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Abstract

We document that the expectations of households, firms, and professional forecast-
ers in standard surveys simultaneously extrapolate from recent events and underreact
to new information. Existing models of expectation formation, whether behavioral or
rational, cannot easily account for these observations. We develop a rational theory of
extrapolation based on agents’ limited attention, which is consistent with this evidence.
In particular, we show that limited, asymmetric attention to different structural vari-
ables can explain the co-existence of extrapolation and underreactions. Extrapolation
arises when agents choose to pay less attention to countercyclical variables. We illustrate
these mechanisms in a microfounded macroeconomic model, which generates expecta-
tions that are in line with the survey data, and show that asymmetric attention increases
the persistence and volatility of business cycles.

JEL codes: C53, D83, D84, E32 Keywords: Expectations, information, fluctuations

1 Introduction

Given the central role of people’s expectations in economics, it is important to have a theory
of expectations formation that is consistent with the data. There is reason to believe that
such a theory needs to be richer than the benchmark model of full information and rational
expectations. Indeed, the original proponents of rational expectations were aware of this
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prospect. Muth (1961) allowed for “under-discounting” in his theory, noting that people may
extrapolate from current events. Lucas (1972) studied agents who observe imperfect, noisy
information, and later argued that “for most agents [...] there is no reason to specialize their
information systems for diagnosing general movements correctly” (Lucas, 1977, p.21).

Many recent advances in the theory of expectations formation fall into one of two frame-
works. On one hand, the noisy rational expectations approach proposed by Lucas has returned
to popularity following the work of Woodford (2002) and Sims (2003). On the other hand, a
common view is that such rational models cannot account for people’s pervasive tendency to
extrapolate from recent events, which has been documented in the survey data.1 The latter
view favors behavioral models of expectation formation that are consistent with extrapolation.
The tension between these two frameworks is important, because the outcomes and dynam-
ics of models with behavioral biases may differ from those with noisy rational expectations.
Despite the obvious importance of this issue, no consensus has been reached.

In this paper, we argue that many existing models of expectation formation, whether
behavioral or rational, cannot easily account for the survey evidence. This is because they
cannot account for the fact that overreactions to recent events (i.e., extrapolation) often
coincide with the type of underreactions to average new information that have been pointed
out by Coibion and Gorodnichenko (2015). Our main contribution is to propose a unified
model of expectation formation based on noisy rational expectations that resolves the friction
between theory and data, and to explore its business cycle implications.

To empirically motivate our work, we demonstrate simultaneous overreactions and under-
reactions in a range of survey data.2 The participants of standard surveys, reporting their
expectations about future output and inflation, not only extrapolate from recent conditions,
but also underreact to average information (as measured by average forecast revisions).

We show that a popular class of models, in which agents process signals of a forecasted
variable (output, for concreteness), are inconsistent with such simultaneous over- and under-
reactions. This class includes standard behavioral models of extrapolation bias (e.g., Cutler
et al., 1990; Barberis et al., 2016), simple models of noisy rational expectations as derived
from models of rational inattention (e.g., Sims, 2003), as well as models that combine extrap-
olation bias or overconfidence with the presence of noisy information (e.g., Daniel et al., 1998;
Bordalo et al., 2018). Intuitively, noisy information (or inattention) generates underreactions
to new information, because individuals shrink their forecasts towards prior beliefs when the
signals they observe are noisy. By contrast, extrapolation bias or overconfidence generates

1See, for example, Barberis et al. (2016), Bordalo et al. (2017), and the references therein.
2Specifically, in Section 2, we consider output and inflation forecasts from four of the most commonly used

surveys on expectations: the ASA-NBER Survey of Professional Forecasters, the ECB’s Survey of Professional
Forecasters, the Michigan Survey of Consumers, and the Livingstone Survey.
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overreactions. We show that, on balance, when agents’ process signals of the forecasted vari-
able, only one of these forces can dominate. In addition, we find that the same result extends
to several influential models with a richer information structure (e.g., Lucas, 1973; Lorenzoni,
2009; Maćkowiak and Wiederholt, 2009; Angeletos et al., 2018). This is inconsistent with the
simultaneous over- and underreactions that we find in the survey data.

Our core contribution is to develop a theory of extrapolation that is based on rational
updating. We consider a model of forecasters who observe noisy information due to their
limited attention. The distinguishing feature of our model is that forecasters observe noisy
information of the various structural components that comprise output, instead of observing
signals directly of output itself. The combination of rational updating and noisy information
implies that our theory remains consistent with observed underreactions.

In our model, output is the sum of several components. For example, these components
could represent different inputs into the economy’s production function, different sectors of
the economy, or different variables in the economy’s dynamic Euler equation for output. A
population of forecasters observes a vector of noisy signals, where each signal contains in-
formation about a particular component. We think of attention to each component as the
precision of the associated signal. Importantly, attention can be higher for some components
than for others. We say that attention is asymmetric if agents receive a relatively more precise
signal about some components. In this environment, we derive two main results.

The first main result is that asymmetric attention can explain the co-existence of extrap-
olation and underreactions, as long as attention centers on procyclical components. Consider
an economy in which output is driven by only two components, which differ in their behavior
over the business cycle. The first component is procyclical, while the second is countercyclical.
Suppose that agents pay more attention to the procyclical component. Then, compared to the
full-information benchmark, agents become more optimistic in booms and more pessimistic
in busts, even though they adhere to Bayes’ rule. As a result, the measured overreactions to
recent output in the survey data can be viewed as an outcome of underreactions to counter-
cyclical components. In addition, as long as agents’ attention to the procyclical component
remains imperfect, they still exhibit underreaction to new information on average, due to
their rationally muted responses to noisy information. We extend this reasoning to a canon-
ical forecasting problem with an arbitrary number of components. An auxiliary proposition
generalizes our results to a comprehensive class of linear models.

Our second main result concerns the possible sources of asymmetric attention. In principle,
asymmetric attention could arise from behavioral heuristics or salience effects (Gabaix, 2017).
Notwithstanding such alternatives, we show that asymmetric attention arises naturally in a
rational framework, in which agents optimally choose how to allocate costly attention. With
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standard attention cost functions, agents in our framework find it optimal to pay asymmetric
attention to components that are either particularly volatile or important for their decision-
making. For example, consider a firm who reports its expectation about future output. In line
with the conclusions in Lucas (1977), this firm has an incentive to focus its attention on the
components of output that correlate closely with its own local conditions, especially if these
components are also particularly volatile. Coibion et al. (2018) provide direct evidence of these
incentives at work, using detailed firm-level data to show that firms indeed pay asymmetric
attention to volatile variables that are also more important for their decision-making.

Combining our two results, we conclude that a rational model of limited attention can
simultaneously explain extrapolation and underreaction to aggregate information, as long as
the volatile or important components of output that attract attention are also procyclical.
This connects our results to those of Woodford (2002), Nimark (2008), and Angeletos and
Huo (2020), among others, who argue that limited attention can account for the myopia
and anchoring to past outcomes often documented in macroeconomics. We demonstrate that
models of limited attention also have the potential to be consistent with extrapolation.

We show that an additional testable implication of our explanation, in terms of the ag-
gregate data, is that expectations should be more precise than pure time series forecasts
(e.g., forecasts from ARIMA models). Consistent with this prediction, we update estimates
from Stark (2010) to show that forecasters’ survey expectations of output growth consistently
outperform simple time series models, especially at short horizons.

To explore the implications of our framework, and to provide an example of the sources
of asymmetric attention, we apply our framework to a standard macroeconomic model with
flexible prices in the spirit of Angeletos et al. (2016). In the model, firms choose output under
imperfect information about productivity. We show that, in equilibrium, firms’ output choices
can be split into two components: (i) firm beliefs about a productivity component, which
reflects their own productivity; and (ii) firm beliefs about an aggregate supply component,
which summarizes the equilibrium effect of other firms’ choices on individual firm output.
Maćkowiak and Wiederholt (2009) propose a closely related decomposition. When we sum
across firms, aggregate output thus becomes the simple sum of the two components.

We show that, for standard parameter values, two key conditions are satisfied: First, the
productivity component is procyclical, while the aggregate supply component is countercycli-
cal. The latter follows because economy-wide expansions tend to increase firms’ costs, leading
each individual firm to reduce its output relative to its partial equilibrium choice. Second, if
attention is costly, firms optimally choose to pay asymmetric attention to their own productiv-
ity, because this component is substantially more volatile. As a result of these two conditions,
and in line with our two main results, firms’ expectations of future aggregate output exhibit
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both extrapolation and underreactions to recent forecast revisions, relative to the full infor-
mation benchmark. This is qualitatively consistent with the survey evidence. The model also
fits the empirical size of these effects well.

We use the macroeconomic model to explore the business cycle implications of firms’ asym-
metric attention choices. We show that asymmetric attention to local components leads to
more persistence and volatility in aggregate output than an equivalent model with symmetric
attention. We further document that the calibrated model can match the observed increase
in extrapolation post-Great Moderation, and argue that firms’ optimal attention choices may
have contributed to the increased persistence of output growth during this period.

Finally, two wider implications of our analysis are worth noting. First, in the tradition of
Lucas (1977), our macroeconomic model focuses on a lack of attention to equilibrium effects
as the driver of extrapolation. As such, our results speak to a literature in behavioral finance,
which models the neglect of equilibrium effects as fundamental behavior, and uses this to
account for investment patterns (e.g. Greenwood and Hanson, 2014).

Second, motivated by the survey evidence, we focus on a setting in which agents’ forecasts
appear to overreact to a particular type of public information (i.e., recent realizations of
the forecasted variable). However, as we illustrate, a model of asymmetric attention may be
equally consistent with underreactions to other types of public information, depending on how
this information correlates with the variables to which agents pay attention.3 We therefore
view this paper, more generally, as taking a first step towards integrating observed over- and
underreactions to new information into a unified, rational framework.

Related literature: In addition to the literature cited above, this paper relates to four areas
of research. We review these in reverse chronological order, starting with the most recent and
ending with the long history of thought on extrapolative and adaptive expectations.

First, our paper reconciles overreactions to a specific public signal (recent outcomes of the
forecasted variable) with underreactions to average forecast revisions. In contemporaneous
and closely related work, Bordalo et al. (2018) propose a behavioral model that can reconcile
similar underreactions to average forecast revisions with overreactions to individual forecast
revisions (see also Fuhrer, 2017 and Broer and Kohlhas, 2019). However, as we demonstrate
in Section 2, simple versions of their framework cannot account for the simultaneous over-
and underreactions of expectations that we document in the data. We therefore view these
two papers as related and complementary steps towards a unified model of expectations that
is consistent with over- and underreactions to new information.4

3Underreactions to public information are documented, for example, in Barberis et al. (1998), Daniel et al.
(1998). Eyster et al. (2019) review further related evidence.

4We discuss the relationship between our work and that of Bordalo et al. (2018) in detail in Section 3.4.
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Second, in common with a vast literature in macroeconomics since Lucas (1972), we em-
phasize the importance of imperfect information for business cycle dynamics. Prominent stud-
ies, among many others, are Woodford (2002), Mankiw and Reis (2002), Lorenzoni (2009),
Blanchard et al. (2013), Angeletos and La’O (2013), Maćkowiak and Wiederholt (2015), and
Chahrour and Ulbricht (2018). We emphasize the role of agents who optimally choose how to
allocate their scarce attention, and we build on the complementary literatures on “optimal in-
formation choice” (e.g. Veldkamp, 2011; Hellwig et al., 2012) and “rational inattention” (e.g.,
Sims, 2003; Maćkowiak and Wiederholt, 2009; Wiederholt, 2010). The contribution of our
paper, in this context, is to highlight that models of imperfect information can be consistent
with the observed overreactions in the survey data.

Third, we leverage the existing evidence on survey expectations. Pesaran (1987) sum-
marizes the early evidence on deviations from full information and rational expectations, and
Zarnowitz (1985) shows that survey data is consistent with models of noisy, private (instead of
common, perfect) information. Relatedly, Ehrbeck and Waldmann (1996) explore the sources
of bias in professional forecasts and conclude that these are unlikely to derive from agency-
based considerations. More recently, Coibion and Gorodnichenko (2012; 2015) demonstrate
underreactions to average forecast revisions (see also Andrade and Le Bihan, 2013, and Fuhrer,
2017), which form part of the motivation for this paper.

Finally, our focus on overreactions to recent outcomes connects this paper to the literature
on adaptive and extrapolative beliefs. This includes the early work of Goodwin (1947), Cagan
(1956) and Muth (1961), the experimental work on the psychology of subjective probabilities
as explored by Kahneman and Tversky (1972) and Andreassen and Kraus (1988), and the
modern treatments of extrapolation by DeLong et al. (1990), Cutler et al. (1990), Fuster et al.
(2012), Greenwood and Shleifer (2014), Barberis et al. (2016), and Bordalo et al. (2017). This
paper is the first, to our knowledge, to combine the empirical insights of this literature with
a model that can also generate underreactions to aggregate expectations.

2 Motivating Evidence and Existing Theory

In this section, we revisit two simple tests of full information and rational expectations. We
document a new stylized fact: Participants’ expectations in standard surveys simultaneously
overreact to recent realizations of the forecasted variable (i.e., extrapolate from recent events),
but underreact in their forecast revisions. We then derive the predictions of a popular set of
existing models and argue that these models cannot account for this observation.
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2.1 Simultaneous Over- and Underreactions

We start by considering forecasts of US output growth from the Survey of Professional Fore-
casters (SPF).5 The SPF is a survey of between 20-100 professional forecasters and is con-
ducted quarterly by the Federal Reserve Bank of Philadelphia. Real GDP/GNP growth es-
timates are available from 1968:Q4 at a quarterly frequency. We focus on output forecasts
for two reasons. First, because expectations about future output play a central role in the
economy as determinants of consumption, inflation, and asset prices. Second, because data
on output forecasts are available for a longer time-span than forecasts of most other variables.
We later explore the robustness of our empirical estimates by considering forecasts of future
inflation, as well as alternative survey datasets for the US and the Euro Area.

We let yt+k denote year-on-year output growth at time t + k. Consider a survey with
respondents indexed by i ∈ {1, 2, ..., I}, and let fityt+k denote the forecast of yt+k reported by
survey respondent i at time t. The respondent’s forecast error is yt+k − fityt+k. A negative
forecast error thus corresponds to an over-estimate of yt+k. A well-known implication of
full information and rational expectations (FIRE) is that individual forecast errors should be
unpredictable. Under FIRE, no variable that is observable at time t should correlate with
yt+k − fityt+k. We rely on two common tests of this prediction.

The first test is a regression of forecast errors on current output growth,

yt+k − fityt+k = αi + γyt + ξit, (1)

where αi is a constant, which also captures individual fixed effects, and ξit is an error term.
The second test is a regression of forecast errors on average forecast revisions,

yt+k − fityt+k = αi + δ
(
f̄tyt+k − f̄t−1yt+k

)
+ ξit. (2)

The term f̄tyt+k−f̄t−1yt+k on the right-hand side is the average change in respondents’ forecasts
when they are asked twice (at dates t− 1 and t) to forecast the same future realization yt+k.
A positive revision arises when good news about future output arrives between t − 1 and t.
This specification closely follows the test proposed by Coibion and Gorodnichenko (2015).6

5The SPF is the oldest quarterly survey of individual macroeconomic forecasts in the US, dating back to
1968. The SPF was initiated under the leadership of Arnold Zarnowitz at the American Statistical Association
and the National Bureau of Economic Research, which is why it is also still often referred to as the ASA-NBER
Quarterly Economic Outlook Survey (Croushore, 1993).

6Coibion and Gorodnichenko (2015) use average forecast errors yt+k − f̄tyt+k as the dependent variable in
(2). We prefer the individual-level regression because it is easier to compare its results to candidate theories
of individual expectation formation, and also because it allows for respondent-level fixed effects and assigns
equal weight to all individual forecasts in an unbalanced panel such as ours. For completeness, we report both
average- and individual-level estimates throughout the paper and the online appendix.
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The prediction of the FIRE benchmark is that the coefficients γ and δ in (1) and (2)
should both be zero, because both current output growth and the latest forecast revision are
observable at time t. It is useful to note that both (1) and (2) are tests of the joint hypothesis
of full information and rational expectations. A rejection of the FIRE prediction reveals either
that forecasters are reporting irrational expectations, or that they have imperfect information
about current output (for γ 6= 0) or average forecast revisions (for δ 6= 0).

The raw data already hints at deviations from the FIRE benchmark. Figures 1 and 2
plot average one-year-ahead forecast errors (the average left-hand side of (1) and (2) across
respondents, with k = 4) over time and compare them, respectively, to current realizations of
output growth (the right-hand side of (1)) and average one-quarter revisions (the right-hand
side of (2)).7 In Figure 1, forecasts are frequently over-optimistic, with associated negative
forecast errors when current output growth is high, and vice versa when current growth is
low. This suggests that respondents extrapolate from recent events; agents are systematically
too optimistic in booms and too pessimistic in busts. Figure 2, by contrast, suggests that
forecast errors and average forecast revisions are positively correlated within our sample. All
else equal, this indicates that agents underreact to new information on average, as they are
too pessimistic after positive forecast revisions, and vice versa after negative revisions.

Table I confirms these impressions and reports estimates of (1) and (2) using the SPF data
on one-year-ahead forecasts (k = 4). In the first column, we estimate (1) and find that γ is
negative and statistically significant. This once more suggests extrapolation, or overreactions
to recent realizations of output growth. In the second column, we estimate (2) using one-
quarter average revisions. We find that δ is positive and significant, which is consistent with
average forecast revisions underreacting to overall new information received within the period.
The third column confirms these results in a multiple regression. The multivariate estimates
are similar to those in the univariate case. This suggests that the univariate results are not
biased by correlation between output realizations and forecast revisions.

Taken individually, the over- and underreactions documented in Table I are in line with
previous estimates. Bordalo et al. (2017), for example, report evidence on extrapolation based
on the average-level version of regression (1). For regression (2), our estimates update those
reported by Coibion and Gorodnichenko (2015, Figure I). Our results demonstrate that, in
addition, extrapolation and underreactions occur simultaneously in the SPF data.

7We use real-time data to measure current realizations of output growth. Because the response deadline
for the SPF is only one-week from the BEA’s first release of output growth, we on the right-hand side of (2)
average this release’s value with its previous quarter’s realization. This is to precisely capture the current
conditions at the time the respondent institutions determine their published forecast (e.g., Croushore and
Stark, 2019; Bordalo et al., 2017). We do not make this adjustment for other variables and data sets that we
consider below, as for these there is time to include information into published forecasts. Table C.6 in the
online appendix shows that our results are similar using either of the two quarter’s output growth values.
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Figure 1: Overreactions in Output Growth Forecasts
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Note: Mean one-year ahead forecast error of output growth from the Survey of Professional Forecasters on
the left vertical axis, and the current realization on the right axis. Both scales are in percent year-on-year.
Current realizations are measured as the average of the BEA’s first release value and its previous quarter’s
realization. This is to account for the timing of the SPF survey (see footnote 7 for further discussion).

Figure 2: Underreactions in Output Growth Forecasts
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Note: Mean one-year ahead forecast error of output growth from the Survey of Professional Forecasters on the
left vertical axis, and the one-quarter revisions on the right axis. Both scales are in percent year-over-year.
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Table I: Estimated Over- and Underreactions in the SPF

Panel a: individual forecast error
(1) (2) (3)

Current Realization -0.12∗∗ – -0.14∗∗∗
(0.05) (0.04)

Average Revision – 0.66∗∗∗ 0.69∗∗∗
(0.19) (0.18)

Observations 7,190 7,151 7,094
F 185.0 423.5 360.9
R2 0.03 0.06 0.10

Panel b: average forecast error
(1) (2) (3)

Constant 0.01 -0.12 0.24
(0.19) (0.10) (0.15)

Current Realization -0.10∗∗ – -0.14∗∗∗
(0.05) (0.05)

Average Revision – 0.77∗∗∗ 0.84∗∗∗
(0.26) (0.24)

Observations 198 197 196
F 3.53 16.0 11.7
R2 0.02 0.08 0.11
Note: Panel a: estimates of regressions (1) and (2) with individual (respondent) fixed effects. The top and
bottom one percent of forecast errors and revisions have been removed. Table C.1 in the online appendix shows
similar results without removing outliers. Double-clustered robust standard errors in parentheses. Panel b:
estimates of regressions (1) and (2) with average forecast errors yt+k − f̄tyt+k as the left-hand side variable.
Robust standard errors in parentheses. Sample: 1970Q1-19Q4. Significance levels *=10%, **=5%, ***=1%.

In contemporaneous and closely related work, Bordalo et al. (2018) analyze a different
type of “overreactions” in survey expectations to that documented in Table I. Specifically,
Bordalo et al. (2018) analyze overreactions to individual forecast revisions. By contrast, we
use regression (1) to emphasize overreactions to recent realizations of the forecasted variable.
For now, we continue to focus on our regression (1). In Section 3.4. we provide a detailed
discussion of these distinct notions of overreaction.

