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Asymmetric Attention†

By Alexandre N. Kohlhas and Ansgar Walther*

We document that the expectations of households, firms, and pro-
fessional forecasters in standard surveys simultaneously extrapo-
late from recent events and underreact to new information. Existing 
models of expectation formation, whether behavioral or rational, 
cannot account for these observations. We develop a rational the-
ory of extrapolation based on limited attention, which is consistent 
with this evidence. In particular, we show that limited, asymmetric 
attention to procyclical variables can explain the  coexistence of 
extrapolation and underreactions. We illustrate these mechanisms 
in a microfounded macroeconomic model, which generates expec-
tations consistent with the survey data, and show that asymmetric 
attention increases business cycle fluctuations. (JEL C53, D83, D84, 
E23, E27, E32)

Given the central role of people’s expectations in economics, it is important to 
have a theory of expectations formation that is consistent with the data. There is 
reason to believe that such a theory needs to be richer than the benchmark model 
of full  information and rational expectations. Indeed, the original proponents 
of rational expectations were aware of this prospect. Muth (1961) allowed for 
“ under-discounting” in his theory, noting that people may extrapolate from current 
events. Lucas (1972) studied agents who observe imperfect, noisy information, and 
later argued that “for most agents [ … ] there is no reason to specialize their infor-
mation systems for diagnosing general movements correctly” (Lucas 1977, p. 21).

Many recent advances in the theory of expectations formation fall into one of 
two frameworks. On one hand, the noisy rational expectations approach proposed 
by Lucas has returned to popularity following the work of Woodford (2001) and 
Sims (2003). On the other hand, a common view is that such rational models cannot 
account for people’s pervasive tendency to extrapolate from recent events, which 

* Kohlhas: Institute for International Economic Studies (email: alexandre.kohlhas@iies.su.se); Walther: 
Imperial College London (email: a.walther@imperial.ac.uk). Mikhail Golosov was the coeditor for this arti-
cle. First draft: January, 2018. We are indebted to three anonymous referees, George-Marios Angeletos, Ryan 
Chahrour, Martin Ellison, Nicola Gennaioli, Per Krusell, Kristoffer Nimark, David Stromberg, Robert Ulbricht, 
Laura Veldkamp, Mirko Wiederholt, and conference and seminar participants at the AEA Annual Meeting 2019, 
Barcelona Summer Forum, Cambridge University, Cornell University, CEPR Summer Symposium (Gerzensee) 
2017, HKUST, Mannheim University, NORMAC 2017, Oxford University, Salento Summer Meetings, and SED 
2018 for their comments. This research received financial support from the Lamfalussy Fellowship and Ragnar 
Soderberg Stiftelsen. 

† Go to https://doi.org/10.1257/aer.20191432 to visit the article page for additional materials and author  
disclosure statements.



2880 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 2021

has been documented in the survey data.1 The latter view favors behavioral models 
of expectation formation that are consistent with extrapolation. The tension between 
these two frameworks is important, because the outcomes and dynamics of mod-
els with behavioral biases may differ from those with noisy rational expectations. 
Despite the obvious importance of this issue, no consensus has been reached.

In this paper, we argue that many existing models of expectation formation, 
whether behavioral or rational, cannot account for the survey evidence. This is 
because they cannot account for the fact that overreactions to recent events (i.e., 
extrapolation) often coincide with the type of underreactions to average new infor-
mation that have been pointed out by Coibion and  Gorodnichenko (2015). Our 
main contribution is to propose a unified model of expectation formation based on 
noisy rational expectations that resolves the friction between theory and data, and to 
explore its business cycle implications.

To empirically motivate our work, we demonstrate simultaneous overreactions 
and underreactions in a range of survey data.2 The participants of standard surveys, 
reporting their expectations about future output and inflation, not only extrapolate 
from recent conditions, but also underreact to average information (as measured by 
average forecast revisions).

We show that a popular class of models, in which agents process signals of a 
forecasted variable (output, for concreteness), are inconsistent with such simulta-
neous over- and underreactions. This class includes standard behavioral models of 
extrapolation bias (e.g., Cutler, Poterba, and Summers 1990; Barberis et al. 2016), 
simple models of noisy rational expectations as derived from models of rational 
inattention (e.g., Sims 2003), as well as models that combine extrapolation bias or 
overconfidence with the presence of noisy information (e.g., Daniel, Hirshleifer, 
and Subrahmanyam 1998; Bordalo, Gennaioli, and Shleifer 2018). Intuitively, noisy 
information (or inattention) generates underreactions to new information, because 
individuals shrink their forecasts towards prior beliefs when the signals they observe 
are noisy. By contrast, extrapolation bias or overconfidence generates overreactions. 
We show that, on balance, when agents process signals of the forecasted variable, 
only one of these forces can dominate. In addition, we find that the same result 
extends to several influential models with a richer information structure (e.g., Lucas 
1973; Lorenzoni 2009; Maćkowiak and  Wiederholt 2009; Angeletos, Collard, 
and Dellas 2018). This is inconsistent with the simultaneous over- and underreac-
tions that we find in the survey data.

Our core contribution is to develop a theory of extrapolation that is based on 
rational updating. We consider a model of forecasters who observe noisy informa-
tion due to their limited attention. The distinguishing feature of our model is that 
forecasters do not passively observe noisy signals of aggregate conditions. Instead, 
agents observe noisy information of the various, structural components that com-
prise output, and can choose how much attention to pay to each component. The 

1 See, for example, Barberis et al. (2016); Bordalo, Gennaioli, and Shleifer (2018); and the references therein.
2 Specifically, in Section I, we consider output and inflation forecasts from four of the most commonly used 

surveys on expectations: the Federal Reserve Bank of Philadelphia Survey of Professional Forecasters (SPF), the 
European Central Bank’s  (ECB) SPF, the Michigan Survey of Consumers, and the Livingston Survey.
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combination of rational updating and noisy information implies that our theory 
remains consistent with observed underreactions.

In our model, output is the sum of several components. For example, these com-
ponents could represent different inputs into the economy’s production function, dif-
ferent sectors of the economy, or different variables in the economy’s dynamic Euler 
equation for output. A population of forecasters observes a vector of noisy signals, 
where each signal contains information about a particular component. We think of 
attention to each component as the precision of the associated signal. Importantly, 
attention can be higher for some components than for others. We say that attention 
is asymmetric if agents receive a relatively more precise signal about some compo-
nents. In this environment, we derive two main results.

The first main result is that asymmetric attention can explain the  coexistence of 
extrapolation and underreactions, as long as attention centers on procyclical com-
ponents. Consider an economy in which output is driven by only two components, 
which differ in their behavior over the business cycle. The first component is procy-
clical, while the second is countercyclical. Suppose that agents pay more attention 
to the procyclical component. Then, compared to the  full-information benchmark, 
agents become more optimistic in booms and more pessimistic in busts, even though 
they adhere to Bayes’ rule. As a result, the measured overreactions to recent output 
in the survey data can be viewed as an outcome of underreactions to countercyclical 
components. In addition, as long as agents’ attention to the procyclical component 
remains imperfect, they still exhibit underreaction to new information on average, 
due to their rationally muted responses to noisy information. We extend this rea-
soning to a canonical forecasting problem with an arbitrary number of components. 
An auxiliary proposition generalizes our results to a comprehensive class of linear 
models.

Our second main result concerns the possible sources of asymmetric attention. 
In principle, asymmetric attention could arise from behavioral heuristics or salience 
effects (Gabaix 2017). Notwithstanding such alternatives, we show that asymmetric 
attention arises naturally in a rational framework, in which agents optimally choose 
how to allocate costly attention. With standard attention cost functions, agents in our 
framework find it optimal to pay asymmetric attention to components that are either 
particularly volatile or important for their  decision-making. For example, consider 
a firm that reports its expectation about future output. In line with the conclusions 
in Lucas (1977), this firm has an incentive to focus its attention on the components 
of output that correlate closely with its own local conditions, especially if these 
components are also volatile. Coibion, Gorodnichenko, and Kumar (2018b) uses 
detailed  firm-level data to provide direct evidence of firms’ incentive to pay asym-
metric attention to volatile and important variables.

Combining our two results, we conclude that a rational model of limited attention 
can simultaneously explain extrapolation and underreaction to aggregate informa-
tion, as long as the volatile or important components of output that attract attention 
are also procyclical. This connects our results to those of Woodford (2001), Nimark 
(2008), and Angeletos and  Huo (2021), among others, which argue that limited 
attention can account for the myopia and anchoring to past outcomes often docu-
mented in macroeconomics. We demonstrate that models of limited attention also 
have the potential to be consistent with extrapolation.
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We show that an additional testable implication of our explanation, in terms of 
the aggregate data, is that expectations should be more precise than pure time-series 
forecasts (e.g., forecasts from autoregressive integrated moving average (ARIMA) 
models). Consistent with this prediction, we update estimates from Stark (2010) to 
show that forecasters’ survey expectations of output growth consistently outperform 
simple time-series models, especially at short horizons.

