forward that Asks the Correct Question!

Thank you for your time and attention!

・ロト・日本・ヨト・ヨー うへの