We obtain similar estimates to those in Table I beyond forecasts of output growth in the US
SPF. Figure 3 summarizes estimates of (1) and (2) for output and inflation forecasts from the
Euro Area SPF, the Livingstone Survey (which covers academic institutions, investment banks,
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Figure 3: Estimated Over- and Underreactions Across Surveys
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Note: Estimates of γ and δ from (1) and (2) using individual forecast errors yt+k − fityt+k as the dependent
variable. US SPF represents the estimates for the US Survey of Professional Forecasters, EA SPF the ECB’s
Survey of Professional Forecasters, LS Survey the Livingstone Survey, and lastly MSC the Michigan Survey
of Consumers. � = GDP forecasts, � = CPI Inflation forecasts, ? = GDP deflator inflation forecasts, and ◦ =
MSC CPI inflation forecasts that have been instrumented. All estimates are for one-year ahead forecasts, and
estimates of (2) use semi-annual revisions (Livingstone Survey) or one-quarter revisions (all others). Figures
C.1 and C.2 in the online appendix illustrate the robustness of the above estimates to alternative sample
assumptions and the use of average forecast errors as the dependent variable.
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non-financial firms, and government agencies), and the Michigan Survey of Consumers.8

We plot the coefficient γ on current realizations in (1) on the horizontal axis in Figure
3, and the coefficient δ on average forecast revisions in (2) on the vertical axis.9 All of our
estimates fall into the upper-left quadrant of the figure, where we simultaneously find that
γ < 0 (overreaction) and that δ > 0 (underreaction). Table C.7 in the online appendix
contains the associated regression results. Specifically, with the exception of the Euro Area
and Livingstone CPI inflation forecasts, and the GDP deflator forecasts from the US SPF, all
overreaction coefficients in Figure 3 are statistically significant at the five percent level.

Tables C.2-9 in the online appendix contain further robustness checks. We show that
simultaneous over- and underreactions extend to multivariate versions of (1) and (2), to the
use of average forecast errors yt+k− f̄tyt+k as the dependent variable, and to different forecast
horizons,10 timing conventions, and assumptions about trends in the data. We also split
the sample and find similar patterns in the post-1992 sample (to account for any potential
structural break in the inflation series)11, as well as both pre- and post-Great Moderation.

Finally, we also consider two alternative tests from the literature to confirm the robustness
of our results. First, following Coibion and Gorodnichenko (2015), we report estimates of
the unconstrained version of (2) with potentially different coefficients on f̄tyt+k and f̄t−1yt+k

(Table C.5). We fail to reject the null hypothesis that the coefficients sum to zero, validating
the specification in (2). Second, in Online Appendix D, we consider the projection of average
forecast errors and current output growth on identified productivity shocks, as in Coibion and
Gorodnichenko (2012). Consistent with underreactions, we find a positive correlation between
the conditional response of forecast errors and the response of output growth.

In summary, the results in Table I and Figure 3 document systematic overreactions to recent
realizations of the forecasted variable (i.e. extrapolation), but simultaneous underreactions to

8The Livingstone Survey is a semi-annual survey that started in 1946 (Croushore, 1997). The Michigan
Survey of Consumers contains consumers’ inflation forecasts. A drawback of the monthly Michigan Survey of
Consumers is that only one-year ahead forecasts of consumer price inflation are available. Revisions to forecasts
at a fixed horizon cannot be constructed. To estimate (2), we therefore follow Coibion and Gorodnichenko
(2015) and replace ex-ante forecast revisions with the quarterly ex-ante forecast changes and instrument this
variable with the (log) oil price change. This approach provides an asymptotically consistent estimate. The
Euro Area’s Survey of Professional Forecasts collects the same information as the SPF for the US.

9Some of our estimates of (2) are direct updates of estimates reported by Coibion and Gorodnichenko (2015)
using average forecast errors as the dependent variable. In particular, Coibion and Gorodnichenko (2015) also
report estimates of (2) using CPI inflation forecasts from the Livingstone Survey and the Michigan Survey of
Consumers, GDP deflator inflation forecasts from the US SPF, as well as inflation forecasts from the Euro
Area (although from the Consensus Economic Survey and not the Euro Area SPF). All of these estimates are
comparable to ours. Relative to their work, we focus on simultaneous estimates of (2) and (1), and cover a
wider range of data sources for output growth forecasts, which are the focus of our analysis.

10The point estimates with shorter forecast horizons decline in magnitude and significance. This is consistent
with a greater importance of noise in shorter horizon forecasts (see also Coibion and Gorodnichenko, 2015).

11The Federal Reserve Bank of Philadelphia took over ownership of the SPF in 1990Q2.

12



average forecast revisions. This clearly constitutes a rejection of the joint hypothesis of full
information and rational expectations. In the next subsection, we consider a range of existing
models that relax either full information or rational expectations. We argue that one can
also use our stylized facts to determine whether existing alternative theories of expectation
formation are consistent with the data.

2.2 Existing Theories of Expectation Formation

We compare our estimates to a parsimonious framework, where agents observe noisy signals of
the forecasted variable, which captures several popular models of expectation formation. On
the one hand, we show that rational forecasts are inconsistent with overreactions to current
output (i.e. γ < 0 in (1)), and that this extends to a collection of richer models. On the other
hand, we show that several popular behavioral alternatives, which are able to generate γ < 0,
cannot simultaneously generate underreactions to average information (i.e. δ > 0 in (2)).

Consider a continuum of measure one of agents who make forecasts of future output yt+k.
We assume that output yt follows the autoregressive process:

yt = ρyt−1 + ut, ut ∼ N
(
0, σ2

u

)
, (3)

where ρ ∈ (0, 1) and ut is serially uncorrelated. At the start of each period, each agent i ∈ [0, 1]
observes a noisy signal of current output,

zit = yt + εit, εit ∼ N
(
0, σ2

ε

)
, (4)

where the noise in agents’ signals εit is independent of ut at all horizons with Cov [εit, εjs] = 0
for all i 6= j and t 6= s. We write Ωit = {zis}s≤t for agent i’s information set at date t.12

We assume that agents’ forecasts follow a Recursive Forecast Equation, which generalizes
the textbook Kalman filter. Let fityt+k and fit−1yt+k denote agent i’s forecasts of future output
at dates t and t− 1, respectively, and let fit−1zit be her forecast of her own signal one period
ahead. Agent i’s output forecast then follows the updating equation:

fityt+k = λfit−1yt+k + gk (zit − λfit−1zit) , (5)

where fityt+k = ρkfityt. As with the textbook Kalman filter, the agent starts with her forecast
of output at time t− 1, and updates it in proportion to the new information in her signal at
time t. Departing from the standard filter, we allow gk ≥ 0 to be an arbitrary gain parameter

12We allow agents to observe an infinite history of signals, so that their signal extraction problem is initialized
in steady state at date 0. This assumption follows the convention in e.g. Maćkowiak et al. (2018).
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that measures agents’ responsiveness to new information.13 We also allow the prior update
parameter λ ∈ [0, 1] to be less than one. Despite its simplicity, the formulation in (5) nests a
wide range of existing models of expectation formation. We demonstrate this through a series
of examples, which we delineate into rational and behavioral theories:

Noisy Rational Expectations: Agents forecasts equal their conditional expectation fityt+k
= E [yt+k | Ωit] and follow (5) with a gain parameter gk = Covt−1 [yt+k, zit] /Vart−1 [zit] <
ρk while λ = 1. This specification is identical to those from models with noisy rational
expectations (Woodford, 2002) or rational inattention (Sims, 2003).14 The special case in
which agents observe output without noise (σε = 0) corresponds to the case of full information
and rational expectations (FIRE), and implies that fityt+k = ρkyt with gk = ρk > 0.

Behavioral Expectations: A common way to model behavioral biases is to assume agents
perceive the data-generating process to be different from its true parametrization, but then
update correctly under this wrong model. Equation (5) captures several of such cases:

• Overconfidence: Agents overestimate the precision of new information. They believe that
the variance of the noise in their signals is σ̂2

ε < σ2
ε (e.g. Daniel et al., 1998; Hirshleifer

et al., 2011).15 Agents forecasts follow the Recursive Forecast Equation in (5) with a
sensitivity parameter gk ∈ (0, 1) that exceeds its rational value and λ = 1.

• Extrapolation: Agents overestimate the extent to which current output predicts future
realizations. They observe output without noise (σ2

ε = 0), but believe that the per-
sistence parameter for output is ρ̂ > ρ (e.g. DeLong et al., 1990; Fuster et al., 2012).
Agents’ forecasts satisfy (5) with a sensitivity parameter gk = ρ̂k > ρk and λ = 0.16

• Diagnostic Expectations: The model in Bordalo et al. (2017) and Bordalo et al. (2018)
corresponds to the overconfidence case, but the effect of overconfidence is temporary and
does not effect forecasts at future dates. Equation (5) is replaced by fityt+k = Eit−1yt+k+
gk (zit − Eit−1yt), where gk exceeds its rational value. Despite the non-recursivity of
forecasts, we include the model in this list because the properties of its forecast errors
yt+k − fityt+k depend only on (ρk − gk)(yt+k − E [yt+k | Ωit]), and thus exclusively on
those from the noisy rational expectations case and (5) (Corollary 1 in Appendix A.1).

13To ensure that forecasts in (5) are well-defined, we impose that gk = ρkg0 has g0 ∈ (0, 2).
14A more comprehensive list of papers in this tradition is in the introduction. The Gaussian signal zit we

have specified is optimal in a rational inattention setting if agents minimize their squared forecast errors and
their cost of processing information is based on the reduction in entropy (see Maćkowiak et al., 2018).

15For further analysis of overconfidence, see Broer and Kohlhas (2019) and the references therein.
16Thus, fityt+k = ρ̂kyt. The introduction contains a further list of references using such forecasts.
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We now characterize the results that an econometrician would obtain when estimating (1) and
(2), assuming that the true data-generating process satisfies (3) to (5).

Proposition 1. Suppose agents form their expectations according to (5), based on signals in
(4). Then, the coefficients γ in (1) and δ in (2) both have the same sign as ρk − gk.

Proposition 1 demonstrates that models described by the Recursive Forecast Equation,
such as the rational and two behavioral models above, all imply either underreactions in both
of our main regressions (γ > 0 and δ > 0), or overreactions (γ < 0 and δ < 0). Indeed,
Proposition 1 also implies that the coefficients γ and δ in the model of diagnostic expectations
also both have the same sign as ρk−gk (Corollary 1 in Appendix A.1). This is at odds with our
empirical estimates of simultaneous over- and underrreactions. One can see this discrepancy
clearly in terms of Figure 3. Proposition 1 shows that an econometrician’s estimates will
fall either into the upper-right quadrant or the lower-left quadrant of the figure. This is
inconsistent with our empirical estimates that center on the upper-left quadrant.

To interpret Proposition 1 further, recall that agents’ gain parameter in the FIRE case,
in which they perfectly observes current output, is equal to gk = ρk (since fityt+k = ρkyt).
Proposition 1 states that there are two possible parametric regions, corresponding to sys-
tematic underreactions or overreactions, depending on whether agents’ responsiveness to new
information gk is smaller or greater than in the FIRE benchmark.

Two counteracting effects determine the size of gk. First, the presence of noise in agents’
signals dampens agents’ responsiveness to new information, which rationally pushes gk below
its FIRE value. This effect, all else equal, creates measured underreactions: An econometrician
estimating (1) and (2) has access to more information than agents in the model, because he
observes current output and average forecast revisions perfectly. As a result, forecast errors
are predictable. And because agents respond to noisy information in a muted fashion, this
predictability takes the shape of measured underreactions. Second, behavioral biases, such as
overconfidence or extrapolation, heighten agents’ responsiveness to new information, which in
turn increases the gain coefficient. However, as Proposition 1 shows, only one of these forces
can come to dominate the sufficient statistic gk. Hence, in all of the above cases, agents either
over- or underreact, but do not over- and underreact simultaneously.17

We conclude that a popular class of models, in which agents form Bayesian or non-Bayesian
expectations based on noisy signals of the forecasted variable, is inconsistent with simultaneous
over- and underreactions. In particular, it is clear that to explain the survey data, we must

17For the same reason, a simple model with heterogeneous expectation formation among agents is also
inconsistent with our estimates. In an economy with heterogeneous types of forecasters, who have different
degrees of behavioral biases or limited attention, the Generalized Kalman gain gk in our formulation can be
reinterpreted as the weighted average of each type’s response to new information. Hence, average forecasts
will either over- or underreact, but cannot do so at the same time.

15



consider a model with more than one sufficient statistic for belief formation. In the next
section, we achieve this aim by proposing a noisy rational expectation model in which agents
pay limited but asymmetric attention to different structural components of the forecasted
variable. Before turning to our model, we however briefly consider more sophisticated existing
models of noisy rational expectations.18

We focus on richer models from two influential strands of literature. First, the literature on
rational inattention includes more sophisticated models following Maćkowiak and Wiederholt
(2009), in which agents rationally allocate their attention between aggregate and individual-
specific conditions. Individual-specific conditions, and the signals that agents obtain about
them, are uncorrelated with aggregate output by assumption. Hence, forecasts of future
aggregate output behave as if agents obtained only a noisy signal of output itself. Indeed,
Online Appendix E.1 shows that the above noisy rational expectations case, where γ > 0,
exactly describes output expectations in Maćkowiak and Wiederholt (2009).

Second, we consider models with dispersed information in which agents observe local eco-
nomic conditions (on “islands”) accurately but economy-wide conditions only with noise (e.g.
Lucas, 1973; Lorenzoni, 2009). In Online Appendix E.2-3, we explicitly solve the models in
Lucas (1973) and Lorenzoni (2009), and show that these models also generate underreactions
to current output (γ > 0). The intuition is similar to that in the simple model with noisy
observations of output: Agents have less information about aggregates than the econometri-
cian, and they respond to this information in a muted fashion, which creates underreactions.
Indeed, we show that one can directly use (5) and the noisy rational expectations case above
to obtain an analytical expression for the underreactions in Lucas (1973).

To summarize, it is instructive to view the results in this section in terms of our empirical
findings using (1) and (2). Our estimates show that γ < 0 and δ > 0, and reject the FIRE
benchmark. This reveals that either the assumption of full information or the assumption
of rationality is violated. However, our analysis of existing models establishes that it is not
obvious how to match the data by relaxing either assumption. Although the list of models we
have considered is not exhaustive, we are unaware of a pre-existing model that can explain
our results. This motivates the development of our model in the next section.

18In addition, Online Appendix E characterizes the more sophisticated behavioral model in Angeletos et al.
(2018), who introduce a small deviation from rational expectations into a model of dispersed information.
Intuitively, agents in their model adjust their expectations in proportion to exogenous confidence shocks. We
show that this model predicts overreactions to both output and average revisions (i.e., γ < 0, δ < 0).
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3 Asymmetric Attention

In this section, we consider a rational model of limited attention. The central difference to
the standard model from the previous section is that we view output as comprised of a set of
structural components. We show that the over- and underreactions that we have documented
can be rationalized if agents pay more attention to some components than others; that is if
agents’ attention is asymmetric. Our approach in this section is to take attention choices as
given and derive conditions under which the model can account for our empirical results. In
the next section, we then examine the possible sources of asymmetric attention.

3.1 Environment

A continuum of measure one of agents are asked to forecast future output yt+k. Aggregate
output yt is driven by the sum of N structural components xjt,

yt = x1t + x2t + . . .+ xNt. (6)

These components could, for example, represent different inputs into the economy’s production
function, different sectors of the economy, or different variables in firms’ optimal production
plans. We discuss one such example at length in Section 5. Each component xjt is determined
by the linear relationship

xjt = ajθt + bjujt, ujt ∼ N (0, 1) , (7)

where θt denotes a latent factor that follows the autoregressive process

θt = ρθt−1 + ηt, ηt ∼ N
(
0, τ−1

η

)
, (8)

with ρ ∈ (0, 1). The error terms ujt and ηt are serially uncorrelated, mutually independent,
and it is common knowledge that θ1 ∼ N

(
0, τ−1

θ

)
. As a result, each component depends both

on the common latent factor θt and on a transitory, component-specific shock ujt.
The output response to a positive fundamental shock dθt > 0 is dyt

dθt
= ∑

j aj. We assume
that ∑j aj > 0 without loss of generality, so that output correlates positively with θt. The
contribution of component xjt to this output response is aj. We refer to a component xjt
as procyclical if aj > 0, so that xjt reinforces the response of output to the latent factor.
Analogously, we say that xjt is countercyclical if it dampens the response with aj < 0.

Output and its components are not directly observable to agents, because of their limited
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attention. Instead, each agent i ∈ [0, 1] observes the history of N noisy signals

zijt = xjt + qjεijt, εijt ∼ N (0, 1) , j = {1, 2, . . . , N} , (9)

where qj parameterizes the noise (or inattention) in agents’ signals about the jth compo-
nent, and εijt is an idiosyncratic error term. Agent i’s information set at time t is Ωit =
{zi1s, . . . , ziNs}s≤t.19 Agents thus infer information about the latent factor θt from signals of
xjt that may covary either positively (aj > 0) or negatively (aj < 0) with the latent factor.

Notice that there are two key differences between this environment and that in Section
2, which also nested a rational case with noisy signals (see case (i) in Proposition 1). First,
output is determined by several underlying components. Second, agents learn about these
components separately: The information structure in (9) restricts agents to observing condi-
tionally independent signals of each component. This formalizes the idea that paying attention
to one component is a separate activity from paying attention to another. Combined, these
features capture the notion that, to form expectations, individuals first need to pay attention
to information about the various components of the forecasted variable, and then combine
these different pieces of information into a single prediction. The conditional independence
embedded in (9), combined with a component-based structure in (6), is a simple and common
way to model this idea (see e.g. Maćkowiak and Wiederholt, 2009). We discuss the role of
these restrictions in more detail in Section 4, where we also consider an alternative setup with
fully flexible information design.

3.2 Definition of Attention

To characterize agents’ attention to the various structural components, we transform the noise
parameters qj in (9) into the normalized parameters

mj ≡
Var(xjt|θt)
Var(zijt|θt)

=
b2
j

b2
j + q2

j

∈ (0, 1) . (10)

These parameters measure the sensitivity of agents’ expectations to new information about
the jth structural component. Suppose that agent i knows θt, and is then asked to predict
component xjt based on her own noisy signal zijt. Her estimate will be:20

19This assumption follows the convention in the literature. By allowing agents to observe an infinite history
of signals, we ensure that their signal extraction problem is initialized in steady state.

20We assume that all individuals choose the same attention allocation mj . This is true in our model of
optimal attention choice in Section 4 and 5. It is also a standard assumption in the information choice
literature (see, for example, Veldkamp, 2011 and the references therein).
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E[xjt|zijt, θt] = mjzijt + (1−mj)E[xjt|θt].

If mj = 0 (i.e., if the noise parameter qj →∞), then the agent has no new information about
xjt and sticks to her prior E[xjt|θt] when observing zijt. By contrast, if mj = 1 (i.e., if the
noise parameter qj = 0), then the agent perfectly observes xjt and ignores her own prior in
her expectation of xjt. In this sense, mj captures how much information agents obtain about
the jth component. We therefore call mj the attention dedicated to the jth component.

While we have motivated our definition of mj in the hypothetical case where agents con-
dition on the latent factor θt, these quantities also determine agents’ expectations about θt.

Lemma 1. For each agent i ∈ [0, 1], expectations about the latent factor θt satisfy

Eit [θt] = Eit−1 [θt] +
∑
j

gj (zijt − Eit−1 [zijt]) , (11)

where gj = V [θt|Ωit] ajb2
j
mj denotes the weight placed on signal zijt.

The lemma confirms that attention coefficients mj drive agents’ responses to new informa-
tion. The agent responds to each of her signals at date t in proportion to the Kalman gain
gj. This gain is the product of the steady state variance of θt and a measure of the precision
of signal zijt, which is in turn proportional to attention mj.21

3.3 Attention, Overreactions, and Underreactions

We now derive the coefficients for extrapolation in (1) and underreaction in (2) that an econo-
metrician would estimate for this economy. The coefficient on current output in (1) satisfies:

γ = Cov [yt+k − Eityt+k, yt]Var [yt]−1 = d0Cov [θt − Eitθt, yt] , (12)

where d0 =
(
ρk
∑
j aj

)
Var [yt]−1 > 0, and Eityt+k = fityt+k denotes the k-period ahead forecast

of output. Since agents are rational, their forecasts are equal to their conditional expecta-
tions. The equality in (12) follows because yt+k depends only on θt and on shocks that are
uncorrelated with date-t information. We note that the sign of γ is determined only by the
covariance between the tracking error θt − Eitθt and current output.

