"Costly Interpretation of Asset Prices" Xavier Vives & Liyan Yang

Alexandre N. Kohlhas¹

¹Institute for International Economic Studies, Stockholm University

Conference on Macroeconomics, June 2017

Motivation:

- Data is only information after it has been analyzed: investors need to extract information from market prices
- But, in contrast, to standard *RE* models *it takes time*, *effort and resources to uncover price information*
- **Question:** What if interpreting price information is costly Can limited sophistication explain asset price puzzles?

This paper: Proposes a novel model of investor sophistication Shows how costly interpretation helps resolve *asset price puzzles*

Motivation:

- Data is only information after it has been analyzed: investors need to extract information from market prices
- But, in contrast, to standard *RE* models *it takes time*, *effort and resources to uncover price information*
- **Question:** What if interpreting price information is costly Can limited sophistication explain asset price puzzles?

This paper: Proposes a novel model of investor sophistication Shows how costly interpretation helps resolve *asset price puzzles*

Market Information:

- Most economic indicators are the result of market outcomes
- GDP Statistics, firm demand, household income, asset prices...
- Interpretation of fluctuations in market outcomes?

But what limits the interpretation of market information? ⇒ that interpretation is complicated and arduous

Xavier and Liyan show how costly interpretation of market information limits people's sophistication \Rightarrow creates disagreement and trade \Rightarrow holes makes market outcomes poist

Market Information:

- Most economic indicators are the result of market outcomes
- GDP Statistics, firm demand, household income, asset prices...
- Interpretation of fluctuations in market outcomes?

But what limits the interpretation of market information? ⇒ that interpretation is complicated and arduous

Xavier and Liyan show how costly interpretation of market information limits people's sophistication \Rightarrow creates disagreement and trade \Rightarrow helps makes market outcomes poisy

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Market Information:

- Most economic indicators are the result of market outcomes
- GDP Statistics, firm demand, household income, asset prices...
- Interpretation of fluctuations in market outcomes?

But what limits the interpretation of market information? ⇒ that interpretation is complicated and arduous

Xavier and Liyan show how costly interpretation of market information limits people's sophistication \Rightarrow creates disagreement and trade

 \Rightarrow helps makes market outcomes noisy

Basic Setup:

- Simplified two-period *mean-variance asset price model*
- Risky asset with terminal payoff $V = v + \xi$ and a riskless asset
- (1) Sophistication acquisition at cost c; (2) Observe $s_i = v + \varepsilon_i$ and $s_p = v + \alpha u$ (*if soph*.) or $s_{ip} = s_p + x_i$, $x_i = u + e_i$ (*if not*) and trade

Equilibrium Characterization:

- 1. Demand for Asset: $D_i = (\mathbb{E}_i[V] p) \mathbb{V}_i[$
- 2. Market Equilibrium: $\int_0^1 D_i(p; s_p, s_{ip}) di$
- 3. Sophistication Acquisition: $W^{s}(\mu) W^{u}(\mu) \stackrel{>}{=} 0$

Basic Setup:

- Simplified two-period *mean-variance asset price model*
- Risky asset with terminal payoff $V = v + \xi$ and a riskless asset
- (1) Sophistication acquisition at cost c; (2) Observe $s_i = v + \varepsilon_i$ and $s_p = v + \alpha u$ (*if soph*.) or $s_{ip} = s_p + x_i$, $x_i = u + e_i$ (*if not*) and trade

Equilibrium Characterization:

- 1. Demand for Asset: $D_i = (\mathbb{E}_i [V] p) \mathbb{V}_i [V]^{-1}$
- 2. Market Equilibrium: $\int_0^1 D_i(p; s_p, s_{ip}) di = 0$
- 3. Sophistication Acquisition: $W^{s}(\mu) W^{u}(\mu) \stackrel{\geq}{<} 0$

Equilibrium Asset Price:

$$p = lpha_0 v + lpha_1 u, \quad s_p = v + rac{lpha_1}{lpha_0} u$$

• Informativeness:
$$lpha=lpha_1/lpha_0$$

• Sophistication: $d\alpha/d\mu < 0$

Asset Price Implications:

- Momentum: $\mathbb{C}ov(V-p,p) > 0$
- Excess volatility: $\mathbb{V}[V-p] > \mathbb{V}[\xi]$
- *Excess volume:* $\int_{0}^{1} |D_{i}(p; s_{p}, s_{ip})| > 0$

All Moments (Eventually) Decrease with Sophistication!

