"Price Dispersion, Private Uncertainty and Endogenous Nominal Rigidities" Gaetano Gaballo

Alexandre N. Kohlhas¹

¹Institute for International Economic Studies, Stockholm University

NAIF in Business Cycles Workshop, June 2017

Motivation:

- Imperfect information provides a rationale for sticky prices: the less firms know, the less they can adjust prices
- But, equilibrium prices also reveal the "dispersed bits of incomplete knowledge that we all possess" (Hayek, 1945)

Question: How can we maintain imperfect information? Does stickiness vanish with price dispersion?

This paper: Proposes a novel model of *nominal frictions* Shows how *learning from prices creates stickiness without dispersion*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Motivation:

- Imperfect information provides a rationale for sticky prices: the less firms know, the less they can adjust prices
- But, equilibrium prices also reveal the "dispersed bits of incomplete knowledge that we all possess" (Hayek, 1945)
- **Question:** How can we maintain imperfect information? Does stickiness vanish with price dispersion?
- **This paper:** Proposes a novel model of *nominal frictions* Shows how *learning from prices creates stickiness without dispersion*

Market Information:

- Most economic signals are the result of market outcomes
- GDP Statistics, household income, firm prices, asset prices...
- All combine and reveal dispersed information

But what limits the informativeness of market information? ⇒ that market outcomes are the result of complicated GE

Gaetano shows how GE feedbacks can help limit the informativeness of market outcomes ⇒ creates disagreement and misallocation

 \Rightarrow helps makes market outcomes persistent

Market Information:

- Most economic signals are the result of market outcomes
- GDP Statistics, household income, firm prices, asset prices...
- All combine and reveal dispersed information

But what limits the informativeness of market information? ⇒ that market outcomes are the result of complicated GE

Gaetano shows how GE feedbacks can help limit the informativenessof market outcomes \Rightarrow creates disagreement and misallocation \Rightarrow helps makes market outcomes persistent

Market Information:

- Most economic signals are the result of market outcomes
- GDP Statistics, household income, firm prices, asset prices...
- All combine and reveal dispersed information

But what limits the informativeness of market information? ⇒ that market outcomes are the result of complicated GE

Gaetanoshows how GE feedbacks can help limit the informativenessof market outcomes \Rightarrow creates disagreement and misallocation

 \Rightarrow helps makes market outcomes persistent

Basic Setup:

- Simplified two-period CARA-Normal asset price model
- *Risky asset* with terminal payoff $\theta \sim N(0, 1)$ in *supply* $S = \alpha \theta$ and a *riskless asset* with normalized zero return
- Stark information structure: $p_i = p + \eta_i$, $\eta_i \sim N(0, 1/\tau_\eta)$

Equilibrium Conditions:

- 1. Demand for Asset:
- 2. Market Equilibrium:

$$D_{i} = (\mathbb{E}_{i} [\theta] - p) \mathbb{V}_{i} [\theta - p]^{-1}$$
$$\int_{0}^{1} D_{i} (p; p_{i}) di = S(\theta)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Basic Setup:

- Simplified two-period CARA-Normal asset price model
- *Risky asset* with terminal payoff $\theta \sim N(0, 1)$ in *supply* $S = \alpha \theta$ and a *riskless asset* with normalized zero return
- Stark information structure: $p_i = p + \eta_i$, $\eta_i \sim N(0, 1/\tau_\eta)$

Equilibrium Conditions:

- 1. Demand for Asset:
- 2. Market Equilibrium:

$$D_i = (\mathbb{E}_i [\theta] - p) \mathbb{V}_i [\theta - p]^{-1}$$
$$\int_0^1 D_i (p; p_i) di = S(\theta)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Equilibrium Asset Price:

$$p_i = \bar{\mathbb{E}}[\theta] - \delta \theta + \eta_i \stackrel{!}{=} k_0 \theta + \eta_i$$

- Supply Offset: $\delta = \alpha \bar{\mathbb{V}}[\theta p]$
- Informativeness: $s_{ip} = heta + (1/k_0) \eta_i$