To explore the implications of our framework, and to provide an example of 
the sources of asymmetric attention, we apply our framework to a standard mac-
roeconomic model with flexible prices in the spirit of Angeletos, Iovino, and La’O 
(2016). In the model, firms choose output under imperfect information about pro-
ductivity. We show that, in equilibrium, firms’ output choices can be split into two 
components: (i) firm beliefs about a productivity component, which reflects their 
own productivity; and (ii) firm beliefs about an aggregate supply component, which 
summarizes the equilibrium effect of other firms’ choices on individual firm output. 
Maćkowiak and Wiederholt (2009) proposes a closely related decomposition. When 
we sum across firms, aggregate output thus becomes the simple sum of the two 
components.

We show that, for standard parameter values, two key conditions are satis-
fied: First, the productivity component is procyclical, while the aggregate supply 
component is countercyclical. The latter follows because  economy-wide expan-
sions tend to increase firms’ costs, leading each individual firm to reduce its out-
put relative to its partial equilibrium choice. Second, if attention is costly, firms 
optimally choose to pay asymmetric attention to their own productivity, because 
this component is substantially more volatile. As a result of these two condi-
tions, and in line with our two main results, firms’ expectations of future aggre-
gate output exhibit both extrapolation and underreactions to recent forecast 
revisions, relative to the full information benchmark. This is qualitatively consistent 
with the survey evidence. The model also fits the empirical size of these effects  
well.

We use the macroeconomic model to explore the business cycle implications of 
firms’ asymmetric attention choices. We show that asymmetric attention to local 
components leads to more persistence and volatility in aggregate output than an 
equivalent model with symmetric attention. We further document that the calibrated 
model exhibits an increase in extrapolation  post-Great Moderation, and argue that 
firms’ optimal attention choices may have contributed to the increased persistence 
of output during this period.

Finally, two wider implications of our analysis are worth noting. First, in the 
tradition of Lucas (1977), our macroeconomic model focuses on a lack of attention 
to equilibrium effects as the driver of extrapolation. As such, our results speak to 
a literature in behavioral finance, which models the neglect of equilibrium effects 
as fundamental behavior, and uses this to account for investment patterns (e.g., 
Greenwood and Hanson 2015).

Second, motivated by the survey evidence, we focus on a setting in which agents’ 
forecasts appear to overreact to a particular type of public information (i.e., recent 
realizations of the forecasted variable). However, as we illustrate, a model of asym-
metric attention may be equally consistent with underreactions to other types of 
public information, depending on how this information correlates with the variables 
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to which agents pay attention.3 We therefore view this paper, more generally, as 
taking a first step towards integrating observed over- and underreactions to new 
information into a unified, rational framework.

Related Literature.—In addition to the literature cited above, this paper relates 
to four areas of research. We review these in reverse chronological order, starting 
with the most recent and ending with the long history of thought on extrapolative 
and adaptive expectations.

First, our paper reconciles overreactions to recent outcomes of the forecasted 
variable with underreactions in average forecast revisions. In contemporaneous and 
closely related work, Bordalo et al. (2020) proposes a behavioral model that can 
reconcile similar underreactions to average forecast revisions with overreactions to 
individual forecast revisions (see also Fuhrer 2017 and Broer and Kohlhas 2019). 
Their notion of overreactions is distinct from the overreactions to current aggregate 
conditions, such as current output, on which we focus in this paper.4 As we demon-
strate in Section I, simple versions of the framework in Bordalo et al. (2020) cannot 
account for the simultaneous occurrence of underreactions to average revisions and 
overreactions to current output growth that we document in the data. Furthermore, 
we show that an extended version of our model can fit the stylized facts in both 
papers. Crucially, this would not be possible in a model with symmetric attention 
choices. In another recent paper, Angeletos, Huo, and  Sastry (2020) shows how 
a combination of different behavioral biases can generate the empirical estimates 
in our work, as well as the estimates in Coibion and Gorodnichenko (2015) and 
Bordalo et al. (2020). We view this recent strand of research as presenting related 
and complementary steps towards a unified model of expectations that is consistent 
with over- and underreactions to new information.

Second, in common with a vast literature in macroeconomics since Lucas 
(1972), we emphasize the importance of imperfect information for business cycle 
dynamics. Prominent studies, among many others, are Woodford (2001); Mankiw 
and Reis (2002); Lorenzoni (2009); Blanchard, L’Huillier, and Lorenzoni (2013b); 
Angeletos and La’O (2013b); Maćkowiak and Wiederholt (2015); and Chahrour 
and Ulbricht (2018). We emphasize the role of agents who optimally choose how 
to allocate their scarce attention, and we build on the complementary literatures on 
“optimal information choice” (e.g., Veldkamp 2011; Hellwig, Kohls, and Veldkamp 
2012) and “rational inattention” (e.g., Sims 2003, Maćkowiak and Wiederholt 2009, 
Wiederholt 2010). The contribution of our paper, in this context, is to highlight that 
models of imperfect information can also be consistent with the observed overreac-
tions in the survey data.

Third, we leverage the existing evidence on survey expectations. Pesaran (1987) 
summarizes the early evidence on deviations from full information and rational 
expectations, and Zarnowitz (1985) shows that survey data is consistent with mod-
els of noisy, private (instead of common, perfect) information. Relatedly, Ehrbeck 
and Waldmann (1996) explores the sources of bias in professional forecasts and 

3 Underreactions to public information are documented, for example, in Barberis, Shleifer, and Vishny (1998); 
Daniel, Hirshleifer, and Subrahmanyam (1998). Eyster, Rabin, and Vayanos (2019) reviews further related evidence. 

4 We discuss the relationship between our work and that of Bordalo et al. (2020) in detail in Section IID.
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conclude that these are unlikely to derive from  agency-based considerations. More 
recently, Coibion and Gorodnichenko (2012b, 2015) demonstrate underreactions to 
average forecast revisions (see also Andrade and Le Bihan 2013, and Fuhrer 2017), 
which form part of the motivation for this paper.

Finally, our focus on overreactions to recent outcomes connects this paper to 
the literature on adaptive and extrapolative beliefs. This includes the early work 
of Goodwin (1947), Cagan (1956), and Muth (1961), the experimental work on 
the psychology of subjective probabilities as explored by Kahneman and Tversky 
(1972) and Andreassen and Kraus (1988), and the modern treatments of extrapola-
tion by de Long et al. (1990); Cutler, Poterba, and Summers (1990); Fuster, Hebert, 
and Laibson (2012); Greenwood and Shleifer (2014); Barberis et al. (2016); and 
Bordalo, Gennaioli, and Shleifer (2018). This paper is the first, to our knowledge, to 
combine the empirical insights of this literature with a model that can also generate 
underreactions to aggregate expectations.

I. Motivating Evidence and Existing Theory

In this section, we revisit two simple tests of full information and rational expec-
tations. We document a new stylized fact: participants’ expectations in standard sur-
veys simultaneously overreact to recent realizations of the forecasted variable (i.e., 
extrapolate from recent events), but underreact in their forecast revisions. We then 
derive the predictions of a popular set of existing models and argue that these mod-
els cannot account for this observation.

A. Simultaneous Over- and Underreactions

We start by considering forecasts of US output growth from the Survey of 
Professional Forecasters (SPF).5 The SPF is a survey of between  20 and 100 pro-
fessional forecasters and is conducted quarterly by the Federal Reserve Bank of 
Philadelphia. Real GDP/GNP growth estimates are available from 1968:IV at a 
quarterly frequency. We focus on output forecasts for two reasons. First, because 
expectations about future output play a central role in the economy as determinants 
of consumption, inflation, and asset prices. Second, because data on output forecasts 
are available for a longer  time-span than forecasts of most other variables. We later 
explore the robustness of our empirical estimates by considering forecasts of infla-
tion, as well as alternative survey datasets for the United States and the euro area.

We let   y  t+k    denote  year-on-year output growth at time  t + k . Consider a survey 
with respondents indexed by  i ∈  {1, 2, …, I}  , and let   f  it    y  t+k    denote the forecast of   
y  t+k    reported by survey respondent  i  at time  t . The respondent’s forecast error is   
y  t+k   −  f  it    y  t+k   . A negative forecast error thus corresponds to an  overestimate of   y  t+k   . 
A  well-known implication of full information and rational expectations (FIRE) is 
that individual forecast errors should be unpredictable. Under FIRE, no variable that 

5 The SPF is the oldest quarterly survey of individual macroeconomic forecasts in the United States, dating back 
to 1968. The SPF was initiated under the leadership of Arnold Zarnowitz at the ASA and the NBER, which is why 
it is also still often referred to as the  ASA-NBER Quarterly Economic Outlook Survey (Croushore 1993).
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is observable at time  t  should correlate with   y  t+k   −  f  it    y  t+k   . We rely on two common 
tests of this prediction.