Equilibrium Asset Price:

$$p = lpha_0 v + lpha_1 u, \quad s_p = v + rac{lpha_1}{lpha_0} u$$

- Informativeness: $lpha=lpha_1/lpha_0$
- Sophistication: $d\alpha/d\mu < 0$

Asset Price Implications:

- Momentum: $\mathbb{C}ov(V-p,p) > 0$
- Excess volatility: $\mathbb{V}[V-p] > \mathbb{V}[\xi]$
- Excess volume: $\int_{0}^{1} |D_{i}(p; s_{p}, s_{ip})| > 0$

All Moments (Eventually) Decrease with Sophistication!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Equilibrium Asset Price:

$$p = lpha_0 v + lpha_1 u, \quad s_p = v + rac{lpha_1}{lpha_0} u$$

- Informativeness: $lpha=lpha_1/lpha_0$
- Sophistication: $d\alpha/d\mu < 0$

Asset Price Implications:

- Momentum: $\mathbb{C}ov(V-p,p) > 0$
- Excess volatility: $\mathbb{V}[V-p] > \mathbb{V}[\xi]$
- Excess volume: $\int_{0}^{1} |D_{i}(p; s_{p}, s_{ip})| > 0$

All Moments (Eventually) Decrease with Sophistication!

Volume of Trades:

$$Q = \sqrt{rac{2}{\pi}} rac{Dispersion}{Risk}$$

- Overall risk decreases in μ
- Dispersion (can be) non-monotone in μ

Empirical Tripartite Relationship:

- Volume resembles dispersion
- Positive relationship between dispersion and risk
- ... But also occasionally for some markets a negative

Limited Sophistication Resolves the Tripartitie Relationship!

Volume of Trades:

$$Q = \sqrt{rac{2}{\pi}} rac{Dispersion}{Risk}$$

- Overall risk decreases in μ
- Dispersion (can be) non-monotone in μ

Empirical Tripartite Relationship:

- Volume resembles dispersion
- Positive relationship between dispersion and risk
- ... But also occasionally for some markets a negative

Limited Sophistication Resolves the Tripartitie Relationship!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Volume of Trades:

$$Q = \sqrt{rac{2}{\pi}} rac{Dispersion}{Risk}$$

- Overall risk decreases in μ
- Dispersion (can be) non-monotone in μ

Empirical Tripartite Relationship:

- Volume resembles dispersion
- Positive relationship between dispersion and risk
- ... But also occasionally for some markets a negative

Limited Sophistication Resolves the Tripartitie Relationship!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Complementarity, Multiplicity and Welfare

Sophistication:

$$\Phi(\boldsymbol{\mu}) \equiv W_u(\alpha(\boldsymbol{\mu})) - W_s(\alpha(\boldsymbol{\mu})) - \boldsymbol{c}$$

•
$$\Phi(0) \le 0$$
: $\mu^* = 0$, $\Phi(1) \ge 0$: $\mu^* = 1$

•
$$\Phi(\mu^{\star}) = 0: \ \mu^{\star} \in (0, 1)$$

Multiple Equilibra: Strategic complementarity in acquisition

Non-Monotone Welfare:

$$W^{*} = \mu^{*} W_{s}(\mu^{*}) + (1 - \mu^{*}) W_{s}(\mu^{*})$$

- Benefits: less misaligned prices
- Cost: acquisition costs and trade

Complementarity, Multiplicity and Welfare

Sophistication:

$$\Phi(\boldsymbol{\mu}) \equiv W_u(\alpha(\boldsymbol{\mu})) - W_s(\alpha(\boldsymbol{\mu})) - \boldsymbol{c}$$

•
$$\Phi(0) \le 0$$
: $\mu^* = 0$, $\Phi(1) \ge 0$: $\mu^* = 1$

•
$$\Phi(\mu^{\star}) = 0: \ \mu^{\star} \in (0, 1)$$

Multiple Equilibra: Strategic complementarity in acquisition

Non-Monotone Welfare:

$$W^{*} = \mu^{*} W_{s}(\mu^{*}) + (1 - \mu^{*}) W_{s}(\mu^{*})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Benefits: less misaligned prices
- Cost: acquisition costs and trade

Complementarity, Multiplicity and Welfare

Sophistication:

$$\Phi(\boldsymbol{\mu}) \equiv W_u(\alpha(\boldsymbol{\mu})) - W_s(\alpha(\boldsymbol{\mu})) - \boldsymbol{c}$$