Equilibrium Solution:

$$p_i = \frac{\tau_\eta k_0^2 - \alpha}{1 + \tau_\eta k_0^2} \theta + \eta_i \stackrel{!}{=} k_0 \theta + \eta_i$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Equilibrium Asset Price:

$$p_i = \overline{\mathbb{E}}\left[heta
ight] - \delta heta + \eta_i \stackrel{!}{=} rac{k_0}{k_0} heta + \eta_i$$

- Supply Offset: $\delta = \alpha \bar{\mathbb{V}} [\theta p]$
- Informativeness: $s_{ip} = heta + (1/k_0) \eta_i$

Equilibrium Solution:

$$p_i = \frac{\tau_{\eta} k_0^2 - \alpha}{1 + \tau_{\eta} k_0^2} \theta + \eta_i \stackrel{!}{=} k_0 \theta + \eta_i$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Dispersed Limit Equilibria

Fixed-Point Condition:

$$k_0 = \frac{\tau_{\eta} k_0^2 - \alpha}{1 + \tau_{\eta} k_0^2}$$

- Third-order polynomial in k₀
- Decartes' Rule of Signs: one or three equilibria

Multiple Equilibria: Strategic complementarity

Dispersed Limit Equilibria:

$$p = \bar{\mathbb{E}}\left[\theta\right] - \delta\theta = k_0\theta$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $\lim_{\tau_\eta \to \infty} k_0^1 = 1 \sim \text{ full information}$ • $\lim_{\tau_\eta \to \infty} k_0^{2,3} = 0 \sim \text{ zero information!}$ **Fixed-Point Condition:**

$$k_0 = \frac{\tau_{\eta} k_0^2 - \alpha}{1 + \tau_{\eta} k_0^2}$$

- Third-order polynomial in k₀
- Decartes' Rule of Signs: one or three equilibria

Multiple Equilibria: Strategic complementarity

Dispersed Limit Equilibria:

$$p = \bar{\mathbb{E}}\left[\theta\right] - \delta\theta = k_0\theta$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $\lim_{\tau_{\eta}\to\infty} k_0^1 = 1 \sim \text{ full information}$ • $\lim_{\tau_{\eta}\to\infty} k_0^{2,3} = 0 \sim \text{ zero information!}$ **Fixed-Point Condition:**

$$k_0 = \frac{\tau_{\eta} k_0^2 - \alpha}{1 + \tau_{\eta} k_0^2}$$

- Third-order polynomial in k₀
- Decartes' Rule of Signs: one or three equilibria

Multiple Equilibria: Strategic complementarity

Dispersed Limit Equilibria:

$$p = \bar{\mathbb{E}}\left[\theta\right] - \delta\theta = k_0\theta$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $\lim_{\tau_{\eta}\to\infty} k_0^1 = 1 \sim \text{ full information}$ • $\lim_{\tau_{\eta}\to\infty} k_0^{2,3} = 0 \sim \text{ zero information!}$

Equilibrium Selection:

$$\hat{\mathbb{E}}_{i}^{n}[\theta] \xrightarrow{n} \mathbb{E}^{DLE}[\theta] = 0$$

- DLE locally learnable
- ... and unique rationalizable outcome

Economic Consequences:

- Equilibrium price is sticky
- ... and does not transmit information
- Equilibrium allocations \neq first best

Endogenous Equilibrium Stickiness!

Equilibrium Selection:

$$\hat{\mathbb{E}}_{i}^{n}[\theta] \xrightarrow{n} \mathbb{E}^{DLE}[\theta] = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- DLE locally learnable
- ... and unique rationalizable outcome

Economic Consequences:

- Equilibrium price is sticky
- ... and does not transmit information
- Equilibrium allocations \neq first best

Endogenous Equilibrium Stickiness!