The first test is a regression of forecast errors on current output growth,

(1)   y  t+k   −  f  it    y  t+k   =  α i   + γ  y  t   +  ξ it  , 

where   α i    is a constant, which also captures individual fixed effects, and   ξ it    is an error 
term. The second test is a regression of forecast errors on average forecast revisions,

(2)   y  t+k   −  f  it    y  t+k   =  α i   + δ (   f –  t    y  t+k   −   f 
–
  t−1    y  t+k  )  +  ξ it  . 

The term    f 
–
  t    y  t+k   −   f 

–
  t−1    y  t+k    on the  right-hand side is the average change in respon-

dents’ forecasts when they are asked twice (at dates  t − 1  and  t ) to forecast the same 
future realization   y  t+k   . A positive revision arises when good news about future out-
put arrives between  t − 1  and  t . This specification closely follows the test proposed 
by Coibion and Gorodnichenko (2015).6

The prediction of the FIRE benchmark is that the coefficients  γ  and  δ  in (1) and 
(2) should both be zero, because both current output growth and the latest forecast 
revision are observable at time  t . It is useful to note that both (1) and (2) are tests of 
the joint hypothesis of full information and rational expectations. A rejection of the 
FIRE prediction reveals either that forecasters are reporting irrational expectations, 
or that they have imperfect information about current output (for  γ ≠ 0 ) or average 
forecast revisions (for  δ ≠ 0 ). However, it does prima facie not reveal which one of 
these hypotheses is rejected.

The raw data already hint at deviations from the FIRE benchmark. Figures 1 
and 2 plot average  one-year-ahead forecast errors (the average  left-hand side of (1) 
and (2) across respondents, with  k = 4 ) over time and compare them, respectively, 
to current realizations of output growth (the  right-hand side of (1)) and average 
 one-quarter revisions (the  right-hand side of (2)).7 In Figure 1 , forecasts are fre-
quently  overoptimistic, with associated negative forecast errors when current out-
put growth is high, and vice versa when current growth is low. This suggests that 
respondents extrapolate from recent events; agents are systematically too optimistic 
in booms and too pessimistic in busts. Figure 2 , by contrast, suggests that forecast 
errors and average forecast revisions are positively correlated within our sample. 
All else equal, this indicates that agents underreact to new information on average, 
as they are too pessimistic after positive forecast revisions, and vice versa after 
 negative revisions.

6 Coibion and Gorodnichenko (2015) use average forecast errors   y  t+k   −   f 
–
  t    y  t+k    as the dependent variable in (2). 

We prefer the  individual-level regression because it is easier to compare its results to candidate theories of individ-
ual expectation formation, and also because it allows for  respondent-level fixed effects and assigns equal weight 
to all individual forecasts in an unbalanced panel such as ours. For completeness, we report both average- and 
 individual-level estimates throughout the paper and the online Appendix. 

7 We use  real-time data to measure current realizations of output growth. Because the response deadline for the 
SPF is about  one-week from the US Bureau of Economic Analysis’s (BEA) first release of output growth, we on the 
 right-hand side of (2) average this release’s value with its previous quarter’s realization. This is to precisely capture 
the current conditions at the time the respondent institutions determine their published forecast (e.g., Croushore 
and Stark 2019; Bordalo, Gennaioli, and Shleifer 2018). We do not make this adjustment for other variables and 
datasets that we consider below, as for these there is time to include information into published forecasts. Table C.6 
in the online Appendix shows that our results are similar using either of the two quarters’ output growth values. 
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Table 1 confirms these impressions and reports estimates of (1) and (2) using 
the SPF data on  one-year-ahead forecasts ( k = 4 ). In the first column, we estimate 
(1) and find that  γ  is negative and statistically significant. This once more suggests 

Figure 1. Overreactions in Output Growth Forecasts

Notes: Mean one-year-ahead forecast error of output growth from the SPF on the left vertical axis, and the current 
realization on the right axis. Both scales are in percent year on year. Current realizations are measured as the aver-
age of the BEA’s first release value and its previous quarter’s realization. This is to account for the timing of the SPF 
survey (see footnote 7 for further discussion).

Figure 2. Underreactions in Output Growth Forecasts

Notes: Mean one-year-ahead forecast error of output growth from the SPF on the left vertical axis, and the one-quar-
ter revisions on the right axis. Both scales are in percent year on year.
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extrapolation, or overreactions to recent realizations of output growth. In the second 
column, we estimate (2) using  one-quarter average revisions. We find that  δ  is posi-
tive and significant, which is consistent with average forecast revisions underreact-
ing to overall new information received within the period.

The third column confirms these results in a multiple regression. The multivariate 
estimates are similar to those in the univariate case. This suggests that the univar-
iate results are not biased by correlation between output realizations and forecast 
revisions.

Taken individually, the over- and underreactions documented in Table 1 are in line 
with previous estimates. Bordalo, Gennaioli, and Shleifer (2018), for example, report 
evidence on extrapolation based on the  average-level version of regression (1). For 
regression (2), our estimates update those reported by Coibion and Gorodnichenko 
(2015, Figure I). Our results demonstrate that, in addition, extrapolation and under-
reactions occur simultaneously in the SPF data.

In contemporaneous and closely related work, Bordalo et  al. (2020) analyzes 
a different type of “overreactions” in survey expectations to that documented in 
Table 1. Specifically, Bordalo et al. (2020) analyzes overreactions to individual fore-
cast revisions. By contrast, we use regression (1) to emphasize overreactions to 
recent realizations of the forecasted variable. For now, we continue to focus on our 

Table 1—Estimated Over- and Underreactions in the SPF

(1) (2) (3)
Panel A. Individual forecast error
Current realization −0.12 — −0.14

(0.05) (0.04)
Average revision — 0.68 0.71

(0.19) (0.18)

Observations 7,104 7,065 7,008
 F -statistic 169.2 449.6 363.8
R2 0.02 0.06 0.10

Panel B. Average forecast error
Constant 0.02 −0.09 0.25

(0.19) (0.10) (0.15)
Current realization −0.10 — −0.13

(0.05) (0.05)
Average revision — 0.78 0.84

(0.26) (0.25)

Observations 196 195 194
 F -statistic 3.29 16.6 11.9
R2 0.02 0.08 0.11

Notes: Panel A: estimates of regressions (1) and (2) with individual (respondent) fixed effects. 
The top and bottom 1 percent of forecast errors and revisions have been removed. Table C.1 in 
the online Appendix shows similar results without removing outliers. Double-clustered robust 
standard errors in parentheses. Panel B: estimates of regressions (1) and (2) with average fore-
cast errors   y  t+k   −   f 

–
  t    y  t+k    as the left-hand side variable. Robust standard errors in parentheses. 

Current realizations are measured as the average of the BEA’s first release value and its previ-
ous quarter’s realization. Sample: 1970:IV–2019:IV.
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regression (1). In Section IID, we provide a detailed discussion of these distinct 
notions of overreaction.

We obtain similar estimates to those in Table 1 beyond forecasts of output growth 
in the US SPF. Figure 3 summarizes estimates of (1) and (2) for output and inflation 
forecasts from the euro area SPF, the Livingston Survey (which covers academic 
institutions, investment banks,  nonfinancial firms, and government agencies), and 
the Michigan Survey of Consumers.8

We plot the coefficient  γ  on current realizations in (1) on the horizontal axis in 
Figure 3, and the coefficient  δ  on average forecast revisions in (2) on the vertical axis.9 

8 The Livingston Survey is a  semiannual survey, which collects one, three, and five  quarter-ahead forecasts 
of several macroeconomic variables (Croushore 1997). The Michigan Survey of Consumers contains consumers’ 
inflation forecasts (Curtin 1982). A drawback of the monthly Michigan Survey of Consumers is that only  one-year 
ahead forecasts of consumer price inflation are available. Revisions to forecasts at a fixed horizon cannot be con-
structed. To estimate (2), we therefore follow Coibion and Gorodnichenko (2015) and replace  ex ante forecast 
revisions with the quarterly  ex ante forecast changes and instrument this variable with the (log) oil price change. 
This approach provides an asymptotically consistent estimate. The euro area’s SPF (Garcia 2003) collects the same 
information as the US SPF. 