21To see why gj captures the precision of zijt, consider the normalized signal ẑijt = zijt/aj = θt + ξijt, with
ξijt = (bjujt+qjεijt)/aj . The standard Gaussian updating formula implies that the gain on ẑijt is proportional
to the precision (inverse variance) of ξijt. The proof of Lemma 1 shows that this precision equals a2

j

b2
j
mj .
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Meanwhile, the coefficient δ on the average forecast revision in (2) is:

δ = Cov
[
yt+k − Eityt+k, Ētyt+k − Ēt−1yt+k

]
Var

[
Ētyt+k − Ēt−1yt+k

]−1

= d1Cov
[
θt − Eitθt, Ētθt − Ēt−1θt

]
, (13)

where d1 =
(
ρk
∑
j aj

)2
Var

[
Ētyt+k − Ēt−1yt+k

]−1
> 0. Hence, the sign of δ is determined only

by the covariance between the tracking error of θt and the latest average forecast revision.
We start with two stark examples that demonstrate how the two covariances in (12) and

(13) depend on individuals’ attention choices. This, in turn, allows us to provide a simple
illustration of the mechanisms behind our main results.

Example 1. Asymmetric Attention and Extrapolation: Suppose that output has two
components with yt = x1t + x2t, and that the first component is procyclical with a1 > 0.
Agents pay full attention to the first component and none to the second (m1 = 1, m2 = 0).
Then, the extrapolation coefficient in (12) becomes

γ = d0Cov [θt − Eitθt, x1t + x2t]

= d0Cov [θt − Eitθt, x2t] = d0Cov [θt − Eitθt, a2θt] = a2d0Var [θt|Ωit] ,

where the first equality follows from Cov [θt − Eitθt, x1t] = 0 for all agents i ∈ [0, 1], be-
cause each agent is fully rational and observes x1t perfectly. The second equality follows
from Cov [θt − Eitθt, x2t] = a2Cov [θt − Eitθt, θt], while the third one is due to individual ra-
tionality implying Cov [θt − Eitθt, θt] = Cov [θt − Eitθt, θt − Eitθt]. We conclude that γ =
a2d0Var [θt|Ωit], and thus that the extrapolation coefficient γ has the same sign as a2. �

In this example, the econometrician will find extrapolation, i.e. overreactions to current
output (γ < 0), if and only if a2 < 0; that is, if and only if the component x2t, to which agents
pay no attention, is countercyclical. This highlights how our rational model can generate
overreactions. In effect, the example shows that the overreaction to recent output documented
in the survey data can be interpreted as an underreaction to countercyclical components.

The economic intuition behind this fact, which captures one of the main ideas of this
paper, is as follows: When output yt is high, the procyclical component x1t, all else equal,
also tends to be high, which represents good news about the latent factor θt. However, the
countercyclical component x2t, on average, also tends to be large, which dampens any good
news about the latent factor. When agents pay relatively less attention to countercyclical
components, their posteriors place only a small weight on this dampening effect. As a result,
when output is high, agents tend to be more optimistic than the econometrician (who controls
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for total output) about the future. This leads to a seeming extrapolation, which manifests
itself in a negative correlation between future forecast errors and current output.

Our second example shows that our environment, despite such overreactions, remains con-
sistent with the underreactions documented in Section 2.

Example 2. Limited Attention and Underreactions: Consider the setting in Example
1, but now suppose that agents’ attention to the first component of output is also limited:
0 < m1 < 1. Since the average revision is Ētθt − Ēt−1θt =

∫ 1
0 (Ejtθt − Ejt−1θt) dj, the linearity

of the covariance operator and the symmetry of attention choices imply that

δ = d1Cov
[
θt − Eitθt, Ētθt − Ēt−1θt

]
= d1Cov [θt − Eitθt,Ejtθt − Ejt−1θt] = d1Cov [Ejtθt − Eitθt,Ejtθt − Ejt−1θt] ,

where the third equality follows by adding and subtracting agent j’s forecast error θt − Ejtθt,
and noting that it is uncorrelated with j’s forecast revision. We conclude that δ > 0 if, for
all i and j 6= i, Cov [Ejtθt,Ejtθt − Ejt−1θt] > Cov [Eitθt,Ejtθt − Ejt−1θt]. This always holds in
our example. Intuitively, when m1 < 1, agent i and j observe different signals, which makes
agent j’s forecast revision more strongly correlated with her own expectation. �

This second example shows that the econometrician will estimate underreactions to average
forecast revisions (δ > 0) when agents’ attention to at least one component is limited. This
extends the results in Coibion and Gorodnichenko (2015) to our case.22 The intuition is as
discussed above. As long as information is dispersed, rational individuals respond less strongly
to average new information than agents in the fully-informed rational benchmark. This leads
to underreactions of expectations similar to those documented in the survey data.

Combined, the above examples demonstrate how attention choices map into the over-
and underreaction coefficients γ and δ, respectively. Specifically, they show how limited,
asymmetric attention to a procyclical component can explain the simultaneous over- and
underractions of survey expectations (γ < 0 and δ > 0). Using similar steps, Proposition 2
extends our results to the general case with N components and arbitrary attention choices.

Proposition 2. Output forecasts overreact to current output (γ < 0 in (1)) if and only if
agents pay asymmetric attention to procyclical components, so that ∑j aj(1−mj) < 0. Output
forecasts underreact to new information on average (δ > 0 in (2)) if and only if attention is
limited, i.e. if there exists j ∈ {1, . . . , N} such that 0 < mj < 1.

22The baseline model in Coibion and Gorodnichenko (2015) assumes uncorrelated noise terms across agents.
In an extension, Coibion and Gorodnichenko (2015, Online Appendix A) note that the coefficient δ measured
by an econometrician will be attenuated by the presence of common noise terms ujt. A novel result in this
example and Proposition 2 that follows is that, despite this effect, we always have δ > 0.
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The first part of the proposition states the key sufficient statistic: ∑j aj(1−mj). Our model
is consistent with overreactions to current output (i.e. extrapolation) whenever this statistic
is negative. This is clearly the case when agents are inattentive (mj ' 0) to components
that are countercyclical, which covary negatively with the latent factor (aj < 0), and are
more attentive to procyclical components (aj > 0). Thus, asymmetric attention to procyclical
components is a sufficient condition for extrapolation (γ < 0).

The proposition further implies that asymmetric attention is also a necessary condition
for extrapolation. If attention were symmetric with mj ≡ m̄ for all j, then we would have∑
j aj(1− m̄) ≥ 0, since ∑j aj > 0, and hence γ ≥ 0. Intuitively, the symmetric case is similar

to the rational benchmark with noisy information about output (case (i) in Proposition 1),
where rational updating induces underreactions in both (1) and (2). Hence, the symmetric
case is inconsistent with the large body of evidence documenting extrapolation.

The second part of the proposition extends the results of Coibion and Gorodnichenko
(2015) to our framework. We find that underreactions to new information occur whenever
attention is limited for at least one component.

3.4 Summary and Extensions

In summary, our model is able to match the stylized facts whenever attention is both limited
and asymmetric. We close this section by discussing two important extensions.

First, we have presented a latent factor model with several components of output. This
classical structure conveys our main contribution and leads naturally to our macroeconomic
example in Section 5. However, the model in this section is not the only possible enviroment
in which asymmetric attention explains the patterns that we find in the data. In particular,
Proposition 6 in Appendix B fully characterizes the coefficients in (1) and (2) for a larger
class of linear models, in which we allow for (i) the direct effects of several, latent factors on
output, (ii) for the correlation between component-specific shocks, and (iii) for the explicit
observation of (and dependence on) lagged outcomes. This extension, which encompasses
most linear macroeconomic models, delivers necessary and sufficient conditions for over- and
underreactions based on limited, asymmetric attention more generally.

Second, we have focused our discussion of forecast revisions on (2), which is the regression
of forecast errors on average forecast revisions proposed by Coibion and Gorodnichenko (2015).
By contrast, in contemporaneous and closely related work, Bordalo et al. (2018) consider the
regression of forecast errors on individual forecast revisions:23

yt+k − fityt+k = α + δind (fityt+k − fit−1yt+k) + ξit. (14)
23See also Fuhrer (2017) and Broer and Kohlhas (2019) for related results using inflation forecasts.
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Using a range of survey data, Bordalo et al. (2018) estimate that δind < 0, which is inconsistent
with the predictions of our baseline model, and also with other models with rational expec-
tations in which agents recall their own forecast revisions. Table C.1 in the online appendix
reports estimates of (14) for output forecasts in the US SPF. We estimate overreactions to
individual revisions (δind < 0), but unlike our estimates of (1) and (2), which motivate our
analysis, this result appears sensitive to outliers.24 Online Appendix F considers an extension
of our framework, which allows for both asymmetric attention and irrational overconfidence
(e.g. Moore and Healy, 2008 and Broer and Kohlhas, 2019). We show that, when one intro-
duces a small bias, the extended model can account not only for the stylized facts that we have
emphasized (γ < 0 in (1) and δ > 0 in (2)), but also for overreactions to individual revisions
(δind < 0 in (14)). Crucially, the extended model can fit these empirical patterns only if one
introduces asymmetric attention. As discussed in Section 2.2, the baseline model in Bordalo
et al. (2018) predicts that γ and δ have the same sign. Thus, regardless of whether there are
overreactions to individual revisions, asymmetric attention is necessary to reconcile the varied
survey evidence within the class of models examined.

So far, we have considered reduced-form economies. In deriving our results, we have taken
agents’ attention choices, as summarized by the set of mj, as given. We now move on to
studying the potential sources of asymmetric attention.

4 Attention Choices

In this section, we consider agents’ attention choices. We show that attention gravitates to-
wards volatile components that are important to decision-makers. Combined with our previous
results, this demonstrates that a rational theory of limited attention can match the survey
evidence when procyclical components are either more volatile or more important.

4.1 A Model with Attention Choice

We augment our environment to incorporate attention choice. To do so, we assume the
following timing of events: At the start of each period, each agent chooses her attention
allocation mj to the different components xjt of output (or equivalently, the noise terms qj in
her signals). She makes this choice ex ante, before she observes the realization of her signal
vector zti . Then, the agent observes her signals and chooses an action ait.

The agent’s realized utility at the end of the period is:
24Indeed, we cannot reject that δind = 0 once we remove outliers in the top one percent of forecast errors

and revisions. This is in contrast to our estimates of (1) and (2). See also Angeletos and Huo (2020) for similar
empirical results using inflation forecasts.
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Uit = − (a?t − ait)
2 −K(m). (15)

The first term in (15) is a quadratic loss that the individual incurs when she deviates from her
ideal action a?t . The second term reflects the cost of attention K(m). We assume that K(·) is
positive, increasing in all mj, and convex. We further assume that the ideal action, which the
agent would take under full information about all stochastic disturbances, can depend both
on the unobserved latent factor and on the structural components:

a?t = wθθt +
∑

wxjxjt, (16)

where wθ ∈ R and wxj ∈ R for all j. With these preferences, the optimal choice of an agent
who has information Ωit in the last stage at date t is to set ait = E [a?t |Ωit].

Equations (15) and (16) nest the benchmark case in which agents care only about fore-
casting future output as accurately as possible: When wθ = ρk

∑
j aj and wxj = 0, a?t becomes

the full-information mean squared optimal forecast of yt+k, which is EFIREt [yt+k] = ρk
∑
j ajθt.

However, (15) and (16) also allow us to capture more general cases in which agents’ ideal
choice depends differently on the various structural components of output. This allows us to
account for cases in which agents do not necessarily design their attention choices with the
objective of predicting future output as accurately as possible. Instead, agents can also skew
their attention choices towards the components of output that are the most important for
their own specific decision problems. A firm, for example, might choose to pay more attention
to its own sector than the economy as a whole (see Section 5 for a related example).

4.2 Optimal Attention to Important and Volatile Variables

We now derive agents’ attention choices. To do so, it is instructive to first derive agents’
expected utility at the start of period t, before they observe the realization of their signals.

Lemma 2. Each agent’s expected utility at the start of period t equals

E [Uit] = −Var [a?t | Ωit]−K(m) (17)

= −
∑
j

w2
xjb

2
j(1−mj)− Vart [θt]

wθ +
∑
j

wxjaj (1−mj)
2

−K(m). (18)

Lemma 2 first provides a natural characterization of an agent’s expected utility at the
beginning of period t (i.e., before she observes her signals zti). Intuitively, for every realization
of her signals at date t, the agent will set ait = E [a?t |Ωit]. Hence, her maximized utility depends
on the expected squared deviation of E [a?t |Ωit] from a?t , which reduces to the conditional
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variance in (17). Lemma 2 then derives an explicit expression for the conditional variance,
using the law of total variance:

Var [a?t | Ωit] = Var [a?t | Ωit, θt] + Var [E [a?t | Ωit, θt] | Ωit] .

Accordingly, the first term in (18) reflects the uncertainty about the optimal action conditional
on the latent factor. It equals the sum of the conditional variances Var [xjt|Ωit, θt] across the
components xjt, weighted by their importance wxj in agents’ utility. The uncertainty about
each component naturally increases in its volatility b2

j but decreases in agents’ attention mj.
The second term in (18) measures the residual uncertainty Var [θt|Ωit] ≡ Vart [θt], scaled

by the uncertainty about the ideal action a?t = wθθt +∑
j wjxj that is attributable to θt (i.e.,

by the term in square brackets). We provide a brief derivation of Vart [θt], to show how it
depends on agents’ attention choices. In turn, combined with (16) and (18), this will then
allow us to derive an expression for agents’ optimal attention choices.

Recall that the effective precision of signal zijt about θt is τj = a2
j

b2
j+q

2
j
, and let

τ(m) =
∑
j

τj (19)

denote the total precision of date t signals. Starting at date t, the conditional variance about
next period’s fundamental is Vart [θt+1] = ρ2Vart [θt] +σ2

θ . After updating based on date t+ 1
signals, this variance satisfies the linear precision rule Vart+1 [θt+1]−1 = Vart [θt+1]−1 + τ(m).
Solving for a steady state where Vart [θt] = Vart+1 [θt+1] = V then delivers:

σ2
θ = V

[
1− ρ2 + τ(m)σ2

θ

]
+ V 2τ(m)ρ2.

Thus, the total precision τ of an agent’s signals is a sufficient statistic for her uncertainty
about the latent factor, and we can write

Vart [θt] = V [τ(m)] , (20)

where V ′(τ) < 0 and ∂τ/∂mj > 0 from (19). Combined, (18) and (20) allow us to characterize
agents’ attention choices. Proposition 3 summarizes the results.

Proposition 3. Agents’ optimal attention choices satisfy, for all j such that 0 < mj < 1,

w2
xjb

2
j + µτa

2
jb
−2
j + µαwxjaj = ∂K(m)

∂mj

, (21)

where µτ > 0 and µα > 0 denote Lagrange multipliers.
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Proposition 3 uses the fact that optimal (interior) attention choices equate the marginal
benefit of paying more attention to each component to its marginal cost. The marginal benefit
on the left-hand side of (21) consists of three terms. The first term is the benefit of resolving
uncertainty about the optimal action conditional on θt. This benefit is higher for components
that are more important for the optimal action (high wj) and more volatile (high bj).

The second and third terms capture a more nuanced effect: By learning about xjt, the
agent also acquires information about the latent factor θt, which generates learning spillovers
by resolving uncertainty about xkt for k 6= j. The second term measures the effect of attention
mj on the effective precision τ of agents’ signals about θt. The multiplier µτ is the shadow value
of increasing this precision. This benefit of attention is larger for components that are highly
correlated with the fundamental (high a2

j), but spillovers are attenuated for components that
are highly volatile (high b2

j). The third term measures an adjustment to this effect, namely, that
information about θt becomes less valuable to an agent if she already has precise information
about the structural components xjt, and hence about her optimal action. The multiplier µα
is the shadow value of reducing the residual uncertainty about a?t that is attributable to θt.

While these effects are subtle, the underlying intuition is clear. On one hand, agents are
more likely to pay attention to components that are important for their utility, those with
large weights wxj in (16). On the other hand, agents also prefer to pay attention to volatile
components (with a high idiosyncratic variance b2

j), as long as learning spillovers are not too
strong. This tendency for attention to gravitate towards important and volatile variables
is familiar from much of the literature on information choice (Veldkamp, 2011), and has
recently received additional empirical support in micro-level firm data (Coibion et al., 2018).
Proposition 3 confirms that this intuition carries over to our component-based model.

Figure 4 provides a numerical example, which illustrates the effects of component volatil-
ity and utility weighting on agents’ optimal attention choices. To demonstrate the role of
learning spillovers, the figure considers three scenarios for the variance σ2

θ of the latent factor.
Intuitively, spillovers are minimized when the variance of the latent factor θt is small. The
two panels confirm the main points in our discussion: The relative attention m?

1/m
?
2 paid to

component 1 increases as this component becomes more volatile (↑ b1 in panel (a)) and more
important in agents’ objective function (↑ wx1 in panel (b)). In both cases, the rate of increase
is smaller when there are strong spillovers (high σ2

θ). This reflects the intuition that strong
learning spillovers incentivize an agent to push on all margins to learn more about the latent
factor, which in turn leads her to respond less strongly to component-specific features.

We have so far kept the functional form of the attention cost function K(m) general.
Online Appendix G derives the first-order condition (21) explicitly for an entropy-based cost
function, and shows that the main comparative statics remain the same. In addition, we show
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Figure 4: Optimal Attention: Numerical Example

(a) The effect of component volatility
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(b) The effect of component weighting
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The charts show the properties of optimal attention choices as a function of component volatilities bj , utility
weighting wxj , and the variance σ2

θ of the latent factor in a numerical example with two components. The
parameters not detailed in the figure are set at a1 = a2 = 1, ρ = 0.9, wθ = 0. The cost function K(m) is set
to the reduction in entropy, as derived in Proposition G.1 in the online appendix.
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that an entropy-based cost function naturally yields limited attention choices mj < 1, because
it implies that the marginal cost of full attention is infinite (limmj→1

∂K(m)
∂mj

=∞).
In sum, asymmetric attention arises naturally from costly attention choice if some com-

ponents are either more volatile, or more important to decision-makers. Combined with the
insights of the previous section, we can therefore conclude that a rational theory of limited
attention can match the survey evidence when procyclical components are either more volatile
or more important. In the next section, we apply this reasoning to a simple macroeconomic
model and show that, for reasonable parameters, attention gravitates to procyclical variables.

Before moving on to the application, we consider two more points. First, we explore an
alternative model of information choice in which agents have full flexibility in their information
design. Second, we revisit the data and show that the survey evidence is consistent with an
additional prediction of our framework.

4.3 Fully Flexible Information Choice

Proposition 3 characterizes the solution to a constrained information choice problem. Equation
(9) restricts agents to acquire N separate, conditionally independent signals zijt about the
components xjt of output. This is one of two popular approaches. An alternative approach is to
instead allow agents full flexibility when designing the conditional distribution of their signals
given the state of the economy (e.g., Sims, 2003). The choice between the two approaches
is typically made based on the problem at hand, and on tractability. In the context of our
analysis, it is interesting to compare the predictions of each approach.

Building closely on recent work by Maćkowiak et al. (2018), Proposition F.1 in the online
appendix shows that agents in our model, when equipped with an entropy-based cost function,
would optimally choose to receive a single signal of the optimal action:25

s?it = a?t + h′vt + q?εit, (22)

where h depends on the utility weights wθ and wxj, we stack the common shocks into a vector
vt =

[
ηt u1t . . . uNt

]′
, and q? denotes a scalar that depends only on the cost of attention

25Heuristically, we derive this result in two steps. We first express a?t as an ARMA process in reduced form.
In particular, substituting (7) and (8) into (16) shows that

a?t =
(
wθ +

∑
wxjaj

)
︸ ︷︷ ︸

≡w̄θ

θt +
∑

wxjbj︸ ︷︷ ︸
≡w̄xj

ujt = ρa?t−1 + w̄θηt + w̄′xut − ρw̄′xut−1.

≡ ρa?t−1 + c′0vt + c′1vt−1.

Hence, a?t is an ARMA process whose vector of innovations is vt = [ηt ut]′ . We then modify the results in
Maćkowiak et al. (2018), which apply to ARMA processes with scalar-valued innovations, to arrive at (22).
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K(m). Equation (22) shows that the asymmetry of attention now depends on the weights wxj
in agents’ optimal action both through their influence on a?t and the vector h in the optimal
signal. This has important empirical implications.

For example, consider the benchmark case in which agents’ utility in (15) is equivalent
to the mean-squared error of next period’s output forecast (wθ = ρ

∑
j aj and wxj = 0, as

discussed above). In this case, it follows that h = 0 in (22).26 As a result, the fully optimal
signal boils down to s?it = (ρ∑j aj)θt + q?εit, which is a simple noisy signal of θt. Similar to
the results in Proposition 1, and due to the symmetry of underlying preferences, such a signal
is inconsistent with extrapolation.27 Indeed, in this case, agents systematically underreact to
new information about current output, yielding γ > 0 in (1).