Equilibrium Selection:

$$\hat{\mathbb{E}}_{i}^{n}[\theta] \xrightarrow{n} \mathbb{E}^{DLE}[\theta] = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- DLE locally learnable
- ... and unique rationalizable outcome

Economic Consequences:

- Equilibrium price is sticky
- ... and does not transmit information
- Equilibrium allocations \neq first best

Endogenous Equilibrium Stickiness!

Model Setup:

- Monopolistic competitive Lucas island model
- Continuum of firms preset labor and capital
- Uncertain about money supply heta and preference shock ξ_i

Learning from Prices:

Allocative vs informational trade-off through R

 \implies little price dispersion makes monetary policy potent

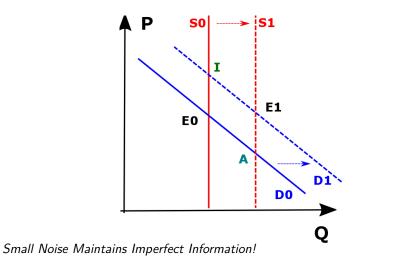
Comments:

- 1. Allocative vs Informational Role
- 2. Symmetric Information: Another Candidate?
- 3. Natura Non Facit Saltus

Model Setup:

- Monopolistic competitive Lucas island model
- Continuum of firms preset labor and capital
- Uncertain about money supply heta and preference shock ξ_i

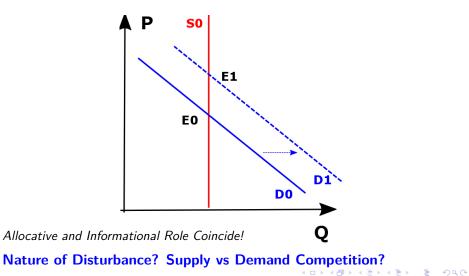
Learning from Prices:


Allocative vs informational trade-off through R

 \implies little price dispersion makes monetary policy potent

Comments:

- 1. Allocative vs Informational Role
- 2. Symmetric Information: Another Candidate?
- 3. Natura Non Facit Saltus


Fundamental Value Shock:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Allocative vs Informational Role

A Pure Demand Shock ($\alpha = 0$):

Unexplored Consequences

Dispersed Information Equilibria:

- Sticky local prices $r_i \rightarrow 0$
- Powerful monetary policy

Cross-sectional Dispersion: ...increases both for productivity and for consumer prices in recessions (Bloom '09; Vavra, '14)

Empirical Consequences:

$$\frac{\partial^2 y}{\partial m \partial \sigma_{\theta}} < 0 \quad vs \quad \frac{\partial^2 y^{li}}{\partial m^{li} \partial \sigma_{\theta}^{li}} > 0$$

- Theoretically: <0 (Vavra, '14)
- Empirically: <0 (Tenreyro and Thwaites, '17)

Unexplored Consequences

Dispersed Information Equilibria:

- Sticky local prices $r_i \rightarrow 0$
- Powerful monetary policy

Cross-sectional Dispersion: ...increases both for productivity and for consumer prices in recessions (Bloom '09; Vavra, '14)

Empirical Consequences:

$$\frac{\partial^2 y}{\partial m \partial \sigma_{\theta}} < 0 \quad vs \quad \frac{\partial^2 y^{li}}{\partial m^{li} \partial \sigma_{\theta}^{lj}} > 0$$

- Theoretically: <0 (Vavra, '14)
- Empirically: <0 (Tenreyro and Thwaites, '17)

Natura Non Facit Saltus

Multiple Limit Equilibria:

- Full information
- Dispersed information

Correct Limit Equilibrium?

Leibniz' Axiom:

- Learning limit vs mathematical limit?
- Payoff dominance (Harsanyi and Selten, '88)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A Failure of Coordination?

Conclusion:

- Since Lucas (1972) and Grossman and Stiglitz (1980) focus on how people infer information from market prices
- Yet, the mere presence of **market interactions** has profound implications for how prices **respond** to unobserved **fundamentals**
- Gaetano turns our attention to the important role played by such market interactions in *limiting price informativeness*
- clear upside potential

Rubinstein (1989): Almost Perfect Information \neq Perfect Information

Thank you for your time and attention!