9 Some of our estimates of (2) are direct updates of estimates reported by Coibion and Gorodnichenko (2015) 
using average forecast errors as the dependent variable. In particular, Coibion and  Gorodnichenko (2015) also 
reports estimates of (2) using CPI inflation forecasts from the Livingston Survey and the Michigan Survey of 
Consumers, GDP deflator inflation forecasts from the US SPF, as well as inflation forecasts from the euro area 
(although from the Consensus Economic Survey and not the euro area SPF). All of these estimates are comparable 
to ours. Relative to their work, we focus on simultaneous estimates of (2) and (1), and cover a wider range of data 
sources for output growth forecasts, which are the focus of our analysis.

Figure 3. Estimated Over- and Underreactions across Surveys

Notes: Estimates of the coefficients γ and δ from (1) and (2) using individual forecast errors   y  t+k   −  f  it    y  t+k    as the 
dependent variable. US SPF represents the estimates for the US Survey of Professional Forecasters, EA SPF the 
ECB’s Survey of Professional Forecasters, LS Survey the Livingston Survey, and lastly MSC the Michigan Survey of 
Consumers. □  = GDP forecasts, ◇ = consumer price index (CPI) inflation forecasts, ★ = GDP deflator inflation 
forecasts, and ○ = MSC CPI inflation forecasts that have been instrumented. All estimates are for one-year-ahead 
forecasts with the exception of the Livingston Survey (three-quarters ahead). Estimates of (2) use semiannual revi-
sions (Livingston Survey), annual revisions (EA SPF), or one-quarter revisions (others). Figures C.1 and C.2 in the 
online Appendix illustrate the robustness of the estimates above to alternative sample assumptions and the use of 
average forecast errors as the dependent variable.
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All of our estimates fall into the  upper-left quadrant of the figure, where we simulta-
neously find that  γ < 0  (overreaction) and that  δ > 0  ( underreaction). Table C.7 
in the online Appendix contains the associated regression results. Specifically, with 
the exception of the euro area and Michigan CPI inflation forecasts, and the GDP 
deflator forecasts from the US SPF, all overreaction coefficients in Figure 3 are sta-
tistically significant at the 5 percent level.

Tables C. 2–9 in the online Appendix contain further robustness checks. We show 
that simultaneous over- and underreactions extend to multivariate versions of (1) 
and (2), to the use of average forecast errors   y  t+k   −   f 

–
  t    y  t+k    as the dependent variable, 

and to different forecast horizons,10 timing conventions, and assumptions about 
trends in the data. We also split the sample and find similar patterns in the  post-1992 
sample (to account for any potential structural break in the inflation series)11, as 
well as both pre- and  post-Great Moderation.

Finally, we also consider two alternative tests from the literature to confirm the 
robustness of our results. First, following Coibion and Gorodnichenko (2015), we 
report estimates of the unconstrained version of (2) with potentially different coef-
ficients on    f 

–
  t    y  t+k    and    f 

–
  t−1    y  t+k    (Table C.5). We fail to reject the null hypothesis that 

the coefficients sum to zero, validating the specification in (2). Second, in online 
Appendix D, we consider the projection of average forecast errors and current out-
put growth on identified productivity shocks, as in Coibion and  Gorodnichenko 
(2012b). Consistent with underreactions, we find a positive correlation between the 
conditional response of forecast errors and the response of output growth.

In summary, the results in Table  1 and Figure  3 document systematic overre-
actions to recent realizations of the forecasted variable (i.e., extrapolation), but 
simultaneous underreactions to average forecast revisions. This clearly constitutes 
a rejection of the joint hypothesis of full information and rational expectations. In 
the next subsection, we consider a range of existing models that relax either full 
information or rational expectations. We argue that one can also use our stylized 
facts to determine whether existing alternative theories of expectation formation are 
consistent with the data.

B. Existing Theories of Expectation Formation

We compare our estimates to a parsimonious framework, where agents observe 
noisy signals of the forecasted variable, which captures several popular models of 
expectation formation. On the one hand, we show that rational forecasts are incon-
sistent with overreactions to current output (i.e.,  γ < 0  in (1)), and that this extends 
to a collection of richer models. On the other hand, we show that several popular 
behavioral alternatives, which are able to generate  γ < 0 , cannot simultaneously 
generate underreactions to average information (i.e.,  δ > 0  in (2)).

10 The point estimates with shorter forecast horizons decline in magnitude and significance. This is consistent 
with a greater importance of noise in shorter horizon forecasts (Coibion and Gorodnichenko 2015). Table C.3 shows 
estimates after detrending output growth. We include this table for completeness, despite the potential concern that 
the detrending operation uses information from the whole sample, introducing  look-ahead bias. However, regard-
less of this issue, the detrended data yield very similar estimates to the raw data. 

11 The Federal Reserve Bank of Philadelphia took over ownership of the SPF in 1990:II.
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Consider a continuum of measure one of agents who make forecasts of future 
output   y  t+k   . We assume that output   y  t    follows the autoregressive process:

(3)   y  t   = ρ  y  t−1   +  u  t  ,  u  t   ∼   (0,  σ  u  2 ) , 

where  ρ ∈  (0, 1)   and   u  t    is serially uncorrelated. We focus on the case in which out-
put follows a stationary process, and on agents’ forecasts about the level of output. 
We make this choice to simplify the exposition of what follows, and for consis-
tency with the existing literature in macroeconomics. With minor modifications, 
our theoretical results also extend to the case where, as in our data, the level of 
output has potential unit roots or time trends, and agents make forecasts about its  
growth rate.

At the start of each period, each agent  i ∈  [0, 1]   observes a noisy signal of cur-
rent output,

(4)   z  it   =  y  t   +  ϵ it  ,  ϵ it   ∼   (0,  σ  ϵ  2 ) , 

where the noise in agents’ signals   ϵ it    is independent of   u  t    at all horizons with  
 cov [ ϵ it  ,  ϵ js  ]  = 0  for all  i ≠ j  and  t ≠ s . We write   Ω it   =   { z  is  }  s≤t    for agent  i ’s infor-
mation set at date  t .12

We assume that agents’ forecasts follow a recursive forecast equation, which 
generalizes the textbook Kalman filter. Let   f  it    y  t+k    and   f  it−1    y  t+k    denote agent  i ’s fore-
casts of future output at dates  t  and  t − 1 , respectively, and let   f  it−1    z  it    be her forecast 
of her own signal one period ahead. Agent  i ’s output forecast then follows the updat-
ing equation:

(5)   f  it    y  t+k   = λ  f  it−1    y  t+k   +  g  k   ( z  it   − λ  f  it−1    z  it  ) , 

where   f  it    y  t+k   =  ρ   k   f  it    y  t   . As with the textbook Kalman filter, the agent starts with her 
forecast of output at time  t − 1 , and updates it in proportion to the new information 
in her signal at time  t . Departing from the standard filter, we allow   g  k   ≥ 0  to be an 
arbitrary gain parameter that measures agents’ responsiveness to new information.13 
We also allow the prior update parameter  λ ∈  [0, 1]   to be less than one. Despite its 
simplicity, the formulation in (5) nests a wide range of existing models of expecta-
tion formation. We demonstrate this through a series of examples, which we delin-
eate into rational and behavioral theories.

Noisy Rational Expectations.—Agents’ forecasts equal their condi-
tional expectation   f  it    y  t+k   = E [ y  t+k   ∣  Ω it  ]   and follow (5) with a gain parameter  
  g  k   =  cov t−1   [ y  t+k  ,  z  it  ]  / var t−1   [ z  it  ]  <  ρ   k   while  λ = 1 . This specification is identical 
to those from models with noisy rational expectations (Woodford 2001) or rational 

12 We allow agents to observe an infinite history of signals, so that their signal extraction problem is initialized 
in steady state at date  0 . This assumption follows the convention in, e.g., Maćkowiak, Matějka, and Wiederholt 
(2018). 

13 To ensure that forecasts in (5) are  well-defined, we impose that   g  k   =  ρ   k   g  0    with   g  0   ∈  (0, 2)  .
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inattention (Sims 2003).14 The special case in which agents observe output without 
noise (  σ ϵ   = 0 ) corresponds to the case of FIRE, and implies that   f  it    y  t+k    =  ρ   k   y  t    
with   g  k   =  ρ   k  > 0 .

Behavioral Expectations.—A common way to model behavioral biases is to 
assume agents perceive the  data-generating process to be different from its true 
parametrization, but then update correctly under this wrong model. Equation (5) 
captures several of such cases:

 •  Overconfidence.—Agents overestimate the precision of new information. They 
believe that the variance of the noise in their signals is    σ ˆ    ϵ  2  <  σ  ϵ  2   (e.g., Daniel, 
Hirshleifer, and  Subrahmanyam 1998; Hirshleifer, Lim, and  Teoh 2011).15 
Agents forecasts follow the recursive forecast equation in (5) with a sensitivity 
parameter   g  k   ∈  (0, 1)   that exceeds its rational value and  λ = 1 .