Consider now instead the case in which the weights wxj in agents’ optimal action are
asymmetric across the structural components. In this case, agents’ forecasts of future output
given s?it can exhibit extrapolation. Similar to the results in Proposition 2, this occurs when the
weights wxj are tilted towards procyclical components. This is easiest to see in the following
example, which extends our previous Example 1 to flexible information choice:

Example 3. Asymmetric Attention and Extrapolation (cont.): As in Example 1,
suppose that output has two components, where a1 > 0 and a2 < 0. Agents’ ideal action
depends only on the first component (wx1 > 0 while wx2 = wθ = 0). Corollary H.2 in the
online appendix shows that if the costs of attention are sufficiently small the optimal signal
tends to s?it = x1t + q?εit. Hence, the information structure is identical to that in Example 1
and 2, where 0 < m1 < 1 and m2 = 0. The arguments in Example 1 and 2 now imply that
γ < 0 and δ > 0. By continuity, the model with flexible information choice generates γ < 0
and δ > 0 as long as the weight wx1 is sufficiently large relative to wθ and wx2. �

Combined, these examples show that we cannot test, based on survey data alone, whether
the asymmetry of attention is driven by conditionally independent signals or by a flexibly de-
signed, skewed signal. We only know that the fully flexible case is rejected by the data if agents
care exclusively about the mean-squared error of output forecasts. By contrast, Proposition 3
shows that the “conditionally-independent signals” structure, even in the mean-squared error

26See Corollary H.2 in the online appendix, or Cover and Thomas (2012) for the standard result in which
the optimal action a?t is proportional to a simple AR(1) process.

27Consider the extrapolation coefficient in (1) based on s?it = (ρ
∑
j aj)θt + q?εit. It follows that

γ = Cov (yt+k − Eityt+k, yt)Var [yt]−1

= d0Cov (θt − Eitθ, yt) = d0
∑
j

ajVar
[
θt | s?,ti

]
> 0,

where we have also used that yt =
∑
j ajθt +

∑
j bjujt and that

∑
j aj > 0.
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Figure 5: Forecast Precision Relative to Time Series Models
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The chart shows updated values from Stark (2010), available from the Federal Reserve Bank of Philadelphia’s
website. The chart illustrates the relative root mean-squared error of one-quarter and four-quarter ahead
forecasts of output growth from the US Survey of Professional Forecasters (S) relative to three time series
models: NC denotes a Random Walk forecast, IAR forecasts from an ARMA model chosen to minimize one-
quarter ahead forecast errors, and DAR forecasts from ARIMA models chosen to minimize forecast errors at
each forecast horizon. The sample period is 1985Q1:2015Q2. A RRMSE ratio below unity indicates that the
SPF consensus forecast is more accurate. The sample period is 1985Q1:2015Q2.

case, can be consistent with the simultaneous over- and underrreactions documented in the
data, so long as there are differences in the volatility of the underlying components.

4.4 Are Attention Choices Optimal? Supplementary Evidence

We briefly return to the data to compare the quality of agents’ expectations to that of standard
time series models. Figure 5 shows updated values from Stark (2010), available from the
Federal Reserve Bank of Philadelphia’s website.28 The chart illustrates the relative root mean-
squared error (RRMSE) of one-quarter and four-quarter ahead forecasts of output growth from
US SPF relative to three optimally-chosen time series models. A RRMSE ratio below unity
indicates that the SPF consensus forecast is more accurate. All time series models fall short
of survey forecasts at the one-quarter horizon, while the more sophisticated ARMA models
achieve a close match with the SPF at the four-quarter horizon.

This supplementary evidence suggests that forecasters do better than simple time series
models at forecasting output. This is consistent with our model, in which agents pay attention
to underlying, structural components of the forecasted variable, but inconsistent with a model
where agents consider only the past time series of output (see, for instance, Proposition 11.2
in Lütkepohl, 2007). In addition, this evidence rejects a simple behavioral story where agents

28https://www.philadelphiafed.org/research-and-data/real-time-center.html

30



derive forecasts from a misspecified ARMA model. Recent behavioral theory, such as Bordalo
et al. (2018), is more nuanced, and further work would be needed to test whether forecasts
in the data are more or less accurate than such theories predict. Hence, we interpret the
supplementary evidence as a sanity check, which implies that our theory is consistent with
moments of the data beyond the motivating evidence in Section 2.

We now turn to an application of our ideas to a standard macroeconomic model.

5 A Macroeconomic Example

In this section, we illustrate the sources and effects of asymmetric attention in a flexible-
price business cycle model. We analyze an environment in which firms choose output under
imperfect information. We show that firms’ output choices can be decomposed into two
components: First, a productivity component, which summarizes the effects of a firm’s own
productivity; and second, an aggregate supply component, which captures the effects of other
agents’ behavior on an individual firm’s output choice. We document that, for standard
parameters, the productivity component is procyclical, while the aggregate supply component
is countercyclical. In accordance with the evidence in Coibion et al. (2018), we show that
firms’ attention choices are asymmetric and tend to abstract from the aggregate component.
As a result, and in line with the above analysis, we find that firms’ expectations of output
qualitatively and quantitatively match the estimated extrapolation and underreactions from
the survey data. Finally, we show that asymmetric attention leads to more volatility and
persistence in output.

5.1 Model Setup

The economy consists of a representative household and a continuum of monopolistically
competitive firms i ∈ [0, 1], which specialize in the production of differentiated goods.

Households: The representative household has lifetime utility

E0

∞∑
t=0

βt [logCt − ξtNt] , ξt > 0, (23)

where β denotes the time discount factor, Ct the consumption index at time t, Nt the number
of hours worked by the household, and ξt a shock to the disutility of labor. The consumption
index Ct and associated welfare-based price index Pt are

Ct =
[∫ 1

0
C

σ−1
σ

it di
] σ
σ−1

, Pt =
[∫ 1

0
P

1
σ−1
it di

]σ−1
, (24)
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where Cit is the amount the household consumes of goods produced by firm i at price Pit, and
σ > 1. The household’s per-period budget constraint is

∫ 1

0
PitCitdi+Bt+1 ≤

∫ 1

0
Πitdi+WtNt + (1 +Rt)Bt+1 + T ht , (25)

where Πit denotes the profits of firm i, Wt the nominal wage, Rt the nominal rate of return
on riskless bonds, Bt its holdings of riskless bonds, and T ht lump-sum nominal transfers. The
representative household’s objective is to maximize its utility (23) subject to (25).

Firms: A representative firm i ∈ [0, 1] chooses its output Yit to maximize its own expectation
of the household’s valuation of its profits, using the stochastic discount factor (PtCt)−1. The
expected valuation of profits at time t is equal to

Vit = Eit
[ 1
PtCt

Πit

]
, Πit = PitYit −WtNit, (26)

where the inverse-demand for a firm’s product is consistent with household optimality: Pit =
Pt (Yit/Yt)−

1
σ . Firm output is produced in accordance with the production function

Yit = AitN
α
it , α ∈ (0, 1) , (27)

where Nit denotes the amount of labor input used and Ait firm-specific productivity.

Shocks: We let lower-case letters denote natural logarithms of their upper-case counterparts.
Firm-specific productivity ait = logAit is

ait = θt + uxt + εait, (28)

where the persistent, common component θt follows an AR(1) process,

θt = ρθt−1 + uθt , uθt ∼ N
(
0, σ2

θ

)
, (29)

while the transitory and firm-specific components are distributed as uxt ∼ N (0, σ2
x) and εait ∼

N (0, σ2
a), respectively. This is similar to the decomposition used in Kydland and Prescott

(1982). The household’s disutility of labor is subject to a transitory shock with

log ξt = ξ̄ + unt , unt ∼ N
(
0, σ2

n

)
, (30)
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where ξ̄ ∈ R. We show below that the labor supply shock introduces a component-specific
innovation to aggregate output. In effect, unt will play the role of one of the component-specific
disturbances ujt discussed in Section 3. We assume that the innovations uxt , uθt , unt , and εait
are independent of each other, across time, and across firms.

Timeline: In each period, nature determines the realization of the innovations uxt , uθt , unt ,
and εait. The economy then proceeds through three stages. In the first stage, firms choose how
much attention to devote to the various components of output, which we define below, and
commit to their output choices. After output choices are sunk, the economy transitions to the
second stage, in which the labor market opens. Each firm observes its own productivity ait
and hires the amount of labor nit = α−1 (yit − ait) that is necessary to implement its previous
output choice yit. The representative household observes its marginal disutility ξt = ξ̄ + unt of
labor and the persistent productivity component θt, and then makes its labor supply choice.29

The real wage adjusts to clear the labor market. In the third and final stage, goods markets
open, goods prices adjust to clear them, and the household consumes.

Information Structure: To complete the description of the economy, it is necessary to
specify the information structure and firms’ associated attention choice problem. Our as-
sumptions are based on the following decomposition of firms’ expected profits:

Proposition 4. A second-order approximation of firm i’s expected discounted profits satisfies

vit ' −
1
2Eit

[
(yit − y?it)

2
]
, (31)

where the firm’s ideal output under full information y?it can be decomposed into

y?it = xi1t + x2t (32)

with
xi1t = rait, x2t = αr

(
σ−1yt − ωt

)
, (33)

and where ωt denotes the real wage, yt =
∫ 1

0 yitdi, and r ≡ σ
σ+α(1−σ) > 1.

In the spirit of Lucas (1977) and Maćkowiak and Wiederholt (2009), equation (32) and
(33) decompose each firm’s ideal output choice into two components: We refer to xi1t as the

29Because the household does not observe the realization of uxt in the second stage, output will respond
differently to innovations in θt and uxt . This friction creates a meaningful distinction between these two shocks.
Without this friction, only shocks to the sum

∫ 1
0 aitdi = θt+uxt would matter for output. An equivalent way to

create distinct dynamics would be to study a model in which one of the factors of production, such as capital,
is pre-determined before the realization of some of the shocks (see, for example, Angeletos et al., 2016).
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productivity component, since it depends on a firm’s own productivity ait. Clearly, each firm
produces more when it is more productive. We refer to the second component, x2t, as the
aggregate supply component, which encapsulates the general equilibrium effects of other agents’
behavior on an individual firm’s output choice. The aggregate supply component, in turn, is
comprised of two terms: On one hand, firms produce more when aggregate demand in the
economy yt is high. On the other hand, a firm also chooses to produce less when the real wage
it faces ωt is high. Both effects are captured in (33).30

Given this decomposition, our assumptions about firms’ information sets and attention
choices mirror those in our baseline model. Specifically, we assume that firm i’s information
set consists of the infinite history of component-based signals:

Ωit = {zi1s, zi2s}s≤t , (34)

where
zi1t = xi1t + q1εi1t, zi2t = x2t + q2εi2t, (35)

and εijt ∼ N (0, 1) is independently distributed across time and firms for j = {1, 2}. Further-
more, as in our reduced-form framework, we also assume that at the start of each period each
firm chooses normalized attention parameters mj = Var(xjt|θt)

Var(xjt|θt)+q2
j
at a cost K(m).

5.2 Equilibrium Characterization

We now proceed to characterize equilibrium output in the economy.

5.2.1 Equilibrium with Full Attention

We start with the case in which firms pay full attention to both components (i.e., mj = 1
for j = 1, 2) and there are no firm-specific productivity shocks (σa = 0). This special case
illustrates some important findings, which will carry over to our numerical solution of the full
model with limited attention. In this special case, Proposition 4 directly implies that each
firm sets yit = y?it = xi1t + x2t, so that

yt =
∫ 1

0
yitdi = x1t + x2t, (36)

30Unlike the similar decomposition used in Maćkowiak and Wiederholt (2009), the two components xi1t and
x2t are correlated in this application. For example, a shock to θt will affect both components. Furthermore,
in contrast to the baseline model from Section 3, the error terms in the two components are also correlated,
since both depend on the transitory productivity shock uxt . Hence, in order to characterize the properties of
firms’ expectations, we will use the more general results listed in Proposition 6 in Appendix B.
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with xt =
∫ 1

0 xitdi. Thus, output has the same component-based structure as in the baseline
model from Section 3. The components xjt of output can now further be characterized directly
from (33). As for the productivity component x1t, we have

x1t = rθt + ruxt , (37)

This component is procyclical, since it places a positive weight r > 0 on the latent factor θt.
Turning to the aggregate supply component x2t, the real wage in equilibrium is ωt = Ehtyt+unt ,
where Eht [·] denotes household expectations. Thus, we conclude from (33) and (36) that

x2t = αr
(1− σ

σ
yt +

( 1
1− α − r

)
uxt − unt

)
= (1− r)θt +

( 1
1− α − r

)
uxt − αunt . (38)

The first equality in (38) shows that output choices are strategic substitutes: When other
firms raise their output yt, each individual firm’s output choice responds negatively (since
σ > 1). Indeed, the increase in the real wage when output is high dominates the increase in
demand in (33). By contrast, with perfect competition (σ = 1), firms are price-takers and act
independently of one another. The second equality in (38) expresses the same relationship in
equilibrium, in terms of the latent factor θt and other primitive shocks. We conclude that,
due to strategic substitutability, the aggregate component is countercyclical, since it places a
negative weight (1 − r) < 0 on the latent factor. This type of strategic substitutability (or
“general equilibrium offset”) arises commonly in flexible-price business cycle models, especially
those that generate realistic amounts of volatility in hours worked (Hansen, 1985; Rogerson,
1988), because increases in other firms’ output tend to drive up production costs.

In Online Appendix I, we consider a model that nests both our example and the relevant
features of the closely related model in Angeletos and La’O (2010) and Angeletos et al. (2016).
In this extension, among other additional parameters, households have a flexible coefficient ψ
of relative risk aversion (our model fixes ψ = 1). We show that output choices are strategic
substitutes if and only if σψ > 1. Common values in macroeconomics for σ and ψ are σ ≥ 4
and ψ ≥ 1 (e.g. Gali, 2008, Chapter 3 ). Hence, while qualitative explorations of models of
strategic complementarity between firms’ choices have yielded important theoretical insights
(e.g. Angeletos et al., 2016), we view the case in which output choices are strategic substitutes
as a quantitatively relevant one for this type of model.

The above properties, along with our results in Proposition 2 and 3, suggest that firms’
expectations about future output will match the survey data when firms pay imperfect, asym-
metric attention to the first component x1t. For example, consider the hypothetical case in
which all firms except firm i pay full attention to both components, while firm i pays full
attention to x1t but none to x2t. Then, it immediately follows that the slope coefficient in a
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regression of firm i’s forecast errors on recent output (that is, similar to (1)) becomes

γi = Cov (yt+1 − Eityt+1, yt)Var [yt]−1 = −ρ α

1− α
Vart [θt]
Var [yt]

< 0, (39)

so that firm i appears to extrapolate.31

5.2.2 Equilibrium with Limited Attention

We now return to the full model with limited attention. We start by describing firms’ optimal
output choices under limited attention, and their corresponding expected profits:

Proposition 5. An individual firm’s output choice under limited attention satisfies yit =
Eit [y?it] = Eit [xi1t + x2t], and the associated expected, discounted profits are v?it ' −1

2Var [y?it | Ωit].

The characterization in Proposition 5 follows directly from Proposition 4. It allows us to
state an individual firm’s attention choice problem as follows: At the start of the first stage
of each period, the firm chooses attention coefficients m1 and m2 to maximize

max
{m1,m2}∈[0,1]2

−1
2Var [y?it | Ωit]−K (m) . (40)

while anticipating that its optimal output choice in the subsequent stage will be

yit = E
[
y?it | zti1, zti2

]
= Eit [xi1t + x2t] , (41)

where x2t depends upon yt =
∫ 1

0 yitdi. Notice that the problem in (40) and (41) is an application
of the problem we studied in Section 4. There are N = 2 components of output, which
determine the firm’s ideal action y?it. The weight on each component xjt is one (wj = 1). A
small modification is that, due to firm-specific shocks, the ideal output y?it is now firm-specific.32

31This follows from

γi = Cov (yt+1 − Eityt+1, yt)Var [yt]−1 = Cov
[
yt+1 − Eityt+1, x2t ±

1
r

(
1

1− α − r
)
x1t

]
Var [yt]−1

= ρCov
[
θt − Eitθt, (1− r)θt −

(
1

1− α − r
)
θt

]
Var [yt]−1

= −ρ α

1− αVart [θt]Var [yt]−1
< 0.

32Nevertheless, from a firm’s perspective, firm-specific shocks are equivalent to an increase in the volatility
of component-specific disturbances. Hence, the same conditions as in Section 4 apply here.
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5.2.3 Numerical Solution Method

Unlike the full-attention version of the model, the equilibrium dynamics of output can no
longer be derived analytically when firms pay limited attention. Instead, we solve the model
numerically, looking for linear equilibria in which the law of motion for the components and
the latent factor take the form of an infinite dimensional vector,

xt = Axt−1 +But, ut =
[
uθt uxt unt

]′
, (42)

where xt =
[
x̄′t−1 x̄′t−2 . . .

]′
with x̄t =

[
x1t x2t θt

]′
and x1t =

∫ 1
0 xi1tdi, and where A

and B are matrices of undetermined coefficients whose rows conform with (28) and (33).
To solve for the rational expectations equilibrium, we further conjecture that

yt = Ēt [x1t + x2t]

=
[

1 1 0
]
Ēt [xt] =

[
1 1 0

]
Ξxt, (43)

where Ξ is another matrix of undetermined coefficients.
Solving the model requires finding values for the matrices A, B, and Ξ, as well as firms’

attention choices m =
[
m1 m2

]
, which are consistent with firm optimality, Bayesian updat-

ing of expectations, and market-clearing. We do so by first truncating the infinite-dimensional
vector xt. In accordance, with Hellwig and Venkateswaran (2009) and Lorenzoni (2009), we
truncate it at x̄t−T where T = 50, but our numerical results are already stable from around
T = 10. We then iterate on the following two steps until convergence.

First, we hold attention choices m fixed and derive new matrices A, B, and Ξ implied by
Bayesian updating and firm optimality. Specifically, we solve firms’ signal extraction problem
using the Kalman filter, which implies a new matrix Ξ, characterizing average expectations
about xt. This matrix, along with firms’ optimality conditions, implies new matrices A and B
characterizing the law of motion for xt, which in turn implies a new matrix Ξ. We iterate on
these updates until the coefficients in A, B, and Ξ converge in the sense of absolute difference.

Second, we hold coefficients in A, B, and Ξ fixed and derive new values m for firms’
optimal attention choices. We derive an expression for firms’ profits in (40) as a function
of attention choices, which closely resembles the expression in Lemma 2. We then find new
optimal choices m by solving the problem in (40). We halt the iteration between these two
steps when attention choices m have converged in the sense of absolute difference. Online
Appendix J contains further details about the solution method and its implementation.
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5.3 A Quantitative Exploration

We now explore the quantitative implications of the model. We address two basic questions:
First, can the model match the extrapolation and underreaction from the survey data? Second,
if so, what are the implications for the dynamics of output? To tackle these questions, we
parameterize the model and compare estimates of (1) and (2) to those from the data.

Calibration: We set the labor share α = 2/3 and elasticity of substitution σ = 6. The
persistence of the latent factor θt is set to ρ = 0.90 and the standard deviation of the shock to
σθ = 1. The standard deviation of the transitory component of productivity is likewise set to
σx = 1, while the standard deviation of the labor supply shock is set to σn = 0.1. These values
are all within the range used in standard DSGE models with monopolistic competition. Our
baseline calibration eliminates firm-specific productivity shocks by setting σa = 0, to cleanly
illustrate the effect of attention choices without exogenous noise in firms’ information. We
later explore the robustness of our results towards this assumption.

For the attention cost function, we use the functional form K(q) = µ
∑
j q
−2
j ; that is, a

marginal cost µ multiplied by the sum of signal precisions 1/q2
j across the components of

output (Veldkamp, 2011).33 The free parameter is the marginal cost µ, which determines the
overall imperfection in firms’ information. For example, if µ = 0, then we obtain the full
information benchmark, because firms can obtain infinitely precise signals at no cost.

As Coibion and Gorodnichenko (2015) point out, information frictions relate directly to
the observable coefficient δ in (2) that measures underreactions in average revisions. Hence,
we calibrate µ to match estimated underreactions. Concretely, we solve the model repeatedly,
varying µ, until the estimate of δ̂ obtained from the model’s output matches the empirical
estimate obtained from one-quarter-ahead forecasts in the SPF. This approach yields µ = 1.30.
This calibration implicitly assumes that forecasts reported by respondents in the SPF are
similar to the expectations of firms in our model. Clearly, survey respondents may instead
be motivated by career concerns, a desire to attract publicity, or other biased incentives (e.g.
Ehrbeck and Waldmann, 1996; Lamont, 2002; Ottaviani and Sørensen, 2006). The related
empirical evidence is mixed.34 Following the literature, we view the estimates from professional
forecasters as providing a useful lower-bound on deviations from full-information rationality.35

33In equilibrium, there is a one-to-one mapping between the precision parameters qj and the attention
parameters mj . Similar conclusions as those presented in Table II arise with an entropy-based cost function.