•
$$\Phi(0) \le 0: \ \mu^{\star} = 0, \ \Phi(1) \ge 0: \ \mu^{\star} = 1$$

•
$$\Phi(\mu^{\star}) = 0: \ \mu^{\star} \in (0, 1)$$

Multiple Equilibra: Strategic complementarity in acquisition

Non-Monotone Welfare:

$$W^{\star} = \mu^{\star} W_{s}(\mu^{\star}) + (1 - \mu^{\star}) W_{s}(\mu^{\star})$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Benefits: less misaligned prices
- Cost: acquisition costs and trade

The Paper is Overall:

- Compelling, clear and consequential
- Creates clean insights about limited sophistication
- About more than certain asset price puzzles: How people form beliefs in complex setups? Overturn NK Puzzles?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Comments:

- 1. Asset Managers and Sophisticated Markets
- 2. A Dynamic Constraint: Higer-Order Beliefs
- 3. Occam's Razor vs Limited Sophistication?

Financial Markets:

- Returns to scale in information collection
- Returns to scale in trading on information

Asset Managers: ... arise as a result of the RTS in collecting and trading on information (Admanti and Pfleiderer, 1988 AER)

Asset Managers Create Sophisticated Markets

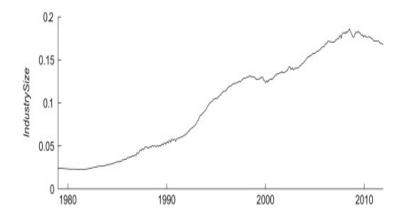
$$S = \mu + (1 - \mu)\delta$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Asset manager choice amplifies asset price puzzles?
- Grossman/Stiglitz with asset managers (Pedersen, 2016)

Financial Markets:

- Returns to scale in information collection
- Returns to scale in trading on information


Asset Managers: ... arise as a result of the RTS in collecting and trading on information (Admanti and Pfleiderer, 1988 AER)

Asset Managers Create Sophisticated Markets

$$S = \mu + (1 - \mu)\delta$$

- Asset manager choice amplifies asset price puzzles?
- Grossman/Stiglitz with asset managers (Pedersen, 2016)

Efficient/Inefficient Markets?

Source: Pastor et al (2015, JFE)

Bai et al (2013) and Rosch et al (2015) \implies More Efficient Financial Markets

A Dynamic Constraint

CARA-Normal Framework:

- Tractable, clear exposition
- ... but ultimately a static representation

Beauty-Contests and Higher-Order Beliefs?

A Dynamic Extension:

- Further puzzles: bubbles? underresponse?
- Higher-order beliefs: know what others know

Higher-Order Beliefs Increase Investor Sophistication?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

A Plethora of Explanations:

- Sparsity, rational inattention, salience, level-k...
- Learning, extrapolation, robust control, receiver noise

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Correct Framework?

Occam's Razor:

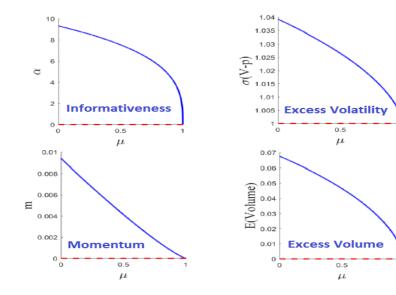
- Limited-RE simpler than RE
- Regression vs sophistication acquisition?

A Simple Model of Limited Sophistication?

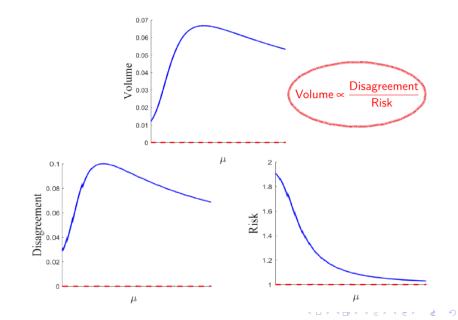
Conclusion:

- Since Lucas (1972) and Grossman and Stiglitz (1980) focus on how people infer information from market prices
- Yet, the presence of **finite (mental) resources** implies that people **commit errors** in their inference process
- Xavier and Liyan turn our attention to the critical role played by these inference errors for *realistic asset price dynamics*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●


• sizable upside potential

John Stuart Mill (1863): Homo Economicus \neq Homo Sapiens


Thank you for your time and attention!

・ロト・(型ト・(三ト・(三ト))
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・</li

Asset Price Implications

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへ(で)