 •  Extrapolation.—Agents overestimate the extent to which current output pre-
dicts future realizations. They observe output without noise (  σ  ϵ  2  = 0 ), but 
believe that the persistence parameter for output is   ρ ˆ   > ρ  (e.g., de Long et al. 
1990; Fuster, Hebert, and Laibson 2012). Agents’ forecasts satisfy (5) with a 
sensitivity parameter   g  k   =   ρ ˆ     k  >  ρ   k   and  λ = 0 .16

 •  Diagnostic Expectations.—The model in Bordalo, Gennaioli, and  Shleifer 
(2018) and Bordalo et  al. (2020) corresponds to the overconfidence case, 
but the effect of overconfidence is temporary and does not affect forecasts at 
future dates. Equation (5) is replaced by   f  it    y  t+k   =  E  it−1    y  t+k   +  g  k   ( z  it   −  E  it−1    y  t  )  ,  
where   g  k    exceeds its rational value. Despite the  nonrecursivity of forecasts, 
we include the model in this list because the properties of its forecast errors   
y  t+k   −  f  it    y  t+k    depend only on   ( ρ   k  −  g  k  )  ( y  t+k   − E [ y  t+k   ∣  Ω it  ] )  , and thus exclusively 
on those from the noisy rational expectations case and (5) (Corollary 1 in 
Appendix AA).

We now characterize the results that an econometrician would obtain when esti-
mating (1) and (2), assuming that the true  data-generating process satisfies (3) to (5). 

PROPOSITION 1: Suppose agents form their expectations according to (5), based 
on signals in (4 ). Then, the coefficients  γ  in (1 ) and  δ  in (2) both have the same sign 
as   ρ   k  −  g  k   . 

Proposition 1 demonstrates that models described by the recursive forecast equa-
tion, such as the rational and two behavioral models above, all imply either under-
reactions in both of our main regressions ( γ > 0  and  δ > 0 ), or overreactions 
( γ < 0  and  δ < 0 ). Indeed, Proposition 1 also implies that the coefficients  γ  and  δ  
in the model of diagnostic expectations also both have the same sign as   ρ   k  −  g  k     
(Corollary 1 in Appendix AA). This is at odds with our empirical estimates of 

14 A more comprehensive list of papers in this tradition is in the introduction. The Gaussian signal   z  it    we have 
specified is optimal in a rational inattention setting if agents minimize their squared forecast errors and their cost 
of processing information is based on the reduction in entropy (see Maćkowiak, Matějka, and Wiederholt 2018).

15 For further analysis of overconfidence, see Broer and Kohlhas (2019) and the references therein.
16 Thus,   f  it    y  t+k   =   ρ ˆ     k   y  t   . The introduction contains a further list of references using such forecasts.



2892 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 2021

 simultaneous over- and underrreactions. One can see this discrepancy clearly in 
terms of Figure 3. Proposition 1 shows that an econometrician’s estimates will fall 
either into the  upper-right quadrant or the  lower-left quadrant of the figure. This is 
inconsistent with our empirical estimates that center on the  upper-left quadrant.

To interpret Proposition 1 further, recall that agents’ gain parameter in the FIRE 
case, in which they perfectly observe current output, is equal to   g  k   =  ρ   k   (since  
  f  it    y  t+k   =  ρ   k   y  t  ) . Proposition 1 states that there are two possible parametric regions, 
corresponding to systematic underreactions or overreactions, depending on whether 
agents’ responsiveness to new information   g  k    is smaller or greater than in the FIRE 
benchmark.

Two counteracting effects determine the size of   g  k   . First, the presence of noise 
in agents’ signals dampens agents’ responsiveness to new information, which ratio-
nally pushes   g  k    below its FIRE value. This effect, all else equal, creates measured 
underreactions: An econometrician estimating (1) and (2) has access to more infor-
mation than agents in the model, because he observes current output and average 
forecast revisions perfectly. As a result, forecast errors are predictable. And because 
agents respond to noisy information in a muted fashion, this predictability takes the 
shape of measured underreactions. Second, behavioral biases, such as overconfi-
dence or extrapolation, heighten agents’ responsiveness to new information, which 
in turn increases the gain coefficient. However, as Proposition 1 shows, only one 
of these forces can come to dominate the sufficient statistic   g  k   . Hence, in all of 
the cases above, agents either over- or underreact, but do not over- and underreact 
simultaneously.17

We conclude that a popular class of models, in which agents form Bayesian or 
 non-Bayesian expectations based on noisy signals of the forecasted variable, is 
inconsistent with simultaneous over- and underreactions. In particular, it is clear that 
to explain the survey data, we must consider a model with more than one sufficient 
statistic for belief formation. In the next section, we achieve this aim by proposing a 
noisy rational expectation model in which agents pay limited but asymmetric atten-
tion to different structural components of the forecasted variable. Before turning to 
our model, we however briefly consider more sophisticated existing models of noisy 
rational expectations.18

We focus on richer models from two influential strands of literature. First, 
the literature on rational inattention includes more sophisticated models fol-
lowing Maćkowiak and  Wiederholt (2009), in which agents rationally allo-
cate their attention between aggregate and  individual-specific conditions. 
 Individual-specific conditions, and the signals that agents obtain about them, are 
uncorrelated with aggregate output by assumption. Hence, forecasts of future 
aggregate output behave as if agents obtained only a noisy signal of output 

17 For the same reason, a simple model with heterogeneous expectation formation among agents is also incon-
sistent with our estimates. In an economy with heterogeneous types of forecasters, who have different degrees of 
behavioral biases or limited attention, the generalized Kalman gain   g  k    in our formulation can be reinterpreted as the 
weighted average of each type’s response to new information. Hence, average forecasts will either over- or under-
react, but cannot do so at the same time.

18 In addition, online Appendix E characterizes the more sophisticated behavioral model in Angeletos, Collard, 
and Dellas (2018), which introduces a small deviation from rational expectations into a model of dispersed informa-
tion. Intuitively, agents in their model adjust their expectations in proportion to exogenous confidence shocks. We 
show that this model predicts overreactions to both output and average revisions (i.e.,  γ < 0 ,  δ < 0 ). 
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itself. Indeed, online Appendix E.1 shows that the above noisy rational expecta-
tions case, where  γ > 0 , exactly describes output expectations in Maćkowiak and  
Wiederholt (2009).

Second, we consider models with dispersed information in which agents observe 
local economic conditions (on “islands”) accurately but  economy-wide conditions 
only with noise (e.g., Lucas 1973, Lorenzoni 2009). In online Appendix E. 2 and 
E.3, we explicitly solve the models in Lucas (1973) and Lorenzoni (2009), and 
show that these models also generate underreactions to current output ( γ > 0 ). 
The intuition is similar to that in the simple model with noisy observations of out-
put: agents have less information about aggregates than the econometrician, and 
they respond to this information in a muted fashion, which creates underreac-
tions. Indeed, we show that one can directly use (5) and the noisy rational expec-
tations case above to obtain an analytical expression for the underreactions in  
Lucas (1973).

To summarize, it is instructive to view the results in this section in terms of our 
empirical findings using (1) and (2). Our estimates show that  γ < 0  and  δ > 0 , 
and reject the FIRE benchmark. This reveals that either the assumption of full infor-
mation or the assumption of rationality is violated. However, our analysis of exist-
ing models establishes that it is not obvious how to match the data by relaxing either 
assumption. Although the list of models we have considered is not exhaustive, we 
are unaware of a  pre-existing model that can explain our results. This motivates the 
development of our model in the next section.

II. Asymmetric Attention

In this section, we consider a rational model of limited attention. The central 
difference to the standard model from the previous section is that we view output 
as comprised of a set of structural components. We show that the over- and under-
reactions that we have documented can be rationalized if agents pay more atten-
tion to some components than others; that is if agents’ attention is asymmetric. Our 
approach in this section is to take attention choices as given and derive conditions 
under which the model can account for our empirical results. In the next section, we 
then examine the possible sources of asymmetric attention.

A. Environment

A continuum of measure one of agents are asked to forecast future output   y  t+k   . 
Aggregate output   y  t    is driven by the sum of  N  structural components   x  jt   ,

(6)   y  t   =  x  1t   +  x  2t   + ⋯ +  x  Nt  . 

These components could, for example, represent different inputs into the economy’s 
production function, different sectors of the economy, or different variables in firms’ 
optimal production plans. We discuss one such example at length in Section  IV. 
Each component   x  jt    is determined by the linear relationship

(7)   x  jt   =  a  j    θ t   +  b  j    u  jt  ,  u  jt   ∼   (0, 1) , 
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where   θ t    denotes a latent factor that follows the autoregressive process

(8)   θ t   = ρ  θ t−1   +  η t  ,  η t   ∼   (0,  τ  η  −1 ) , 

with  ρ ∈  (0, 1)  . The error terms   u  jt    and   η t    are serially uncorrelated, mutually 
 independent, and it is common knowledge that   θ 0   ∼   (0,  τ  θ  −1 )  . As a result, each 
component depends both on the common latent factor   θ t    and on a transitory, 
 component-specific shock   u  jt   .