34For example, Lamont (2002) finds evidence for strategic forecasts in the non-anonymized Business Week
Survey, but Stark (1997) argues that the same hypothesis is rejected in the anonymized SPF. Ehrbeck and
Waldmann (1996) reject a model of strategically biased forecasts in T-bill forecasts from the Blue-Chip Survey.

35See, for example, Lorenzoni (2009), Nimark (2014), and Angeletos and Huo (2020). We note that the SPF
includes forecasts from large industrial firms, in addition to those from financial and government institutions,
and forecasting agencies. The bi-annual Livingstone survey estimates reported in Section 2, which resemble
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Components of Output and Attention Choices: Recall from Proposition 2 and 3 that
(i) asymmetric attention to procyclical variables can rationalize apparent extrapolation and
underreactions, and that (ii) these patterns are consistent with optimal attention choices if
procyclical variables are either more volatile or more important for agents’ decision-making.
Figure 6 and Table II illustrate these mechanisms in general equilibrium.

Figure 6 shows that, as in the full information case, the productivity component is pro-
cyclical, while the aggregate component is countercyclical in equilibrium. Output as a whole
is procyclical. The first two columns in Table II show the significance of the productivity
and aggregate supply component in firms’ decision problem. While both components have a
utility weight of one in firms’ ideal output choice (Proposition 4), the productivity component
is much more volatile for baseline parameters.36 The third and fourth columns in Table II
show firms’ optimal attention choices (mj), or equivalently noise choices (qj), for both output
components. As expected, attention gravitates towards the productivity component x1t be-
cause of its larger volatility. In particular, firms optimally choose to pay around three times
more attention to x1t. This is consistent with the conclusions from Lucas (1977) (also cited in
the introduction) that for most firms there is little reason to pay particularly close attention
to aggregate conditions. Coibion et al. (2018) provide evidence in favor of this supposition.
We now explore the implications of these asymmetries for firms’ expectations in equilibrium.

Over- and Underreactions: The first two columns in Table IIIa show the results of esti-
mating the extrapolation regression (1) and the underreactions regression (2) on firms’ simu-
lated expectations of one-quarter ahead output in equilibrium. The third and fourth columns
compare these estimates to those obtained in the survey data at the one-quarter horizon (Table
C.2 in the online appendix). The underreaction coefficient δ at the one-quarter frequency was
a targeted moment. Due to firms’ asymmetric attention to the procyclical component of out-
put, the coefficient γ on current output in (1) is negative, generating apparent overreactions in
expectations that are qualitatively and quantitatively close to those in the data. As a result,
firms’ expectations are simultaneously consistent with extrapolation and underreactions.

Table IIIb shows the implied estimates at the four-quarter horizon, which mirror the spec-
ification in Table I. The model does not match the full magnitude of these coefficients, largely
because the stationarity of the model implies that the estimates of (1) and (2) should decline
with the time horizon. However, despite its simplicity, the model still accounts for a siz-
able proportion of the empirical estimates at the four-quarter horizon, neither of which were

those from the SPF, includes a broader range of non-financial firms.
36Notice that, because firms have imperfect information about both components, the variance of each com-

ponent in Table II can exceed that of output itself (which is the expectation of the sum).
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Table II: Attention Choices in Equilibrium

Component Variance Weight q m
Productivity component (x1t) 3.73 1.00 1.29 0.75

Economy-wide component (x2t) 1.08 1.00 2.10 0.19
(i) Note: Variances have been scaled by the variance of output.

Figure 6: Cyclicality of Structural Components and Output:

Impulse Response to a One Unit Standard Deviation Shock to θt
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Note: The chart depicts the impulse response function to a unit standard deviation shock to θt on the vertical
axis. Time is measured in quarters on the horizontal axis.
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Table III: Over- and Underreactions

(a) One-quarter Ahead Output Growth

Model Estimates Data Estimates
Forecast Error Forecast Error Forecast Error Forecast Error

Current Realization −0.09 −0.05
(–) (0.06)

Average Revision 0.39 0.39???
(–) (0.16)

Sample (–) (–) 70Q1:19:Q4 70Q1:19:Q4
Relative RMSE 0.88

(b) Four-Quarter Ahead Output Growth

Model Estimates Data Estimates
Forecast Error Forecast Error Forecast Error Forecast Error

Current Realization −0.07 −0.12??
(–) (0.05)

Average Revision 0.28 0.66??
(–) (0.19)

Sample (–) (–) 70Q1:19Q4 70Q1:19Q4
Relative RMSE 0.85

Note: Double-clustered robust standard errors in parentheses. The top/bottom one percent of forecast errors
and revisions has been trimmed pre-estimation. Significance levels *=10%, **=5%, ***=1%. Relative RMSE
denotes the root mean-squared-error of individual forecasts relative to an estimated AR(1).
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targeted moments in the calibration.37

The last row in Table III shows that firms in the simulated model make better forecasts
(in a root-mean square error sense) than they would achieve using a simple time series model.
This is consistent with our empirical results in Section 4.

5.4 Further Implications of Asymmetric Attention

We leverage our calibrated model to illustrate two wider implications of asymmetric attention.
First, we show that asymmetric attention causes the equilibrium dynamics of output to be
more persistent and more volatile. Second, we show that our model is also consistent with
increased responsiveness to new information, and increased extrapolation, after the onset of
the Great Moderation (as we also document empirically in the online appendix).

5.4.1 Asymmetric Attention and Output Dynamics

We compare the dynamics of output in our model with those that arise in an equivalent model
where attention is limited but symmetric. In this symmetric case, firms observe only one noisy
signal of their optimal output:

sit = y?t + qεit = x1t + x2t + q?εit, εit ∼ N (0, 1) , (44)

where the noise parameter q (or corresponding attention parameter m) is again calibrated to
match the one-quarter-ahead estimate of δ from the SPF.

Figure 7 summarizes the results. The left panel shows that the model with asymmetric
attention results in more persistence in output (larger autocorrelation). This is intuitive:
When firms focus their attention on the procyclical, productivity component their beliefs and
actions become more persistent, because this component directly tracks the dynamics of the
latent factor. This increase in persistence occurs even though all input choices happen within
period. An additional, pre-determined factor of production, such as capital, would amplify
these effects by allowing firms’ extrapolative expectations to directly affect future output.

Relatedly, the right panel in Figure 7 shows that output responses are also more correlated
with the latent factor itself when there is asymmetric attention. The bottom panel, in turn,
shows that asymmetric attention also causes the unconditional variance of output to increase.
For the same overall information friction (as measured by δ in (2)), the asymmetry of attention
increases the volatility of output, and pushes it closer to its full information value.

37An alternative approach is to calibrate the model by targeting the four-quarter δ estimate in Table I. In
this case, we arrive at estimates for γ which are close to their empirical counterparts. The implied one-quarter
ahead estimates, however, suggest slightly more extrapolation than what we see in the data.
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Figure 7: Asymmetric Attention and Output Dynamics
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Note: The left panel shows the autocorrelation of output on the vertical axis, with the lags of output up to four
quarters on the horizontal axis. The right panel shows the correlation of output with total factor productivity
at = θt+uxt once more up to a four-quarter lag. We depict these both for the calibrated asymmetric attention
model, the symmetric attention model, as well as the full information case. The bottom panel illustrates the
variance of output in the asymmetric and symmetric case relative to the full information benchmark.

Table IV: Model Estimates Pre/Post-Great Moderation

Pre-Great Moderation Post-Great Moderation
Forecast Error Forecast Error Forecast Error Forecast Error

Current Realization -0.09 – -0.13
(–) (–)

Average Revision 0.56 0.42
(–) (–)

Note: Columns (1) and (3) report estimates using one-year ahead forecast, while columns (2) and (4) employ
one-quarter ahead forecasts. Column (2) is calibrated. The equilibrium noise in signals about the components
is pre-Great Moderation q1 = 1.31 and q2 = 2.57, and post-Great Moderation q1 = 1.29 and q2 = 4.56.
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Finally, in line with our results from Section 3, we note that the model with symmetric
attention produces a positive estimate of γ (γ = 0.08), which is inconsistent with the data.

5.4.2 Asymmetric Attention and the Great Moderation

One manifestation of the Great Moderation was a reduction in the size of aggregate versus firm-
specific shocks. As discussed in, for example, Arias et al. (2007) and Galí and Gambetti (2009),
the standard deviation of aggregate productivity shocks declined by around 40-50 percent
after 1985, while the volatility of firm-specific shocks appears mostly unchanged (Comin and
Philippon, 2005). We explore the implications of a similar structural shift in our model.

Following Arias et al. (2007), we assume that all of the decrease in the volatility of aggregate
productivity is due to a decrease in the common, persistent component σθ. To model the
economy before the Great Moderation, we use our baseline calibration above, but re-introduce
firm-specific productivity shocks σa > 0. This parameter is calibrated to match the level of
information frictions before the Great Moderation, which we estimate by running regression
(2) for one-quarter ahead forecasts on a sample until 1985Q1. To model the economy after
the Great Moderation, we then reduce the volatility of σθ by 45 percent.

Table IV shows the resulting estimates of (1) and (2) on model-generated data before
and after the Great Moderation. As in the equivalent regressions on the actual survey data,
underreactions become weaker while extrapolation becomes somewhat stronger. This is be-
cause the decrease in the volatility of common shocks causes firms to choose more asymmetric
attention. Indeed, compared to the pre-Great Moderation values, our solution shows that
post-Great Moderation firms pay two percent more attention to the procyclical component
(as measured by q1), and 77 percent less attention to the countercylical component.

The results in this subsection have highlighted two implications of asymmetric attention.
First, asymmetric attention not only affects the properties of expectations, but also height-
ens the persistence and volatility of output fluctuations in general equilibrium. Second, an
exploration of the Great Moderation provides validation of our example framework. A simple
model based on asymmetric attention to a procyclical, local component of output can qualita-
tively match the empirical observation that extrapolation strengthened while underreactions
subsided at a time when aggregate productivity became less volatile.

6 Conclusion

In this paper, we have contributed to a research agenda that seeks to find a data-consistent
model of expectation formation. The framework we have considered relies on minimal fric-
tions relative to the classical benchmark. The only primitive deviation from full information
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and rational expectations is limited attention. Previous work by Woodford (2002), Sims
(2003), Angeletos and Huo (2020), and others, have demonstrated that limited attention of-
fers an explanation for the myopia and anchoring to past outcomes commonly documented
in macroeconomics. Our results show that extrapolation, and more generally overreactions to
public information, can also be explained by this framework.

We have documented that households’, firms’, and professional forecasters’ expectations
simultaneously overreact to recent outcomes of the forecasted variable but underreact to new
information on average. These facts are inconsistent with standard behavioral models of ex-
trapolation, as well as with models that combine the overconfidence inherent to extrapolation
with noisy information. To resolve this friction, we have proposed a simple, rational model of
limited attention in which people internalize that a forecasted variable is comprised of several
components. We characterized the conditions under which this model is consistent with the
data. In doing so, we have developed a rational theory of extrapolation that is also consistent
with observed underreactions. This theory is based on individuals’ asymmetric attention to
procyclical variables. Through the lens of this model, the overreactions to recent outcomes
documented in survey data can be viewed as underreactions to countercyclical components.

To illustrate our results, we embedded our analysis in a workhorse macroeconomic model.
For reasonable parameters, we showed that firms’ expectations exhibit extrapolation and un-
derreactions, similar to their empirical counterparts. This application also allowed us to study
the implications of asymmetric attention for the dynamics of output, and to validate the model
further by studying its implications for structural changes around the Great Moderation.

Beyond the analysis in this paper, our results suggest that models of limited, asymmetric
attention can account for flexible patterns of predictability in people’s forecast errors. We
see important scope for extending our results to account for the more general under- and
overreactions to public information documented in the literature.38 Another avenue for future
research is to combine models of optimal information choice with insights from behavioral
economics, such as those discussed recently by Bordalo et al. (2018). The latter approach
would allow for an empirical estimate of the relative contribution of each component to the
predictability of forecast errors. Overall, we view the research in this paper as a useful step
towards a unified, data-consistent model of expectations based on a minimal set of frictions.

38Consider, for example, our baseline model from Section 3, and suppose that instead of regression (1) we
regress forecast errors onto one component xjt of output. The slope coefficient from this regression would be
proportional to aj(1−mj), which could be either positive (representing an underreaction to xjt) or negative
(representing an overreaction), depending on the cyclicality of xjt (the sign of aj). In principle, we therefore
conjecture that the conditions in Proposition 2 could be extended and used to account for the much broader
patterns of predictability documented, for example, by Pesaran and Weale (2006) and Fuhrer (2017).
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A Proofs and Derivations

A.2 Alternative Models

Proof of Proposition 1: The proof proceeds in three steps. We first derive the MA-form
for the nowcast fityt. We then use this result to derive slope coefficients in (1) and (2).

Step (i): MA-form of nowcast. Solving (5) backwards for k = 0, we find that

fityt = g0zit + λρ (1− g0) fit−1yt−1 = g0

∞∑
h=0

λhρh(1− g0)hzit−h, (A1)

where we have also used that fit−1zit = fit−1yt = ρfit−1yt−1.

Step (ii): Slope coefficient γ in (1). The overreaction coefficient γ equals

γ = Cov [yt+k − fityt+k, yt]Var [yt]−1

= ρkCov [yt − fityt, yt]Var [yt]−1 = ρk
(
1− Cov [fityt, yt]Var [yt]−1

)
,

because fityt+k = ρkfityt, and where (A1) shows that

Cov [fityt, yt] = g0

∞∑
h=0

λhρh(1− g0)hρhVar [yt] = g0
1

1− λρ2(1− g0)Var [yt] .

Hence,

γ = ρk
(

1− g0

1− λρ2(1− g0)

)
= ρk(1− g0) 1− λρ2

1− λρ2(1− g0) .

We conclude the sign of γ depends only the sign of ρk(1−g0) = ρk−gk, since the responsiveness
coefficient gk satisfies gk = g0ρ

k from (5) and fityt+k = ρkfityt.

Step (iii): Slope coefficient δ in (2). Averaging (5) across i for k = 0, using that f̄tyt+k =
ρkf̄tyt, and rearranging terms as in Coibion and Gorodnichenko (2015) shows that:

yt+k − f̄tyt+k = 1− g0

g0
ρk
(
f̄tyt − λf̄t−1yt

)
+ ut,t+k,

where ut,t+k denotes a linear combination of future shocks (ut+s)0<s≤k to output.
Thus, the underreaction coefficient δ equals

δ = Cov
[
yt+k − fityt+k, f̄tyt+k − f̄t−1yt+k

]
Var [χt]−1

= Cov
[
yt+k − f̄tyt+k, f̄tyt+k − f̄t−1yt+k

]
Var [χt]−1

= ρk
1− g0

g0
ρkCov

[
f̄tyt − λf̄t−1yt, f̄tyt − f̄t−1yt

]
Var [χt]−1 ,
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where χt ≡ f̄tyt+k − f̄t−1yt+k, and the second equality follows from the linearity of the co-
variance operator, and because the signals in (4) have the same steady-state distribution for
all i. We have used that f̄tyt+k = ρkf̄tyt for the third equality. Finally, because gk satisfies
gk = g0ρ

k, all that remains to show is that Cov
[
f̄tyt − λf̄t−1yt, f̄tyt − f̄t−1yt

]
> 0.

Multiplying out terms, and using the stationarity of forecasts, we find that

Cov
[
f̄tyt − λf̄t−1yt, f̄tyt − f̄t−1yt

]
=

(
1 + λρ2

)
Var

[
f̄tyt

]
− ρ (1 + λ)Cov

[
f̄tyt, f̄t−1yt−1

]
≥ (1− ρ)(1− λρ)Var

[
f̄tyt

]
> 0

since f̄t−1yt = ρf̄t−1yt−1 and Var
[
f̄tyt

]
≥ Cov

[
f̄tyt, f̄t−1yt−1

]
> 0.39 We conclude the sign of δ

depends only the sign of the sufficient statistic ρk − gk. This completes the proof. �

Corollary 1. Consider the diagnostic expectations model: fityt+k = Eit−1yt+k+gk (zit − Eit−1yt) .
Then, the coefficients γ in (1) and δ in (2) both have the same sign as ρk − gk.

Proof of Corollary 1: The proof follows from Proposition 1. To see this implication, first
notice that the diagnostic nowcast error at time t equals

yt − fityt = (1− g0) (yt − Eit−1yt)− g0εit

= (1− g0)
(
yt −

1
1− g?0

Eityt + g?0
1− g?0

zit

)
− g0εit

= (1− g0) (1− g?0)−1 (yt − Eityt) +
[
g?0(1− g0) (1− g?0)−1 − g0

]
εit,

where the second equality exploits (5) in the rational case, and we let g?0 ∈ (0, 1) denote the
noisy rational expectation gain on zit. It now follows from yt+k−fityt+k = ρk (yt − ftyt)+ut,t+k,
where ut,t+k denotes a linear combination of future shocks (ut+s)0<s≤k to output, that

yt+k − fityt+k = (1− g0) (1− g?0)−1 (yt+k − Eityt+k) + t.u.w,

where t.u.w denotes terms uncorrelated with yt or f̄tyt+k− f̄t−1yt+k, and we have used (3) and
Eityt+k = ρkEityt. We conclude γ = (1− g0) (1− g?0)−1 γNRE and δ = (1− g0) (1− g?0)−1 δNRE,
where γNRE and δNRE denote the over- and underreaction coefficients, respectively, in the noisy

39It follows from (5) that

f̄tyt = ρ [1 + λ(1− g0)] f̄t−1yt−1 − λρ2 (1− g0) f̄t−2yt−2 + g0ut.

Thus,
Cov

(
f̄tyt, f̄t−1yt−1

)
= ρ

1 + λ(1− g0)
1 + λρ(ρ− g0ρ)Var

[
f̄tyt

]
> 0.
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rational expectation case. Proposition 1 implies γNRE > 0 and δNRE > 0. Thus, the sign of γ
and δ depend only 1− g0 = (ρk − gk)ρ−k, which depends only on ρk − gk. �

A.3 Asymmetric Attention

Proof of Lemma 1: The proof follows directly from the derivation of the Kalman gain gj.
At date t, agent i’s signal zijt is informationally equivalent to the signal

ẑijt ≡
zijt
aj

= θt + 1
aj

(bjujt + qjεijt) ≡ θt + ξijt,

which has precision τj ≡ Var [ẑijt | θt]−1 equal to

τj =
a2
j

b2
j + q2

j

=
a2
j

b2
j

mj.

The standard formula for Gaussian updating now implies that

Eit [θt] = Eit−1 [θt] +
∑
j

(
τj

τ̄ +∑
k τk

)
(ẑijt − Eit−1 [ẑijt]) , (A2)

where τ̄ ≡ Var [θt | Ωit−1]−1, while the posterior precision satisfies Var [θt | Ωit]−1 = τ̄ +∑
k τk.

Combining terms, and inserting the definition of ẑijt into (A2), we obtain that

Eit [θt] = Eit−1 [θt] +
∑
j

Var [θt | Ωit]
aj
b2
j

mj (zijt − Et−1zijt) .

Equating gj = Var [θt | Ωit] ajb2
j
mj then completes the proof. �

Proof of Proposition 2: We start with the characterization of the extrapolation coefficient
γ in (1). Equation (12) shows that the sign of γ is determined by

γ ∝
∑
j

Cov [θt − Eitθt, xjt] =
∑
j

(ajCov [θt − Eitθt, θt] + bjCov [θt − Eitθt, ujt])

=
∑
j

(ajVar [θt | Ωit]− bjCov [Eitθt, ujt]) , (A3)

since Cov (θt, ujt) = 0 and Cov [θt − Eitθt, θt] = E
[
(θt − Eitθt)2

]
= Var [θt | Ωit].

Lemma 1 now implies that

Cov [Eitθt, ujt] = Cov [gjzijt, ujt] = gjbj = Var [θt | Ωit]
aj
bj
mj.
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Substituting this expression into (A3), we conclude that

γ ∝
∑
j

Cov [θt − Eitθt, xjt] = Var [θt | Ωit]
∑
j

aj(1−mj).

This completes the first step of the proposition.
Turning to the characterization of the underreaction coefficient δ in (2), we start by solving

the Kalman filter in (11) backwards to obtain

Eit [θt] =
∞∑
h=0

λhẑit−h, (A4)

where we define the precision-weighted signal ẑit ≡
∑
j gjzijt, and let λ ≡ (1−∑ gjaj) ρ. The

average precision-weighted signal is
∫ 1

0 ẑitdi = ẑit − ε̂it for all i ∈ [0, 1] with ε̂it ≡
∑
j gjqjεijt.

We thus find that the average forecast revision equals

Ētθt − Ēt−1θt = Ētθt − ρĒt−1θt−1 =
∞∑
h=0

λh (ẑit−h − ε̂it−h)− ρ
∞∑
h=1

λh−1 (ẑit−h − ε̂it−h) .

By the Projection Theorem, agent i’s forecast error θt−Eitθt is uncorrelated with ẑit−h for
all h ≥ 0. Thus, the characterization of δ in (13) yields:

δ ∝ Cov
[
θt − Eitθt, Ētθt − Ēt−1θt

]
= Cov

[
θt − Eitθt,−

∞∑
h=0

λhε̂it−h + ρ
∞∑
h=1

λh−1ε̂it−h

]

= Cov
[ ∞∑
h=0

λhẑit−h,
∞∑
h=0

λhε̂it − ρ
∞∑
h=1

λh−1ε̂it−h

]

=
[
1 +

∞∑
h=1

λh
(
λh − ρλh−1

)]
Var [ε̂it]

= 1− λρ
1− λ2 Var [ε̂it] ,

where the second and third equality use Cov [θt, ε̂it−h] = 0 and Cov [ẑit−`, ε̂it−h] = 1`=hVar [ε̂it].
Since λ < ρ ≤ 1, we conclude that

δ ∝ Var [ε̂it] =
∑
j

g2
j q

2
j = Var [θt | Ωit]

∑
j

a2
j

b2
j

mj(1−mj).

This expression is positive whenever 0 < mj < 1 for at least one j. �
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A.4 Optimal Attention Choice

Proof of Lemma 2: We consider the minimized expected loss at the start of period t:

L?t ≡ E
{

min
ait

E
[
(ait − a?t )

2
∣∣∣Ωit

]}
. (A5)

The minimizer to this problem is
ait = E [a?t |Ωit] .

Substituting this expression into (A5) shows that

L?t = E
[
(a?t − E [a?t |Ωit])2

]
= E

[
E
[
(a?t − E [a?t |Ωit])2 | Ωit

]]
= E [Var [a?t |Ωit]] = Var [a?t |Ωit].

Now, using the law of total variance, we can decompose L?t into

L?t = Var [a?t | Ωit, θt] + Var [E [a?t | Ωit, θt] | Ωit] . (A6)

To complete the proof, we need to derive expressions for the two components of (A6).
To do so, we first note that

xjt|θt ∼ N
(
ajθt, b

2
j

)
.

Agent i’s information set Ωit contains the unbiased signal zijt of xjt, defined in (9), which has
precision q−2

j . All other elements of Ωit are independent of xjt conditional on θt.
We can therefore use Bayes’ law for Gaussian variables to show that

E[xjt|zijt, θt] = E[xjt|θt] + Cov [xjt, zijt| θt]
Var [zijt| θt]

(zijt − E[xjt|θt])

= ajθt +
b2
j

b2
j + q2

j︸ ︷︷ ︸
≡mj

(zijt − ajθt) = (1−mj)ajθt +mjzijt

and

Var [xjt | Ωit, θt] = Var [xjt | θt]−
Cov [xjt, zijt| θt]2

Var [zijt | θt]

= b2
j −

b4
j

b2
j + q2

j

= b2
j

(
1−

b2
j

b2
j + q2

j

)
= b2

j (1−mj) .

We are now ready to compute the two components of (A6).
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Computing the first term in (A6):

Var [a?t | Ωit, θt] = Var
wθθt +

∑
j

wxjxjt

∣∣∣∣∣∣Ωit, θt

 = Var
∑

j

wxjxjt

∣∣∣∣∣∣Ωit, θt


=

∑
j

w2
xjVar [xjt|Ωit, θt] +

∑
j

∑
k 6=j

Cov [xjt, xkt|Ωit, θt]︸ ︷︷ ︸
=0

=
∑
j

w2
xjb

2
j(1−mj). (A7)

Computing the second term in (A6):

E [a?t | Ωit, θt] = E

wθθt +
∑
j

wxjxjt | Ωit, θt


= wθθt +

∑
j

wxjE [xjt | Ωit, θt]

= wθθt +
∑
j

wxj ((1−mj)ajθt +mjzijt) ,

so that

Var [E [a?t | Ωit, θt] | Ωit] = Var
wθθt +

∑
j

wxj ((1−mj)ajθt +mjzijt)

∣∣∣∣∣∣Ωit


= Var

wθ +
∑
j

wxj(1−mj)aj

 θt
∣∣∣∣∣∣Ωit


=
wθ +

∑
j

wxj(1−mj)aj

2

Var [θt | Ωit] . (A8)

Substituting (A7) and (A8) into (A6) then yields the desired expression. �

Proof of Proposition 3: An individual agent i’s attention choice problem can be written as

max
(mj),V,α,τ

−
∑
j

w2
xjb

2
j(1−mj)− V α2 −K(m)

s.t. V ≥ V (τ), α ≥ wθ +
∑
j

wxjaj (1−mj) , τ ≤
∑
j

a2
j

b2
j

mj
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The Lagrangian for this problem is

L = −
∑
j

w2
xjb

2
j(1−mj)− V α2 −K(m) + µV [V − V (τ)]

+ µα

α− wθ −∑
j

wxjaj (1−mj)
+ µτ

∑
j

a2
j

b2
j

mj − τ


The desired first-order condition is now obtained by rearranging ∂L

∂mj
= 0. �

A.5 A Macroeconomic Example

Proof of Proposition 4: We start with a firm’s output choice,40

Yi = argmaxVi = Ei
[ 1
PY

(
PY

1
σY

1− 1
σ

i −WNi

)]

= Ei

(Yi
Y

)1− 1
σ

− W

PY

(
Yi
Ai

) 1
α

 .
Thus,

Vi = V
(
Yi, Y, Ai,

W

P

)
.

A second-order log-linear approximation of V then results in

v (yi, y, ai, ω) ≈ v1yi + v11

2 y2
i + v12yiy + v13yiai + v14yiω + t.i.a, (A9)

where ω = w − p and t.i.a stands for terms independent of the firm’s action yi.
As a result of (A9), a firm’s optimal, full-information choice of output is

y?i = v12

| v11 |
y + v13

| v11 |
ai + v14

| v11 |
ω, (A10)

while a firm’s optimal choice under imperfect information is, because of certainty-equivalence,

yi = Ei [y?i ] . (A11)

It remains to derive the optimal output choice under full information in (A10). A few
simple but tedious derivations combine to show that

y?i = rai + αr
(
σ−1y − ω

)
≡ xi1 + x2. (A12)

40Since all actions are taken within period, we remove time subscripts to economize on notation.

52



We note for later use that the equilibrium expression for the real wage is ω = Ehy + un.
Finally, we can use (A10) and (A11) to derive the difference between a firm’s valuation of

its profits vi = v (yi, y, ai, ω) and those that would have arisen under full information v?i :

vi − v?i = v11

2 y2
i −

v11

2 y?2i + (v12y + v13ai + v14ω) (yi − y?i )

= v11

2 y2
i −

v11

2 y?2i − v11y
?
i (yi − y?i ) = v11

2 (yi − y?i )
2 , (A13)

where we have used the first-order condition for optimal output in (A9). �

Proof of Proposition 5: Follows immediately from (A11) and (A13). �

B Over- and Underreactions in a General Linear Model

We extend the results from Section 3 to economies in which output is driven by several
latent factors, correlated disturbances, and to where the structural components themselves
can depend on their own history. This allows us to encapsulate most linearized macroeconomic
models, including several with imperfect information.

Setup: We once more consider a discrete-time economy with a continuum of agents i ∈ [0, 1].
Output yt and its components xt are given by

yt = Dθt + Ext + Fut (A14)

xt = Aθt +Bxt−1 + Cut, (A15)

where yt is a scalar variable, θt is an nθ×1 vector of fundamental states, xt is an nx×1 vector
of structural components, and lastly ut is a nu × 1 vector of i.i.d. standard normal random
variables. Most linear DSGE models can be written in this form ( Fernández-Villaverde et al.,
2007). The vector of fundamentals follows a simple VAR(1),

θt = Mθt−1 +Nut, (A16)

where M and N are conformable matrices.
Each agent i ∈ [0, 1] observes the vector of signals

zit = xt +Qεit, Q = diag (q) , (A17)

where εit is an nx × 1 vector of i.i.d. standard normal random variables.
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It is useful to re-write the system, comprised of (A14) to (A16), as

yt = αθ̄t + βut, (A18)

where α =
[
D E

]
, θ̄t =

[
θ′t x′t

]′
and β = F . We further have that

θ̄t = M̄θ̄t−1 + N̄ut, (A19)

where

M̄ =
 M 0
AM B

 , N̄ =
 N

AN + C

 .
We can now also re-write (A17) as

zit = L0θ̄t + L1θ̄t−1 +Rut +Qεit, (A20)

where L0, L1 and R are implicitly defined.

General Result: We can now extend Proposition 2 to this more general case.

Proposition 6. If the economy evolves according to (A14)-(A17), then the population coeffi-
cients in the regression equations (1) and (2) satisfy:

γ < 0 ⇐⇒ αM̄k (GQQ′E ′ + Σθθ̄D
′ + Ω) < 0 (A21)

δ > 0 ⇐⇒ ∃qj ∈ (0 ,∞) , (A22)

where G is the Kalman gain on zit when forming expectations about θ̄t, Σθθ̄, denotes the
covariance term Σθθ̄ = Cov

(
θt, θ̄t

)
, and Ω =

[
N̄ −G

(
L0N̄ +R

)]
F ′.

Similar to the results in Proposition 2, expectations are generically underreactive in Propo-
sition 6; δ > 0 whenever agents pay limited attention to structural components. Furthermore,
limited attention to countercyclical components (that is, those that are assigned a negative
weight in G, or directly have a negative element in E) once more tend to push expectations
towards measured overreactions to recent outcomes (γ < 0). This generalizes the key insight
from the body of this paper. In deriving this proposition, we have in effect adjusted the
γ−condition in Proposition 2 for (i) the direct impact that several, persistent latent factors
can have on output itself (D 6= 0),41 (ii) for any cross-correlation in errors between the signal

41As an unnamed referee has pointed out to us, our central insight about asymmetric attention can also be
seen in a reductionist manner in the case of several, independent latent factors. Suppose θ1t and θ2t follow
independent AR(1) processes with persistence parameters ρj , in which ρ1 > 0 and ρ2 < 0. We further assume
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vector and output (Ω 6= 0); and lastly (iii) for any effects that lagged components may have
on output (see the expression for M̄). The business cycle model in Section 5 provides an
example of a model in which the second extension is relevant.

Proof of Proposition 6: The proof proceeds in three steps: First, we derive an expression
for one-period ahead forecast errors and the corresponding one-period ahead forecast revision.
Then, we compute the extrapolation coefficient γ in (1). Finally, we also use our results to
calculate the underreaction coefficient δ in (2).

As a preliminary step, we note that for any random variable Z, the covariance of individual
forecast errors with Z equals the covariance of average forecast errors with Z:

Cov (yt+1 − Eityt+k, Z) = Cov
(
yt+1 − Ētyt+k, Z

)
.

This follows because the right-hand side is the integral of the left-hand side across individuals,
and because the signals in (A20) have the same steady-state distribution for all i. In the
remainder of the proof, we therefore use individual and average errors interchangeably.

To start, we use the Kalman Filter for systems with lagged states in the measurement
equation (Nimark, 2015). This directly provides us with

Eit [yt+k] = αEit
[
θ̄t+k

]
= α

{
Eit−1

[
θ̄t+k

]
+Gk (zit − Eit−1 [zit])

}
= Eit−1 [yt+k] + αGk (zit − Eit−1 [zit]) ,

where Gk is equal to

Gk = Cov
(
θ̄t+k − Eit−1θ̄t+k, zit − Eit−1zt

)
V [zit − Eit−1zt]−1 . (A23)

We note that
Ēt [yt+k] = Ēt−1 [yt+k] + αGk

(
xt − Ēt−1 [xt]

)
. (A24)

We can now use (A24) to show that

Ēt [yt+k]− Ēt−1 [yt+k] = αGk

(
xt − Ēt−1 [xt]

)
(A25)

yt+k − Ēt [yt+k] = α
(
θ̄t+k − Ēt

[
θ̄t+k

])
+ Fut+k. (A26)

This completes the first step.

that D = A = I2×2 , E = B = C = F = 02×2, and that agents pay full attention to their first signal but
none to their second (q1 → 0, q2 → ∞), as in Example 1. Then, condition (A21) shows that γ < 0 because
ρ2Var [θ2t] < 0. Thus, as in the body of this paper, the overreaction to recent output documented in the
survey data can be interpreted as an underreaction to countercyclical components (ρ2 < 0).
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We are now ready to derive the overreaction coefficient γ:

γ ∝ Cov (yt+k − Eit [yt+k] , yt) = Cov (yt+k − Eit [yt+k] , E (zit −Qεit) +Dθt + Fut)

= Cov
(
α
(
θ̄t+k − Eitθ̄t+k

)
, −EQεit +Dθt + Fut

)
= αM̄k

{
Cov

(
θ̄t − Eitθ̄t, −εit

)
Q′E ′ + Cov

(
θ̄t − Eitθ̄t, θt

)
D′ + Cov

(
θ̄t − Eitθ̄t, ut

)
F ′
}
,

where the second line used that xt = zit −Qεit. But since

Cov
(
θ̄t − Eitθ̄t, θt

)
= Cov

(
θ̄t − Eitθ̄t, θt − Eitθt

)
= Σθ̄θ

Cov
(
θ̄t − Eitθ̄t, ut

)
= N̄ −G

(
L0N̄ +R

)
Cov

(
θ̄t − Eitθ̄t, −εit

)
= GQ,

where the last two equalities follow from

Eit
[
θ̄t
]

= Eit−1
[
θ̄t
]

+G (zit − Eit−1 [zit]) .

We note that Gk = M̄kG. Thus,

γ ∝ αM̄k
{
GQQ′E ′ + Σθθ̄D

′ +
[
N̄ −G

(
L0N̄ +R

)]
F ′
}
.

This completes the second step of the proof..
Lastly, we compute the underreaction coefficient δ. Equation (A25), (A26) show that

δ ∝ Cov
(
yt+k − Ēt [yt+k] , Ēt [yt+k]− Ēt−1 [yt+k]

)
can be rewritten as

δ ∝ αCov
(
θ̄t+k − Ētθ̄t+k, xt − Ēt−1xt

)
G′kα

′

= αCov
(
θ̄t+k − Ēt−1θ̄t+k −Gk

(
xt − Ēt−1 [xt]

)
, xt − Ēt−1xt

)
G′kα

′

= α
{
ḠkV

[
xt − Ēt−1xt

]
−GkV

[
xt − Ēt−1xt

]}
G′kα

′,

where we define

Ḡk ≡ Cov
(
θ̄t+k − Ēt−1θ̄t+k, xt − Ēt−1xt

)
V
[
xt − Ēt−1xt

]−1
.

Notice that Ḡk corresponds to the Kalman gain of a hypothetical agent who at time t has the
prior belief that θ̄t+k ∼ N

(
Ēt−1θ̄t+k, P

)
, where P = V

[
θ̄t+k | zt−1

i

]
, but observes xt perfectly

56



(i.e. without noise Q = 0). We conclude that

δ ∝ α
(
Ḡk −Gk

)
V
[
xt − Ēt−1xt

]
G′kα

′

=
(
d̄k − dk

)
V
[
xt − Ēt−1xt

]
d′k, (A27)

where d̄k ≡ αḠk and dk ≡ αGk. We note that the sign of d̄k is the same as that for dk, because
| Ḡj,k |>| Gj,k | (due to the noise in private signals) and sign(Ḡj,k) = sign(Gj,k). We also note
for the same reasons that | d̄k |>| dk |. Combined, it now follows from (A27) that, because
V
[
xt − Ēt−1xt

]
is positive semi-definite, δ > 0 (Abadir and Magnus, 2005; Chpt.8). �

Alternative Proof of Proposition 2: The model in Section 3 is a special case of the above
general structure. In particular, we obtain the model in Section 3 by setting:

D = F = B = 0, E = 11×N

A =
[

0N×1 diag (a1, ..., aN)
]
, C =

[
0N×1 diag (b1, ..., bN)

]
M = ρ, N =

[
σθ, 01×N

]
An application of Proposition 6, with G evaluated according to the standard expression for
Kalman gains (Anderson and Moore, 2012), then also establishes Proposition 2.
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C Additional Empirical Results

C.1 Robustness of Evidence

Table C.1: Regression of forecast errors on individual forecast revisions

All Observations Excluding Outliers

(1) (2) (3) (4) (5) (6)

Current Realization −0.13∗∗ −0.12∗∗
(0.06) (0.05)

Average Revision 0.72∗∗∗ 0.66∗∗∗

(0.24) (0.19)

Individual Revision −0.19∗∗∗ −0.03
(0.06) (0.08)

Observations 7,417 7,377 5,532 7,190 7,151 5,357
R2 0.02 0.05 0.02 0.03 0.06 0.00

Note: Estimates of regressions (1), (2), and (14) with individual (respondent) fixed effects. Columns (4) to (6)
remove the top and bottom one percent of forecast errors and revisions. Double-clustered robust standard errors
in parentheses. Sample: 1970Q1-2019Q4. Significance levels *=10%, **=5%, ***=1%.
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Table C.3: Estimates after removing trends in output growth

Panel a: individual forecast error
Benchmark Level detrend Linear detrend

Current Realization -0.12∗∗ -0.14∗∗∗ -0.12∗∗∗

(0.05) (0.05) (0.05)

Observations 7,190 7,190 7,190
F 185.0 251.8 185.0
R2 0.03 0.04 0.03

Panel b: average forecast error
Benchmark Level detrend Linear detrend

Constant 0.01 0.08 0.01
(0.19) (0.18) (0.19)

Current Realization -0.10∗∗ -0.14∗∗∗ -0.10∗∗

(0.05) (0.05) (0.05)

Observations 198 198 198
F 3.53 6.74 3.53
R2 0.02 0.03 0.02

Note: Estimates of regressions (1) using different methods for detrending output growth. Column (1): No
detrending, as in the baseline specification. Column (2): adjusting for the structural (level) increase in output
growth between 1995 and 2000 (e.g. Jacobson and Occhino, 2012). Column (3): Linear detrending. Panel a:
Estimates with individual (respondent) fixed effects. Panel b: Estimates with average forecast errors yt+k− f̄tyt+k
as the left-hand side variable. Robust standard errors (double clustered in Panel a) in parentheses. The top and
bottom one percent of forecast errors and revisions have been removed in Panel a pre-estimation. Sample:
1970Q1-2019Q4. Significance levels *=10%, **=5%, ***=1%.
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Table C.4: Estimates before and after Great Moderation

Panel a: individual forecast error
Pre-Great Moderation Post-Great Moderation
(1) (2) (1) (2)

Current Realization -0.13∗∗ – -0.19∗∗ –
(0.06) (–) (0.08) (–)

Average Revision – 0.76∗∗∗ – 0.53∗

(–) (0.24) (–) (0.32)
Observations 2,284 2,245 4,574 4,574
F 92.0 185.6 159.4 159.6
R2 0.04 0.08 0.04 0.04

Panel b: average forecast error
Pre-Great Moderation Post-Great Moderation
(1) (2) (1) (2)

Current Realization -0.15∗∗ – -0.14∗ –
(0.07) (0.08)

Average Revision – 0.93∗∗ – 0.56∗

(0.37) (0.34)
Observations 60 59 122 122
F 2.79 6.56 2.44 5.33
R2 0.05 0.10 0.02 0.04

Note: Estimates of regressions (1) before and after the Great Moderation. Panel a: Estimates with individual
(respondent) fixed effects. Panel b: Estimates with average forecast errors yt+k − f̄tyt+k as the left-hand side
variable. Robust standard errors (double clustered in Panel a) in parentheses. Sample: 1970Q1-2019Q4 (split into
1970Q1-1985Q1 and 1990Q1-2019Q4; Stock and Watson, 2002; Table I). We adjust for the structural increase in
output between 1995 and 2000 (Jacobson and Occhino, 2012). The top and bottom one percent of forecast errors
and revisions have been removed in Panel a pre-estimation. Significance levels *=10%, **=5%, ***=1%.
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Table C.5: Estimates of unconstrained version of regression (2)

(1) (2)

Individual errors Average errors

Constant – 0.18
(0.40)

Avr. Forecast from Time t (δ0) 0.70∗∗∗ 0.82∗∗∗

(0.20) (0.26)

Avr. Forecast from Time t− 1 (δ1) −0.64∗∗∗ −0.92∗∗∗
(0.28) (0.31)

Observations 7,151 197
F Statistic 248.3 8.420
R2 0.07 0.08

Model Df. χ2 Pr(> χ2)

(1) Individual Forecast Errors 1 0.15 0.70

(2) Average Forecast Errors 1 0.59 0.44

Note: Upper table: Estimates of the unconstrained regression yt+k − fityt+k = αi + δ0f̄tyt+k + δ1f̄t−1yt+k + εit.
Column (1): Estimates with individual (respondent) fixed effects. Column (2): Estimates with average forecast
errors yt+k − f̄tyt+k as the left-hand side variable. Robust standard errors (double clustered in column (1)) in
parentheses. The top and bottom one percent of forecast errors and revisions have been removed in column (1)
pre-estimation. Sample: 1970Q1-2019Q4. Significance levels *=10%, **=5%, ***=1%. Lower table: Hypothesis
tests of δ0 + δ1 = 0, which is imposed by regression (2) in the paper.