The output response to a positive fundamental shock  d θ t   > 0  is  
 d y  t  /d θ t   =  ∑ j  

      a  j   . We assume that   ∑ j  
      a  j   > 0  without loss of generality, so that out-

put correlates positively with   θ t   . The contribution of component   x  jt    to this output 
response is   a  j   . We refer to a component   x  jt    as procyclical if   a  j   > 0 , so that   x  jt    rein-
forces the response of output to the latent factor. Analogously, we say that   x  jt    is 
countercyclical if it dampens the response with   a  j   < 0 .

Output and its components are not directly observable to agents, because of their 
limited attention. Instead, each agent  i ∈  [0,  1]   observes the history of  N  noisy 
signals

(9)   z  ijt   =  x  jt   +  q  j    ϵ ijt  ,  ϵ ijt   ∼   (0, 1) , j =  {1, 2, …  , N} , 

where   q  j    parameterizes the noise (or inattention) in agents’ signals about the  j th 
component, and   ϵ ijt    is an idiosyncratic error term. Agent  i ’s information set at time  t  
is the history of her past signals   Ω it   =  { z  i  0  ∪   ( z  i1s  , …  ,  z  iNs  )   s=1  s=t  }  .19Agents thus infer 
information about the latent factor   θ t    from noisy signals of   x  jt    that may covary either 
positively (  a  j   > 0)  or negatively (  a  j   < 0 ) with the latent factor itself.

Notice that there are two key differences between this environment and that 
in Section I, which also nested a rational case with noisy signals. First, output is 
determined by several underlying components. Second, agents learn about these 
components separately: the information structure in (9) restricts agents to observ-
ing conditionally independent signals of each component. This formalizes the idea 
that paying attention to one component is a separate activity from paying attention 
to another. Combined, these features capture the notion that, to form expectations, 
individuals first need to pay attention to information about the various components 
of the forecasted variable, and then combine these different pieces of information 
into a single prediction. The conditional independence embedded in (9), combined 
with a  component-based structure in (6), is a simple and common way to model 
this idea (see, e.g., Maćkowiak and Wiederholt 2009). We discuss the role of these 
restrictions in more detail in Section III, where we also consider an alternative setup 
with fully flexible information design.

19 We assume that in the initial period  t = 0 , all agents receive an (infinitely) long sequences of signals  
from (9) of the  N  components, denoted by   z  i  0  . This assumption follows the convention in the literature (see, e.g., 
Maćkowiak, Matějka, and Wiederholt 2018). By allowing agents to observe an infinite history of signals initially, 
we ensure that their signal extraction problem is initialized in steady state.
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B. Definition of Attention

To characterize agents’ attention to the various structural components, we trans-
form the noise parameters   q  j    in (9) into the normalized parameters

(10)   m  j   ≡   
var ( x  jt   |  θ t  )  _ 
var ( z  ijt   |  θ t  ) 

   =   
 b  j  2  _ 

 b  j  2  +  q  j  2 
   ∈  (0, 1) . 

These parameters measure the sensitivity of agents’ expectations to new information 
about the  j th structural component. Suppose that agent  i  knows   θ t   , and is then asked 
to predict component   x  jt    based on her own noisy signal   z  ijt   . Her estimate will be:20

  E [ x  jt   |  z  ijt  ,  θ t  ]  =  m  j    z  ijt   +  (1 −  m  j  ) E [ x  jt   |  θ t  ] . 

If   m  j   = 0  (i.e., if the noise parameter   q  j   → ∞ ), then the agent has no new infor-
mation about   x  jt    and sticks to her prior  E [ x  jt   |  θ t  ]   when observing   z  ijt   . By contrast, if   
m  j   = 1  (i.e., if the noise parameter   q  j   = 0 ), then the agent perfectly observes   x  jt    
and ignores her own prior in her expectation of   x  jt   . In this sense,   m  j    captures how 
much information agents obtain about the  j  th component. We therefore call   m  j    the 
attention dedicated to the  j  th component.

While we have motivated our definition of   m  j    in the hypothetical case where 
agents condition on the latent factor   θ t   , these quantities also determine agents’ 
expectations about   θ t   . 

LEMMA 1: For each agent  i ∈  [0, 1]  , expectations about the latent factor   θ t    satisfy

(11)   E  it   [ θ t  ]  =  E  it−1   [ θ t  ]  +  ∑ 
j
      g  j   ( z  ijt   −  E  it−1   [ z  ijt  ] ) , 

where   g  j   = var  [ θ t   |    Ω it  ]  ( a  j  / b  j  2 )  m  j    denotes the weight placed on signal   z  ijt  . 

The lemma confirms that attention coefficients   m  j    drive agents’ responses to 
new information. The agent responds to each of her signals at date  t  in propor-
tion to the Kalman gain   g  j   . This gain is the product of the steady state variance 
of   θ t    and a measure of the precision of signal   z  ijt   , which is in turn proportional to  
attention   m  j   .21

20 We assume that all individuals choose the same attention allocation   m  j   . This is true in our model of optimal 
attention choice in Sections III and IV. It is also a standard assumption in the information choice literature (see, for 
example, Veldkamp 2011 and the references therein).

21 To see why   g  j    captures the precision of   z  ijt   , consider the normalized signal    z ˆ   ijt   =  z  ijt   /  a  j   =  θ t   +  ξ ijt   , with  
  ξ ijt   =  ( b  j    u  jt   +  q  j    ϵ ijt  )  /  a  j   . The standard Gaussian updating formula implies that the gain on    z ˆ   ijt    is proportional to the 
precision (inverse variance) of   ξ ijt   . The proof of Lemma 1 shows that this precision equals   ( a  j  2 / b  j  2 )  m  j   . 
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C. Attention, Overreactions, and Underreactions

We now derive the coefficients for extrapolation in (1) and underreaction in (2) 
that an econometrician would estimate for this economy. The coefficient on current 
output in (1) satisfies

(12)  γ = cov [ y  t+k   −  E  it    y  t+k  ,  y  t  ] var   [ y  t  ]    −1  =  d  0   cov [ θ t   −  E  it    θ t  ,  y  t  ] , 

where   d  0   =  ( ρ   k   ∑ j  
 
     a  j  ) var   [ y  t  ]    −1  > 0 , and   E  it    y  t+k   =  f  it    y  t+k    denotes the  k -period 

ahead forecast of output. Since agents are rational, their forecasts are equal to their 
conditional expectations. The equality in (12) follows because   y  t+k    depends only on   
θ t    and on shocks that are uncorrelated with date- t  information. We note that the sign 
of  γ  is determined only by the covariance between the tracking error   θ t   −  E  it    θ t    and 
current output.

Meanwhile, the coefficient  δ  on the average forecast revision in (2) is

(13)  δ = cov [ y  t+k   −  E  it    y  t+k  ,   E 
–
   t    y  t+k   −   E 

–
   t−1    y  t+k  ] var  [  E 

–
   t    y  t+k   −   E 

–
   t−1    y  t+k  ]    −1 

 =  d  1   cov [ θ t   −  E  it    θ t  ,   E 
–
   t    θ t   −   E 

–
   t−1    θ t  ] , 

where   d  1   =   ( ρ   k   ∑ j  
     a  j  )    2  var   [  E 

–
   t    y  t+k   −   E 

–
   t−1    y  t+k  ]    −1  > 0 . Hence, the sign of  δ  is 

determined only by the covariance between the tracking error of   θ t    and the latest 
average forecast revision.

We start with two stark examples that demonstrate how the two covariances in 
(12) and (13) depend on individuals’ attention choices. This, in turn, allows us to 
provide a simple illustration of the mechanisms behind our main results. 

Example 1 (Asymmetric Attention and Extrapolation): Suppose that output has 
two components with   y  t   =  x  1t   +  x  2t   , and that the first component is procyclical with   
a  1   > 0 . Agents pay full attention to the first component and none to the second  
 ( m  1   = 1 ,   m  2   = 0) . Then, the extrapolation coefficient in (12) becomes

  γ =  d  0   cov [ θ t   −  E  it    θ t  ,  x  1t   +  x  2t  ]  

 =  d  0   cov [ θ t   −  E  it    θ t  ,  x  2t  ]  =  d  0  cov [ θ t   −  E  it    θ t  ,  a  2    θ t  ]  =  a  2    d  0   var [ θ t   |  Ω it  ] , 

where the first equality follows from  cov [ θ t   −  E  it    θ t  ,  x  1t  ]  = 0  for all agents  
 i ∈  [0, 1]  , because each agent is fully rational and observes   x  1t    perfectly. 
The second equality follows from  cov [ θ t   −  E  it    θ t  ,  x  2t  ]  =  a  2   cov [ θ t   −  E  it    θ t  ,  θ t  ]  , 
while the third one is due to individual rationality implying  cov [ θ t   −  E  it    θ t  ,  θ t  ]   
= cov [ θ t   −  E  it    θ t  ,  θ t   −  E  it    θ t  ]  . We conclude that  γ =  a  2    d  0   var [ θ t   |  Ω it  ]  , and thus that the 
extrapolation coefficient  γ  has the same sign as   a  2   . 

Example 1 shows that the econometrician will find extrapolation, i.e., overre-
actions to current output ( γ < 0 ), if and only if   a  2   < 0 ; that is, if and only if the 
component   x  2t   , to which agents pay no attention, is countercyclical. This highlights 
how our rational model can generate overreactions. In effect, the example shows that 
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the overreaction to recent output documented in the survey data can be interpreted 
as an underreaction to countercyclical components.

The economic intuition behind this fact, which captures one of the main ideas 
of this paper, is as follows: When output   y  t    is high, the procyclical component   x  1t   , 
all else equal, also tends to be high, which represents good news about the latent 
factor   θ t   . However, the countercyclical component   x  2t   , on average, also tends to be 
large, which dampens any good news about the latent factor. When agents pay rel-
atively less attention to countercyclical components, their posteriors place only a 
small weight on this dampening effect. As a result, when output is high, agents tend 
to be more optimistic than the econometrician (who controls for total output) about 
the future. This leads to a seeming extrapolation, which manifests itself in a negative 
correlation between future forecast errors and current output.

Our second example shows that our environment, despite such overreactions, 
remains consistent with the underreactions documented in Section I. 

Example 2 (Limited Attention and Underreactions): Consider the setting in  
Example  1, but now suppose that agents’ attention to the first compo-
nent of output is also limited:  0 <  m  1   < 1 . Since the average revision is  
   E 
–
   t    θ t   −   E 

–
   t−1    θ t   =  ∫ 0  1   ( E  jt    θ t   −  E  jt−1    θ t  )  dj , the linearity of the covariance operator and 

the symmetry of attention choices imply that

  δ =  d  1   cov [ θ t   −  E  it    θ t  ,   E 
–
   t    θ t   −   E 

–
   t−1    θ t  ]  

 =  d  1   cov [ θ t   −  E  it    θ t  ,  E  jt    θ t   −  E  jt−1    θ t  ]  =  d  1   cov [ E  jt    θ t   −  E  it    θ t  ,  E  jt    θ t   −  E  jt−1    θ t  ] , 

where the third equality follows by adding and subtracting agent  j ’s fore-
cast error   θ t   −  E  jt    θ t   , and noting that it is uncorrelated with  j ’s forecast revi-
sion. We conclude that  δ > 0  if, for all  i  and  j ≠ i ,  cov [ E  jt    θ t  ,  E  jt    θ t   −  E  jt−1    θ t  ]  >  
cov [ E  it    θ t  ,  E  jt    θ t   −  E  jt−1    θ t  ]  . This always holds in our example. Intuitively, when   
m  1   < 1 , agent  i  and  j  observe different signals, which makes agent  j ’s forecast revi-
sion more strongly correlated with her own expectation. 

This second example shows that the econometrician will estimate underreactions 
to average forecast revisions ( δ > 0 ) when agents’ attention to at least one com-
ponent is limited. This extends the results in Coibion and Gorodnichenko (2015) to 
our case.22 The intuition is as discussed above. As long as information is dispersed, 
rational individuals respond less strongly to average new information than agents in 
the  fully informed rational benchmark. This leads to underreactions of expectations 
similar to those documented in the survey data.

Combined, the examples above demonstrate how attention choices map into the 
over- and underreaction coefficients  γ  and  δ , respectively. Specifically, they show 
how limited, asymmetric attention to a procyclical component can explain the 

22 The baseline model in Coibion and Gorodnichenko (2015) assumes uncorrelated noise terms across agents. 
In an extension, Coibion and Gorodnichenko (2015, online Appendix A) notes that the coefficient  δ  measured by 
an econometrician will be attenuated by the presence of common noise terms   u  jt   . A novel result in this example and 
Proposition 2 that follows is that, despite this effect, we always have  δ > 0 . 
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simultaneous over- and underractions of survey expectations ( γ < 0  and  δ > 0 ). 
Using similar steps, Proposition 2 extends our results to the general case with  N  
components and arbitrary attention choices. 

PROPOSITION 2: Output forecasts overreact to current output ( γ < 0  in (1)) 
if and only if agents pay asymmetric attention to procyclical components, so that  
  ∑ j  

      a  j    (1 −  m  j  )  < 0.  Output forecasts underreact to new information on average 
( δ > 0  in (2)) if and only if attention is limited, i.e., if there exists  j ∈  {1,  … , N}   
such that  0 <  m  j   < 1 . 

The first part of the proposition states the key sufficient statistic:   ∑ j  
 
     a  j   (1 −  m  j  )  .  

Our model is consistent with overreactions to current output (i.e., extrapolation) 
whenever this statistic is negative. This is clearly the case when agents are inattentive 
(  m  j   ≃ 0 ) to components that are countercyclical,which covary negatively with the 
latent factor (  a  j   < 0 ), and are more attentive to procyclical components   ( a  j   > 0)  . 
Thus, asymmetric attention to procyclical components is a sufficient  condition for 
extrapolation ( γ < 0 ).

The proposition further implies that asymmetric attention is also a necessary con-
dition for extrapolation. If attention were symmetric with   m  j   ≡  m –    for all  j , then we 
would have   ∑ j  

 
     a  j   (1 −  m –  )  ≥ 0 , since   ∑ j  

 
      a  j   > 0 , and hence  γ ≥ 0 . Intuitively, the 

symmetric case is similar to the rational benchmark with noisy information studied 
in Section IB, where rational updating induces underreactions in both (1) and (2). 
Hence, the symmetric case is inconsistent with the large body of evidence docu-
menting extrapolation.

The second part of the proposition extends the results of Coibion and   
Gorodnichenko (2015) to our framework. We find that underreactions to new 
 information occur whenever attention is limited for at least one component.

D. Summary and Extensions

In summary, our model is able to match the stylized facts whenever attention 
is both limited and asymmetric. We close this section by discussing two important 
extensions.

First, we have presented a latent factor model with several components of output. 
This classical structure conveys our main contribution and leads naturally to our 
macroeconomic example in Section IV. However, the model in this section is not the 
only possible parametrization in which asymmetric attention explains the patterns 
that we find in the data. In particular, Proposition B.1 in online Appendix B fully 
characterizes the coefficients in (1) and (2) for a larger class of linear models, in 
which we allow for (i) the direct effects of several, latent factors on output; (ii) the 
correlation between  component-specific shocks; and (iii) the explicit observation of 
(and dependence on) lagged outcomes. This extension, which encompasses most 
linear macroeconomic models, delivers necessary and sufficient conditions for over- 
and underreactions based on limited, asymmetric attention more generally.

Second, we have focused our discussion of forecast revisions on (2), which is 
the regression of forecast errors on average forecast revisions proposed by Coibion 
and Gorodnichenko (2015). By contrast, in contemporaneous and closely related 
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work, Bordalo et al. (2020) considers the regression of forecast errors on individual 
forecast revisions:23

(14)   y  t+k   −  f  it    y  t+k   = α +  δ   ind  (  f  it    y  t+k   −  f  it−1    y  t+k  )  +  ξ it  . 

Using a range of survey data, Bordalo et al. (2020) estimates that   δ   ind  < 0 , which 
is inconsistent with the predictions of our baseline model, and also with other 
 models with rational expectations in which agents recall their own forecast revi-
sions. Table C.1 in the online Appendix reports estimates of (14) for output fore-
casts in the US SPF. We estimate overreactions to individual revisions (  δ   ind  < 0 ), 
but unlike our estimates of (1) and (2), which motivate our analysis, this result 
appears sensitive to outliers.24 Online Appendix F considers an extension of our 
framework, which allows for both asymmetric attention and irrational overconfi-
dence (e.g., Moore and Healy 2008 and Broer and Kohlhas 2019). We show that, 
when one introduces a small bias, the extended model can account not only for the 
stylized facts that we have emphasized ( γ < 0  in (1) and  δ > 0  in (2)), but also 
for overreactions to individual revisions (  δ   ind  < 0  in (14)). Crucially, the extended 
model can fit these empirical patterns only if one introduces asymmetric attention. 
As discussed in Section IB, the baseline model in Bordalo, Gennaioli, and Shleifer 
(2018) predicts that  γ  and  δ  have the same sign. Thus, regardless of whether there 
are overreactions to individual revisions, asymmetric attention is necessary to rec-
oncile the varied survey evidence within the class of models examined.