Table C.6: Estimates of concurrent version of regression (1)

Baseline Level Recent Detrend

(1) (2) (3) (4) (5)

Current Realization -0.12∗∗ -0.09∗ -0.13∗∗∗ -0.25∗∗∗ -0.11∗∗

(0.05) (0.05) (0.04) (0.09) (0.05)

Average Revision – – 0.72∗∗∗ – –
(0.17)

Observations 7,190 7.247 7,151 3,276 7,247
R2 0.03 0.02 0.09 0.07 0.02
F 185.0 97.2 325.1 219.6 144.1

Note: Estimates of regression (1) with individual (respondent) fixed effects. Column (1): baseline specification.
Columns (2-5) use only the BEA’s first release of output growth as the right-hand side variable in regression
(1). Column (4) considers the post-2000 sample. Column (5) adjusts for the structural (level) increase in output
growth between 1995 and 2000 (e.g. Jacobson and Occhino, 2012). The top and bottom one percent of forecast
errors and revisions have been removed pre-estimation. Double-clustered robust standard errors in parentheses.
Sample: 1970Q1-2019Q4. Significance levels *=10%, **=5%, ***=1%.
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Figure C.1: Alternative version of Figure 3 based on Table C.6b (average errors)
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EA SPF

Note: Estimates of γ and δ from (1) and (2) using average forecast errors yt+k− f̄tyt+k as the dependent
variable. � = GDP forecasts, � = CPI inflation forecasts, ? = GDP deflator inflation forecasts, and ◦ =
MSC inflation forecasts that have been instrumented. All estimates are for one-year ahead forecasts,
and estimates of (2) use semi-annual revisions (LS Survey) or one-quarter revisions (all others).

Figure C.2: Alternative version of Figure 3 based on Table C.8 (inflation data after 1992)
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Note: Estimates of γ and δ from (1) and (2) using average forecast errors yt+k− f̄tyt+k as the dependent
variable. � = GDP forecasts, � = CPI inflation forecasts, ? = GDP deflator inflation forecasts, and ◦ =
MSC inflation forecasts that have been instrumented. All estimates are for one-year ahead forecasts,
and estimates of (2) use semi-annual revisions (LS Survey) or one-quarter revisions (all others). Inflation
and deflator estimates use post-1992 forecasts to account for the potential of a structural break in the
inflation series; GDP growth estimates by contrast employ the full sample. The Federal Reserve Bank
of Philadelphia also took over ownership of the SPF in 1992.
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D Auxiliary Test of Underreactions

Coibion and Gorodnichenko (2012) propose two regressions that can be used to provide an

alternative test for the presence of underreactions to aggregate information (i.e. information

frictions). Consistent with the notation in our paper, let ηt denote a structural shock and yt

output growth. Coibion and Gorodnichenko (2012) propose the following two regressions:

yt = α+
H∑
h=1

βhyt−h +
J∑
j=1

djηt−j + et. (OA1)

yt − f̄t−k [yt] = α+
H∑
h=1

βh
(
yt−h − f̄t−k−h [yt−h]

)
+

J∑
j=1

djηt−j + et. (OA2)

Under the null hypothesis of full information and rational expectations, there should be an im-

mediate and complete adjustment of forecasts to shocks, and therefore zero systematic responses

of forecast errors after any shock. By contrast, under the hypothesis of informational frictions,

the conditional response of forecast errors to a shock should have the same sign as the response

of the variable being forecasted to the shock.

We report the results from estimates of (OA1) and (OA2) in Figure D.1. To operationalize

(OA1) and (OA2), we use identified productivity shocks, consistent with our quantitative model,

as the structural shock ηt. As in Coibion and Gorodnichenko (2012), we use the identification

approach from Gali (1999). Specifically, we estimate a trivariate VAR(4) on quarterly data

for output, the change in labor productivity, and hours, using the same sample as Coibion and

Gorodnichenko (2012). Technology shocks are identified from the restriction that only technology

shocks have a long-run effect on productivity. In accordance with our baseline estimates, and as

in Coibion and Gorodnichenko (2012), we consider one-year ahead forecasts (k = 4).

Consistent with models of information frictions, the correlation between the conditional re-

sponse of forecast errors and the conditional response of output to identified productivity shocks

is positive in Figure D.1. This lends credence to our estimates based on regression (2).

The estimates in Figure D.1 are in line with models of information frictions, and hence also

our theory. We briefly document this result below for our baseline model.

Proposition D.1. The average forecast error of future output yt+k− Ētyt+k and output yt itself

are positively correlated in response to an innovation ηt to the latent factor θt.

Proof of Proposition D.1: The proof is simple. Notice that we can write the average nowcast

error of the latent factor θt (e.g. productivity) in our model as

θt − Ētθt = ρ

1−
∑
j

gjaj

(θt−1 − Ēt−1θt
)

+

1−
∑
j

gjaj

 ηt −
∑
j

gjbjujt, (OA3)
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Figure D.1: Coibion and Gorodnichenko (2012) test for information frictions
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The left-hand panel depicts the ex-post output growth (measured as the year-over-year growth rate) response to
a one unit identified productivity shock, based upon (OA1). The right-hand panel depicts the mean forecast error
response to the same productivity shock, based upon (OA2), using the identification scheme from Gali (1999).
The shaded area indicates one-standard deviation error bounds. Consistent with the baseline in Section 2.1, we
set k = 4. Furthermore, as in Coibion and Gorodnichenko (2012), lag selection in (OA1) and (OA2) is done so
as to ensure that there is no residual serial correlation, and standard errors are computed using a parametric
bootstrap. We use the entire sample available from the SPF and the productivity shock series to estimate (OA1)
and (OA2). Finally, as in Coibion and Gorodnichenko (2012), because forecasts of output growth are from time
t to t+ k, we drop the first k observations of the impulse response in (OA1) and (OA2).

where we have used that the average expectation of the latent factor equals

Ētθt = ρĒt−1θt−1 +
∑
j

gj
(
xjt − Ēt−1xijt

)
,

with gj characterized in Lemma 1 in the paper. The average forecast error of output is thus

yt+k − Ētyt+k = α
(
θt − Ētθt

)
+ t.n.p, , α = ρk

∑
j

aj > 0 (OA4)

where t.n.p. denotes terms from next period that are uncorrelated with information at time t.

Because the effective Kalman Gain weights gjaj sum to less than one,1 output yt and average

forecast error of the latent factor θt − Ētθt in (OA3) react in the same direction in response to

an innovation to ηt. However, because the average forecast error of future output yt+k − Ētyt+k
is simply proportional to that of the fundamental in (OA4), this also implies that the responses

of the average forecast error of output and output itself are positively correlated. �

E Analysis of Alternative Models

E.1 Expectations of Output in Maćkowiak and Wiederholt (2009)

Maćkowiak and Wiederholt (2009) model nominal log-output (qt in their notation) as an exoge-
1To see this result, first normalize the signals z̃ijt = θt+ bjt/ajujt+ qj/ajεijt, and then use the standard result

that when signals are of the form “latent factor + noise”, then the sum of Kalman Gain coefficients is less than
one (see, for example, Anderson and Moore, 2012 or Lemma 1).
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nous, stationary process. In their second case with an analytical solution, it is an AR(1) process.

Firms rationally allocate attention to acquire information about an economy-wide component

∆t = k0qt, for some coefficients k0, and about idiosyncratic productivity shocks zit, which also

follow an independent AR(1) process. In their paper, Maćkowiak and Wiederholt conjecture and

later verify (see the discussion after their Proposition 4) that it is optimal for firms to acquire

two separate signals that convey “truth plus white noise” for each component:

s1it = ∆t + εit, s2it = zit + ψit. (OA5)

Furthermore, Maćkowiak and Wiederholt (2009) show that the price level pt is a linear function

of qt in equilibrium (see their equation (38)). Using yt = qt − pt, it follows that output yt is also
proportional to qt, and thus that the signal structure in (OA5) is equivalent to

s̃1it = yt + ε̃it, s2it = zit + ψit (OA6)

for some shock ε̃it with a different variance to εit. We note that because output yt is proportional

to an AR(1) process it too follows an AR(1) in reduced form.

The only difference between the information structure in (OA6) and our equations in Section

2.2 is the second signal s2it, which informs firms about idiosyncratic shocks. Notice that these

shocks are uncorrelated with aggregate variables by design. If agents (firms) are asked to forecast

output, these forecasts will be independent of s2it. Thus, forecast errors behave as if they were

determined by the noisy rational expectations case in Section 2.2:

Proposition E.1. Expectations about output in the analytical version of Maćkowiak and Wieder-

holt (2009) underreact to output and average forecast revisions (γ > 0 in (1) and δ > 0 in (2)).

E.2 Expectations of Output in Lucas (1973)

Lucas (1973) considers a continuum of measure one of islands i ∈ [0, 1]. The supply of output

on island i is assumed to follow the supply equation:

ysit = α (pit − E [pt | Ωit]) + λyit−1, α, λ > 0, (OA7)

where pt =
∫ 1

0 pitdi denotes the economy-wide price level, and E [· | Ωit] island inhabitants’

expectations conditional on their information set Ωit (described below).

The price level on island i is exogenous and equal to

pit = pt + εipt, εipt ∼ N
(
0, τ−1

p

)
,

while the central bank directly sets nominal demand mt, so that

mt = ydt + pt = mt−1 + εmt, εmt ∼ N
(
0, τ−1

m

)
.
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Finally, the information structure is as follows: On each island, all agents observe the (infinite)

history of local prices, in addition to mt−1 and yt−1, so that

Ωit = {piτ , pτ−1,mτ−1, yτ−1}τ=t
τ=−∞ .

As is well-known, the equilibrium price level for this economy follows2

pt = π1mt + π2mt−1 + π3yt−1,

where the coefficients πk solve

π1 =
1

1 + γw
, π2 =

γw

1 + γw
(π1 + π2) , π3 =

γw

1 + γw
π3 −

λ

1 + γw
.

and where w denotes the weight on island inhabitants’ prior expectation about pt at time t.

As a result, economy-wide output, our key variable of interest, equals

yt = mt − pt = (1− π1)mt − π2mt−1 − π3yt−1 ≡ k0mt + k1mt−1 + k2yt−1,

where the coefficients kj satisfy k0 > 0, k1 < 0, k2 > 0, and k0 + k1 = 0.

We conclude that output follows the AR(1) process

yt = k0εmt + k2yt−1. (OA8)

We now turn to agents’ expectations about future output. To start, notice that the expecta-

tion of the nominal demand shock εmt in (OA8) is

Eit [εmt] = E [εmt | pit] = E [εmt | sit] = v

(
εmt +

1

π1
εipt

)
,

where we have defined

sit ≡
1

π1
(pit − π1mt−1 − π2mt−2 − π3yt−1) = εmt +

1

π1
εipt,

and v denotes the associated signal extraction weight.

Thus, agent i’s expectation of next period’s output equals

Eit [yt+1] = k2 (k0Eit [εmt] + k2yt−1) = k2

(
k0vεmt + k2yt−1 + k0v

1

π1
εipt

)
so that her forecast error becomes

yt+1 − Eit [yt+1] = k2k0 (1− v) εmt + k0εmt+1 − k2k0v
1

π1
εipt. (OA9)

2See, for example, Veldkamp (2011) Chapter 6.
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Finally, using (OA8) and (OA9) it immediately follows that

γ ∝ Cov (yt+1 − Eit [yt+1] , yt) = k2k
2
0 (1− v) τ−1

m > 0.

A standard argument based on the dispersion of information (e.g., Coibion and Gorodnichenko,

2015) further implies that δ > 0. We conclude that:

Proposition E.2. Expectations about future output in Lucas (1973) underreact to both current

output and average forecast revisions (i.e. γ > 0 in (1) and δ > 0 in (2)).

Intuitively, sit provides island inhabitants with a noisy signal of the money supply shock, and

hence with a noisy signal of the innovation to output (see equation OA8). In this sense, the Lucas

(1973) island model is closely related to our results from the noisy rational expectations case in

Section 2. In fact, the only differences are that island inhabitants observe a private signal of the

innovation to output today rather than the level of output itself, and that island inhabitants are

assumed to observe the previous period’s output without noise. Despite these distinctions, the

intuitions from the noisy rational expectations case in Section 2 carry over, so that we find both

γ > 0 and δ > 0 for all admissible parameters.

E.3 Expectations of Output in Lorenzoni (2009)

Lorenzoni (2009) considers a continuum of measure one of islands i ∈ [0, 1]. The model can be

log-linearized around a non-stochastic steady state, yielding the following equilibrium conditions

(see e.g. Lorenzoni, 2009; Nimark, 2014; Kohlhas, 2019):

1. An Euler equation determining the intertemporal allocation of consumption:

cit = E [cit+1 | Ωit]− it + E [πB,it+1 | Ωit] , (OA10)

where πB,it+1 is the inflation of the goods basket consumed on island i in period t + 1

(defined below), and Ωit denotes the information set on island i (also defined below).

2. A labor supply condition equating the marginal disutility of labor supply with the marginal

utility of consumption multiplied by the real wage:

wit − pB,it = cit + ψnit, (OA11)

where ψ denotes the inverse Frisch-elasticity of labor supply, and nit labor supplied.

3. A demand schedule for the good produced on island i,

yit =

∫
C,i,t

cmtdm− σ
(
pit −

∫
C,i,t

p̄mtdm

)
, (OA12)

where
∫
C,i,t p̄mtdm is the logarithm of the relevant price subindex for consumers from other

islands buying goods from island i.
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4. An interest rate rule

it = ρmit−1 + φπ̃t, π̃t = πt + επt , επt ∼ N
(
0, σ2

π

)
, (OA13)

where π̃ denotes the publicly observable noisy signal of inflation.

5. Lastly, a Phillips curve relating inflation on each island i to the nominal marginal cost on

island i and expected future inflation on island i,

pit − pit−1 = κ (pB.it + cit − pit − ait) + κψ (yit − ait) + βE [pit+1 − pit | Ωit] , (OA14)

where κ = (1−f)(1−fβ)
β denotes the slope of the Phillips curve and f the Calvo parameter.

Information Structure: As in Nimark (2014), we adopt the information structure from Loren-

zoni (2009) but adjust the mean of the normally distributed shocks so that all signals are con-

ditionally stationary. This does not change any of the economics of what follows, but simplifies

the representation of agents’ filtering problems as all variables (except for the price level) are

stationary. Agents on island i observe the following signals:

1. Their own island-specific productivity

ait = θt + εait, εait ∼ N
(
0, σ2

a

)
θt = ρθt−1 + ηt, ηt ∼ N

(
0, σ2

θ

)
2. The demand for island goods (C is drawn such that the below is true)

yit = yt − σ (pit − pt) + εyit, εyit ∼ N
(
σ (pit−1 − pt−1) , σ2

y

)
.

3. The price index for the goods basket consumed on island i (B is drawn such that)

pB,it = pt + εpit, εpit ∼ N
(
pit−1 − pt−1, σ

2
p

)
.

4. The public signal of inflation

π̃t = πt + επt , επt ∼ N
(
0, σ2

π

)
.

5. The public signal of the common, persistent component of productivity

st = θ + εst , εst ∼ N
(
0, σ2

s

)
.

6. The interest rate it.
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Thus,

Ωit = {ait, yit, pB.it, π̃t, st, it,Ωit−1} .

Model Solution: We solve the model using the truncated state-space solution method proposed

in Nimark (2017). For the details of this method applied to the Lorenzoni (2009) model, see

Nimark (2014) and Kohlhas (2019).

Simulation and Calibration: We simulate the model for one million periods, discarding the

first 100,000 observations. We then estimate regression (1) and (2) from our paper, using one-year

ahead forecasts of output growth.

Table E.1: Empirical Estimates Using Different Calibrations

Lorenzoni 2009 Nimark 2014 Kohlhas 2019 Calibrated

Constant 0.00 0.00 0.00 0.00
Current Realization γ 0.03 0.05 0.02 0.10

The table below shows that we consistently find γ > 0 in regression (1) (including in several

alternative, unreported calibrations). The first three columns consider the baseline parameter-

izations in (i) Lorenzoni (2009),3 (ii) Nimark (2014), and (iii) Kohlhas (2019). While these

columns show γ > 0, we note that the estimates of δ in (2) are an order of magnitude below

our estimates in Table 1. This is because, across all the three calibrations, the public signals

of productivity and inflation are substantially more precise than any of the private signals (see,

for example, Lorenzoni, 2009 and Nimark, 2014). As a result, island inhabitants put very little

weight on private information. The final column in the above table attempts to account for this

feature. Specifically, we directly calibrate the noise in individual-specific productivity to target

a δ−coefficients of 0.70 (see Table I of our paper), and mute all public signals (that is, we let the

standard deviation of the noise tend towards infinity). The rest of the parameters are set as in

Kohlhas (2019). We once more find that γ > 0, which is inconsistent with our empirical results.

E.4 Expectations about Output in Angeletos et al. (2018)

Angeletos et al. (2018) study a simple deviation from rational expectations. In the version of

their model that is solved analytically, output in equilibrium is

Yt = At + Λz z̄t + Λξξt, Λz,Λξ > 0,

where At denotes TFP, z̄t the average signal of TFP, and ξt an exogenous process for agents’

confidence. The true data generating process is that logAt is a random walk, ξt = ρξt−1 + ζt,

and the average signal is z̄t = At. Agents believe wrongly that z̄t = At + ξt.
3Because our solution method requires the model to be stationary, we set the persistence of θt to that in

Kohlhas (2019). Indeed for ρ = 1 the above model is identical to that in Lorenzoni (2009). The only difference is
the adjustment of the mean of the signals.
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Thus, the common forecast errors of next-period output (for concreteness) is

Yt+1 − EtYt+1 = At+1 − EtAt+1 + Λz (At+1 − EtAt+1 − Etξt+1) + Λξ (ξt+1 − Etξt+1)

= −Λzρξt + shocks at date t+ 1.

As a result, the equivalent of the coefficient in regression (1) in our paper is

γ ∝ Cov(Yt+1 − EtYt+1, Yt) = −ρΛzCov (ξt, Yt) < 0.

The corresponding forecast revision is

EtYt+1 − Et−1Yt+1 = (1 + Λz) (At −At−1) + Λz (ξt − Etξt−1)

= (1 + Λz) (At −At−1) + Λzζt.

Hence, the equivalent of the coefficient in regression (2) in our paper is

δ ∝ Cov (Yt+1 − EtYt+1,EtYt+1 − Et−1Yt+1) = −ρΛ2
zCov (ξt, ζt) < 0

Angeletos et al. (2018) do not view ξt literally as a deviation from rationality, but rather as

a reduced form of higher-order uncertainty akin to that in models of dispersed information.

However, its implication for forecasts is that it generates overreactions across the board.

Proposition E.3. Expectations about output in the analytical version of Angeletos et al. (2018)

overreact to output and average forecast revisions (γ < 0 in (1) and δ < 0 in (2)).

F Extension of the Baseline Model with Overconfidence

We consider our baseline model in Section 3, but assume that instead of the Bayesian Kalman

filter in Lemma 1, agents form their forecasts of the latent factor θt according to

fitθt = Eit−1 [θt] + (1 + ω)
∑
j

gj (zijt − Eit−1 [zijt]) . (OA15)

We assume that the bias parameter ω > 0, so that agents overreact to each signal zijt relative

to the associated Bayesian update. This specification is similar to the model in Bordalo et al.

(2018) and, more broadly, to the literature on overconfidence (e.g., Broer and Kohlhas, 2019).

As long as the bias ω is not too large, the model replicates all of our findings, as well as the

overreactions to individual information documented in Bordalo et al. (2018) and others:

Proposition F.1. Suppose that attention to the components xjt of output is asymmetric, with∑
j aj(1 −mj) < 0. There exists a ω̄ so that for all overconfidence parameters ω ∈ (0, ω̄), the

coefficients of regressions (1), (2), and (14) in the paper satisfy δ > 0, δind < 0, and γ < 0.
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This proposition extends the argument in Bordalo et al. (2018) to the case with asymmetric

attention, showing that agents with bias parameter ω > 0 overreact to individual information,

consistent with δind < 0 in regression (14). We show in the paper that asymmetric attention

explains δ > 0 and γ < 0 simultaneously in a rational model with ω = 0. By continuity, we can

explain all three sets of facts as long as the bias parameter ω is not too large.

Finally, we reiterate that, even in this extended model, asymmetric attention to different

components of output is necessary to generate this result: Our analysis in Section 2 shows

that if agents receive a signal directly of current output yt, then, for for all values of ω > 0, the

coefficients δ and γ in regressions (1) and (2) have the same sign. This underlines the main insight

of our paper: A model with asymmetric attention can be consistent with several properties of

survey expectations, in particular the coexistence of extrapolation and underreactions.

Proof of Proposition F.1: The coefficient in regression (14) is

δind =
Cov [yt+k − fityt+k, fityt+k − fit−1yt+k]

Var [fityt+k − fit−1yt+k]
= d1Cov [θt − fitθt, fitθt − fit−1θt]

where d1 ≡
(
ρk
∑

j aj

)2
Var [fityt+k − fit−1yt+k]

−1 > 0.

Using a parallel argument to Bordalo et al. (2018, Proposition 2), shows that

θt − fitθt = θt − Eitθt − ω (Eitθt − Eit−1θt)

and

fitθt − fit−1θt = (1 + ω) (Eitθt − Eit−1θt)− ρω (Eit−1 [θt−1]− Eit−2 [θt−2]) .

Thus,

δind ∝ −ωCov [Eitθt − Eit−1θt, fitθt − fit−1θt]

= −ω(1 + ω)Var [Eitθt − Eit−1θt] .

We conclude δind < 0 for all ω > 0. Proposition 2 in the paper shows that γ ∝
∑

j aj(1 −mj)

and δ > 0 for ω = 0, so the claim follows because γ and δ are continuous functions of ω. �

G Optimal Attention Choice with Entropy Costs

Suppose that the costs of attention are equal to the reduction in relative entropy:4

I = µ lim
T→∞

1

T

{
H
(
θT , xT

)
−H

(
θT , xT | zTi

)}
. (OA16)

where H(x|y) denotes the conditional entropy of x given y, and xT denotes the history of the

process {xt}Tt=−∞. In this appendix, we first show that I = K(m) for a well-defined cost function

4See, for example, Maćkowiak et al. (2018).
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K(·), so that the reduction in entropy is merely a special case of our analysis in Proposition 3.

We then derive the comparable first-order condition to that in Proposition 3.

We use the following properties of conditional entropy:

Lemma G.1. Let X, Y , and Z be random vectors. Then:

1. Symmetry of mutual information: H(X)−H(X|Y ) = H(Y )−H(Y |X)

2. Chain rule of conditional entropy: H(X,Y ) = H(X) +H(Y |X)

3. Conditional independence: If Y is independent of Z conditional on X, then

H(Y |X,Z) = H(Y |X)

Proof of Lemma G.1: See Cover and Thomas (2012). �

To start, let s = {θ, x}. Symmetry and the chain rule for entropy, then allows us to write

H
(
sT
)
−H

(
sT | zTi

)
= H(zTi )−H(zTi |sT )

=
T∑
t=1

H(zit|zt−1
i )−H(zit|zt−1

i , sT ). (OA17)

Note that conditional on st = {θt, xt}, the vector of signals zit = xt + diag(qj)εit is independent

of st′ for t′ 6= t, since εit is serially uncorrelated. This, in turn, implies that

H(zit|zt−1
i )−H(zit|zt−1

i , sT ) = H(zit|zt−1
i )−H(zit|zt−1

i , st)

= H(st|zt−1
i )−H(st|zti)

= H(θt|zt−1
i )−H(θt|zti) +H(xt|zt−1

i , θt)−H(xt|zti , θt), (OA18)

where the second equality follows from symmetry and the third from the chain rule for entropy.

For the first term in (OA18), since all variables are jointly Gaussian, we have that

H(θt|zt−1
i )−H(θt|zti) =

1

2
log
[
Vart−1 [θt]

Vart [θt]

]
.

Now focus on the steady state where Vart [θt] = Vart−1 [θt−1] = V (τ), with τ defined in (18).

Using the AR(1) dynamics of θt, we have that

Vart−1 [θt] = ρ2V (τ) + σ2
θ ,

which after substituting gives us

H(θt|zt−1
i )−H(θt|zti) =

1

2
log
[
ρ2 +

σ2
θ

V (τ)

]
≡ K(τ), (OA19)

in which K′(τ) > 0 since V ′ (τ) < 0.
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For the second term in (OA18), note that xt is independent of zt−1 conditional on θt, so that

H(xt|zt−1
i , θt)−H(xt|zti , θt) =H(xt|θt)−H(xt|zit, θt)

=
1

2
log
[

det (Var[xt|θt])
det (Var[xt|θt, zit])

]
=

1

2
log
[ ∏m

i=1 b
2
i∏m

i=1 b
2
i (1−mi)

]
=

1

2
log

[
1∏

j(1−mj)

]
= −1

2

m∑
j=1

log(1−mj). (OA20)

Substituting (OA20) and (OA19) into (OA18) then shows that

I = K (τ)− 1

2

m∑
j=1

log(1−mj) ≡ K(m),

which is well-defined since τ is a function of m. Finally, combining (OA17) with (OA16) and

using stationarity, we find that our cost function satisfies K(m) = I.
We can now use Proposition 3 to see that the first-order condition for mj at an interior

optimum satisfies:

w2
j b

2
j + µ̂τ

a2
j

b2j
+ µαwjaj =

1

2

1

1−mj
, (OA21)

where the adjusted multiplier measuring learning spillovers is

µ̂τ = µτ −K′(τ),

with µτ defined as in Proposition 3. The second term in (OA21) is specific to the entropy

cost formulation, because entropy reductions also depend on the sufficient statistic τ . The

comparative statics remain the same as in our version with a generic cost function: It is optimal

to pay attention to important components (high wj), and to volatile components (high bj) as

long as spillovers are not too strong. In addition, we see that an entropy cost function naturally

yields mj < 1 for all j: Attention is always imperfect because the entropy costs of full attention

mj → 1 are infinite. We summarize these results in Proposition G.1.

Proposition G.1. With the entropy attention costs in (OA16), the first-order condition for

agents’ optimal attention choice mj at an interior optimum satisfies:

w2
j b

2
j + µ̂τ

a2
j

b2j
+ µαwjaj =

1

2

1

1−mj
, (OA22)

where µ̂τ = µτ − K′(τ) and µτ is defined in Proposition 3. We note that attention is always

imperfect because the entropy costs of full attention mj → 1 are infinite.

H Flexible Information Design

An agent’s flexible information design problem is

21



min
K,A,B,Σψ

E
[
(a?t − E [a?t | Ωit])

2
]

(OA23)

subject to

lim
T→∞

1

T

{
H
(
a?,T | ā?0

)
−H

(
a?,T | ā?0, sK,T

)}
≤ κ, (OA24)

where ā?0 denotes the vector of initial conditions, and

sKit = Aa?,Mt +BvNt + ψKit , (OA25)

with a?,Mt =
[
a?t a?t−1 . . . a?t−M+1

]′
, vNt =

[
v′t v′t−1 . . . v′t−N+1

]′
, and ψKit ∼ i.i.d.N (0,Σψ).

Lemma H.1. The information flow constraint (OA24) is equivalent to

lim
T→∞

1

T

[
H
(
ϕT | sK,T−1

i

)
−H

(
ϕT | sK,Ti

)]
≤ κ,

where the vector ϕT can be any vector with the following two properties: (i) a?,Mt and vNt in

(OA25) can be computed from ϕt; and (ii) ϕt contains no redundant elements.

Proof of Lemma H.1: The proof is identical to the proof of Lemma 1 in Maćkowiak et al. (2018).

The proof relies on the symmetry of mutual information, the law of total mutual information, and

the fact that a?t has a time series representation. The steps do not change when the innovations

to a?t are a linear combination of white noise shocks (as in our model), or a single white noise

innovation (as in Maćkowiak et al., 2018). �

Lemma H.2. Any optimal signal vector sKit is a linear combination of a?t and vt only.

Proof of Lemma H.2: This is a special case of Proposition 1 in Maćkowiak et al. (2018). To

apply the steps in the proof of Proposition 1 in Maćkowiak et al. (2018), we first note that the

signal vector in (OA25) has the following state-space representation:

sKit = G′ϕt + ψKit (OA26)

ϕt = Fϕt−1 + wt,

where

ϕt =
[
a?t ... a?t−M+1 v′t ... v′t−N+1

]′
and, for example,

FM=N=2 =


ρ 0 c1 0

1 0 0 0

0 0 0 0

0 0 I 0

 , wt,M=N=2 =


c0

0

I

0

 vt.
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We note that the matrix GM=N=2 is the matrix for which (OA26) equals (OA25). Such a matrix

exists because a?,Mt and vNt can be computed from ϕt.

Now, let

ξt =

[
a?t

vt

]
=

[
ρ c1

0 0

][
a?t−1

vt−1

]
+

[
c0

I

]
vt ≡ Fξξt−1 + vξ,t

The same steps as in Proposition 1 in Maćkowiak et al. (2018) then show, using Lemma H.1,

that both (i) the signal vector in (OA26), and (ii) a signal vector about ξt leave the objective

function in (OA23) unchanged (both contain a?t , and expectations about a?t can be computed

from both). The only difference is the former is associated with more information flow. �

Lemma H.3. K = 1 optimally.

Proof of Lemma H.3: In this case, the proof is quite simple (and follows the same steps as

those in Maćkowiak et al., 2018 Proposition 3). Suppose the signal vector sKit consists of multiple

signals of the same linear combination of a?t and vt. Then, the signal vector is clearly equivalent

to a one-dimensional signal with a higher precision. �

Combined, these three result imply that:

Proposition H.1. The optimal signal is

z?it = α0a
?
t + α′1vt + ψit ∝ a?t + h′vt + q?εit, (OA27)

where h and q? are defined in Section 4.3.

Finally, we discuss the comparative statics of z?it in (OA27) with respect to the weights wθ
and wxj and the capacity constraint κ. To do so, we once more exploit and adapt a result from

Cover and Thomas (2012) and Maćkowiak et al. (2018):

Corollary H.1. Suppose wθ > 0 and wxj = 0 for all j = {1, 2, ..., N}.
Then, the optimal signal collapses to z?it = α0θt + q?εit.

Proof of Corollary H.1: The optimal action a?t is a standard AR(1) in this case. The result

then follows from the well-known steps in, for example, Cover and Thomas (2012). �

Corollary H.2. As κ→∞, the optimal signal converges to only be about a?t .

Proof of Corollary H.2: Identical to the proof of Proposition 6 in Maćkowiak et al. (2018). �
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I Macroeconomic Example and Angeletos et al. (2016)

Our macroeconomic example in Section 5 considers a model similar to those considered in An-

geletos and La’O (2010, 2012) and Angeletos et al. (2016). To demonstrate why we view strategic

substitutability as a natural assumption, we generalize our baseline model to encompass both

our model from Section 5 as well as the features that determine the strategic considerations of

firms in Angeletos et al. (2016).5 Consider our model in Section 5. Assume that firm productiv-

ity follows a common process with εit = 0 (as in our baseline calibration). Replace households’

utility with u(C,N) = C1−ψ−1
1−ψ − 1

1+ηN
1+η
t . Relative to this overarching model, our analysis

in Section 5 restricts attention to log consumption utility (ψ → 1) and linear disutility of labor

(η = 0).6 Angeletos et al. (2016) allow for general values for ψ and η, but set α = 1 in firms’

production function, so that it has constant returns to scale in labor. We below abstract from

any labor supply shocks, which do not affect firms’ strategic behavior, without loss of generality.

We solve for the full-information equilibrium of this model:

Proposition I.1. Let u(C,N) = C1−ψ−1
1−ψ − 1

1+ηN
1+η
t . Under full information, firm i’s optimal

output choice satisfies the best response function

yit = k0at + k1yt, (OA28)

where k0 > 0 and the coefficient of strategic complementarity k1 is

k1 =
α(1− σψ)

α(1− σ) + σ(1 + η)
. (OA29)

We note that, because of certainty equivalence, we can use the full-information solution of

the generalized model in (OA28) and (OA29) to determine whether output choices are strategic

substitutes or complements even under imperfect information.

Equation (OA29) implies that firms’ output choices are strategic substitutes (k1 < 0) if and

only if σψ > 1. Standard parameter choices in macroeconomics (see, for example, Gali, 2008,

Chapter 3 p. 56) have σ ∈ [4, 10] and ψ ∈ [1, 4], so that σψ ≥ 4 and k1 < 0. Thus, we conclude

that strategic substitutes are pervasive for most popular parameterizations.
5In addition to the features mentioned, Angeletos et al. (2016) include one additional layer of CES aggregation.
6We choose this parametrization for standard reasons. First, the calibration of ψ → 1 is the only value within

the iso-elastic utility class that is consistent with balanced growth (i.e. is within the well-known KPR-class).
Second, the calibration of η → 0 allows flex-price models to generate sufficient volatility in hours worked (e.g.
Prescott and Wallenius, 2012). As shown by Hansen (1985) and Rogerson (1988), linear disutility of labor can
arise from the iso-elastic framework (considered in Angeletos et al., 2016) when one accounts for the fact that
most of the variation in hours worked are due to changes in the extensive (rather than the intensive) margin. It
thus allows our model to have a higher Frisch elasticity, without simultaneously being subject to the criticism
that the labor supply elasticity is inconsistent with micro-evidence.
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J Numerical Solution of Model with Imperfect Attention

We solve the model by repeated iteration of the two steps described in the main text. Below,

we detail these steps in reverse order. First, we solve for the imperfect information equilibrium

given a set of attention choices. Then, we solve for the optimal attention choices.

Step 2: Equilibrium Given Attention Choices:7 Consider the equation for aggregate

output that arises under imperfect attention:

yt =

∫ 1

0
yitdi = Ēt [x1t + x2t] , (OA30)

where x1t =
∫ 1

0 xi1tdi and

x1t = rθt + ruxt , x2t = αrσ−1y − αr
(
Eht [yt] + unt

)
.

Now let xt =
[
x̄′t−1 x̄′t−2 . . .

]′
where x̄t =

[
x1t x2t θt

]′
. We look for linear equilibria

where the law of motion for the unobserved components and the fundamental takes the form of

the infinite dimensional vector

xt = Axt−1 +But, ut =
[
uθt uxt unt

]′
, (OA31)

where

A =


0 0 rρθ 0

Ap

0 0 ρθ 0

I

 , B =


r r 0

Bp

1 0 0

0

 . (OA32)

To solve for the rational expectations equilibrium, we conjecture and verify below that

yt = ψxt, x2t = c0xt + c1ut, (OA33)

where ψ, c0, and c1 are vectors of coefficients.

Coefficients and Conjectures: It follows from (OA30) that

yt =
[

1 1 0
]
Ēt [xt] =̊ψxt, (OA34)

where =̊ denotes “should equal”. We conclude from (OA34) that to verify our conjecture we need

to find a matrix Ξ such that

Ēt [xt] = Ξxt. (OA35)
7The steps used to find this equilibrium are analogous to those described in Lorenzoni (2009).
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Now since

Eht [yt] = ψ

Axt−1 +B


1 0 0

0 0 0

0 0 1

ut
 = ψxt − ψB


0 0 0

0 1 0

0 0 0

ut,
it also follows that

x2t = αrσ−1ψxt − αr

ψxt − ψB


0 0 0

0 1 0

0 0 0

ut + e3ut

 =̊ c0xt + c1ut, (OA36)

where el denotes a row vector with a one in the l’s position but zeros elsewhere.

Individual and Average Inference: An individual firm’s signal vector is

sit =

[
e1

e2

]
xt +Qεit, Q = diag

[
q1 q2

]
(OA37)

≡ Lxt +Qεit.

Thus,

Eit [xt] = AEit−1 [xt] +K (sit − LAEit−1 [zt−1]) , (OA38)

where the Kalman Gain K is given by the standard expression (Anderson and Moore, 2012).

Then, from (OA35) and (OA38) it has to hold for all t that

Ξxt = (I −KL)AΞxt−1 +KLxt. (OA39)

Fixed Point: We have from (OA34) and (OA36) that

ψ =
[

1 1 0
]

Ξ, c0 = αr
(
σ−1 − 1

)
ψ, c1 = αr

ψB


0 0 0

0 1 0

0 0 0

+ e3

 . (OA40)

Equilibrium and Computation: An equilibrium is characterized by (i) a set of coefficients that

describe aggregate dynamics {Ap, Bp, ψ, c0, c1}, and (ii) a set of coefficients that detail the learn-

ing dynamics {K,Ξ}. Computing the equilibrium requires truncating the infinite-dimensional

vector xt. Specifically, we instead consider the vector x[T ]
t =

[
x̄′t−1 x̄′t−2 . . . x̄′t−T

]′
.

To find the equilibrium, we apply the following algorithm: We start with some initial values

for Ap and Bp (for simplicity, we use those from the corresponding full-information solution).

We then use these values to compute K from (OA37) and (OA38). This, in turn, allows us to
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find an expression for Ξ from (OA39) since

Ξx
[T ]
t = (I −KL)AΞMx

[T ]
t +KLx

[T ]
t ,

where

M =

[
0 I

0 0

]
,

which gives us the following relationship that we solve for Ξ:

Ξ = (I −KL)AΞM +KL. (OA41)

We can now use (OA40) to find an expression for ψ, c0, and c1.

Finally, we use these expressions to compute new values of Ap and Bp from (OA32), and then

repeat these steps until convergence is achieved. The criterion used is the maximum absolute

difference between the new and old elements of Ap and Bp.

Step 1: Attention Choices Given Equilibrium: Given the above aggregate equilibrium, we

solve a firm’s ex-ante attention choice problem. That is, we solve

min
m1,m2

Eit [yit − y?it]
2 +K (m) , K(m) = µ

(
q−2

1 + q−2
2

)
, (OA42)

where qj = V (xjt | θt) [mj − V (xjt | θt)]−1 for j = {1, 2} and we have that

y?it = xi1t + x2t,

in which

xi1t = rθt + ruxt + rεait = re′3x
[T ]
t + re′2σxut ≡ a1x

[T ]
t + b1ut + εait

x2t ≡ a2x
[T ]
t + b2ut,

and where a1 and b1 are implicitly defined, while a2 = c0 and b2 = c1.

To minimize (OA42), we first derive an expression for the quadratic component

E [y?it − Eit [y?it]]
2 = 1′V

[
xit | zti

]
1, xit =

[
xi1t x2t

]′
where

V
[
xit | zti

]
= V

[
xit | zti ,x

[T ]
t

]
+ V

[
E
[
xit | zti ,x

[T ]
t

]
| zti
]

(OA43)

by the Law of Total Variance.

It now follows that the first component in (OA43) is

V
[
xit | zti ,x

[T ]
t

]
= V

[
xit | zit,x[T ]

t

]
= bb′ + r̄r̄′ −

(
bb′ + r̄r̄′

) [
bb′ +QQ′ + r̄r̄′

]−1 (
bb′ + r̄r̄′

)′
= bb′ + r̄r̄′ − m̃

(
bb′ + r̄r̄′

)′
,
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where b =
[
b1 b2

]′
, r̄ =

[
rσa 0

]′
, and m̃ = (bb′ + r̄r̄′) [bb′ +QQ′ + r̄r̄′]−1 .

To derive the second component in (OA43), notice that

E
[
xit | zti ,x

[T ]
t

]
= E

[
xit | zit,x[T ]

t

]
= E

[
xit | x[T ]

t

]
+ m̃

(
zit − E

[
zit | x[T ]

t

])
= (I − m̃) ax

[T ]
t + m̃zit,

where a =
[
a1 a2

]′
. Thus,

V
[
E
[
xit | zti ,x

[T ]
t

]
| zti
]

= (I − m̃) aV
[
x

[T ]
t | zti

]
a′ (I − m̃)′ ,

in which V
[
x

[T ]
t | zti

]
can be found from the Kalman Filter run in (OA38).

In sum, we have that the quadratic term (OA42) becomes

E [y?it − Eit [y?it]]
2 = 1′

[
bb′ + r̄r̄′ − m̃

(
bb′ + r̄r̄′

)′]
1

+ 1′ (I − m̃) aV
[
x

[T ]
t | zti

]
a′ (I − m̃)′ 1,

which allows us to solve the problem in (OA42).

Equilibrium: We iterate on two steps described in Step 1 and Step 2 until convergence. As a

convergence criteria, we use the maximum absolute difference in attention coefficients. We use

the full information case in which m1 = m2 = 1 as the initial values.
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