So far, we have considered  reduced-form economies. In deriving our results, we 
have taken agents’ attention choices, as summarized by the set of   m  j   , as given. We 
now move on to studying the potential sources of asymmetric attention.

III. Attention Choices

In this section, we consider agents’ attention choices. We show that attention grav-
itates towards volatile components that are important to  decision-makers. Combined 
with our previous results, this demonstrates that a rational theory of limited atten-
tion can match the survey evidence when procyclical components are either more 
 volatile or more important.

A. A Model with Attention Choice

We augment our environment to incorporate attention choice. To do so, we assume 
the following timing of events: In an initial period  t = 0 , each agent first chooses 
her attention allocation   m  j    to the different components   x  jt    of output (or equivalently, 
the noise terms   q  j   ). She makes this choice ex ante, behind the veil of ignorance. 
The agent then receives a (infinitely) long sequence of signals, denoted by   z  i  0  . This 
assumption ensures that the agent’s signal extraction problem is initialized in steady 

23 See also Fuhrer (2017) and Broer and Kohlhas (2019) for related results using inflation forecasts.
24 Indeed, we cannot reject that   δ   ind  = 0  once we remove outliers in the top 1 percent of forecast errors and 

revisions. This is in contrast to our estimates of (1) and (2). See also Angeletos and Huo (2021) for similar empirical 
results using inflation forecasts.
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state. In each subsequent period  t > 0 , agent  i ’s information set is the history of her 
past signals   Ω it   =  { z  i  0  ∪   ( z  i1s  , …  ,  z  iNs  )   s=1  s=t  }  . After observing the latest signal vector   
z  it    in each period  t , the agent chooses an action   a  it   .

The agent’s lifetime utility is

(15)   E  i0     ∑ 
t=1

  
∞

     β   t    it  ,   it   = −   ( a  t  ⋆  −  a  it  )    2  − K (m) , 

where  β ∈  (0, 1)   denotes the time discount factor. The agent’s  per-period utility  
   it   , in (15) consists of two terms. The first term is a quadratic loss that the individual 
incurs when she deviates from her ideal action   a  t  ⋆  . The second term reflects the cost 
of attention  K (m)  . We assume that  K ( · )   is positive, increasing in all   m  j   , and convex. 
We further assume that the ideal action, which the agent would take under full infor-
mation about all stochastic disturbances, can depend both on the unobserved latent 
factor and on the structural components:

(16)   a  t  ⋆  =  w  θ    θ t   + ∑  w  xj    x  jt   , 

where   w  θ   ∈ ℝ  and   w  xj   ∈ ℝ  for all  j . With these preferences, the optimal choice of 
an agent who has information   Ω it    in the last stage at date  t  is to set   a  it   = E [ a  t  ⋆  |  Ω it  ]  .

Equations (15) and (16) nest the benchmark case in which agents care only 
about forecasting future output as accurately as possible: when   w  θ   =  ρ   k   ∑ j  

     a  j    and   
w  xj   = 0 ,   a  t  ⋆   becomes the  full-information mean squared optimal forecast of   y  t+k   , 
which is   E  t  FIRE  [ y  t+k  ]  =  ρ   k   ∑ j  

     a  j    θ t   . However, (15) and (16) also allow us to capture 
more general cases in which agents’ ideal choice depends differently on the various 
structural components of output. This allows us to account for cases in which agents 
do not necessarily design their attention choices with the objective of predicting 
future output as accurately as possible. Instead, agents can also skew their attention 
choices towards the components of output that are the most important for their own 
specific decision problems. A firm, for example, might choose to pay more attention 
to its own sector than the economy as a whole (see Section IV for a related example).

B. Optimal Attention to Important and Volatile Variables

We now derive agents’ attention choices. To do so, it is instructive to first derive 
agents’ ex ante expected utility as a function of their attention choices. 

LEMMA 2: Each agent’s  ex ante expected lifetime utility in the initial period  t = 0  
equals

(17)    1 _ 
1 − β   E [  it  ]  ∝ −V [ a  t  ⋆  ∣  Ω it  ]  − K (m) 

(18) = − ∑ 
j
     w  xj  2    b  j  2  (1 −  m  j  )  −  var t   [ θ t  ]   [ w  θ   +  ∑ 

j
     w  xj    a  j   (1 −  m  j  ) ]    

2
  − K (m) . 

Lemma 2 first provides a natural characterization of an agent’s ex ante expected 
utility (i.e., before she observes her signals   z  i  t    ). Intuitively, for every realization of 
her signals at date  t , the agent will set   a  it   = E [ a  t  ⋆  |  Ω it  ]  . Hence, her maximized utility 
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depends on the expected squared deviation of  E [ a  t  ⋆  |  Ω it  ]   from   a  t  ⋆  , which reduces to 
the conditional variance in (17). Lemma 2 then derives an expression for the condi-
tional variance, using the law of total variance:

  var [ a  t  ⋆  ∣  Ω it  ]  = var [ a  t  ⋆  ∣  Ω it  ,  θ t  ]  + var [E [ a  t  ⋆  ∣  Ω it  ,  θ t  ]  ∣  Ω it  ] . 

Accordingly, the first term in (18) reflects the uncertainty about the optimal action 
conditional on the latent factor. It equals the sum of the conditional variances  
 var [ x  jt   |  Ω it  ,  θ t  ]  across the components   x  jt   , weighted by their importance   w  xj    in agents’ 
utility. The uncertainty about each component naturally increases in its volatility   b  j  2   
but decreases in agents’ attention   m  j   .

The second term in (18) measures the residual uncertainty  var [ θ t   |  Ω it  ]   
≡ v ar t   [ θ t  ]  , scaled by the uncertainty about the ideal action   a  t  ⋆  =  w  θ    θ t   +  ∑ j  

 
    w  j    x  j    that 

is attributable to   θ t    (i.e., by the term in square brackets). We provide a brief deriva-
tion of   var t   [ θ t  ]  , to show how it depends on agents’ attention choices. In turn, com-
bined with (16) and (18), this will then allow us to derive an expression for agents’ 
optimal attention choices.

Recall that the effective precision of signal   z  ijt    about   θ t    is   τ j   =  a  j  2 /( b  j  2  +  q  j  2  ),  
and let

(19)  τ  (m)  =  ∑ 
j
     τ j   

denote the total precision of date  t  signals. Starting at date  t , the conditional vari-
ance about next period’s fundamental is  v ar t   [ θ t+1  ]  =  ρ   2   var t   [ θ t  ]  +  σ  θ  2   . After 
updating based on date  t + 1  signals, this variance satisfies the linear preci-
sion rule   var t+1     [ θ t+1  ]    −1  =  var t     [ θ t+1  ]    −1  + τ  (m)  . Solving for a steady state where  
  var t   [ θ t  ]  =  var t+1   [ θ t+1  ]  = V  then delivers

   σ  θ  2  = V [1 −  ρ   2  + τ (m)   σ  θ  2 ]  +  V   2 τ  (m)  ρ   2 . 

Thus, the total precision  τ  of an agent’s signals is a sufficient statistic for her uncer-
tainty about the latent factor, and we can write

(20)   var t   [ θ t  ]  = V [τ  (m) ] , 

where  V′ (τ)  < 0  and  ∂ τ / ∂  m  j   > 0  from (19). Combined, (18) and (20) allow us to 
characterize agents’ attention choices. Proposition 3 summarizes the results. 

PROPOSITION 3: Agents’ optimal attention choices satisfy, for all  j  such that  0 <  
m  j   < 1 ,

(21)   w  xj  2    b  j  2  +  μ τ    a  j  2   b  j  −2  +  μ α    w  xj    a  j   =   
∂ K (m) 
 _ ∂  m  j  

  , 

where   μ τ   > 0  and   μ α   > 0  denote Lagrange multipliers. 

Proposition 3 uses the fact that optimal (interior) attention choices equate the 
marginal benefit of paying more attention to each component to its marginal cost. 
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The marginal benefit on the  left-hand side of (21) consists of three terms. The first 
term is the benefit of resolving uncertainty about the optimal action conditional on   
θ t   . This benefit is higher for components that are more important for the optimal 
action (high   w  j   ) and more volatile (high   b  j   ).

The second and third terms capture a more nuanced effect: by learning about   
x  jt   , the agent also acquires information about the latent factor   θ t   , which generates 
 learning spillovers by resolving uncertainty about   x  kt    for  k ≠ j . The second term 
measures the effect of attention   m  j    on the effective precision  τ  of agents’ signals 
about   θ t   . The multiplier   μ τ    is the shadow value of increasing this precision. This 
benefit of attention is larger for components that are highly correlated with the fun-
damental (high   a  j  2  ), but spillovers are attenuated for components that are highly 
volatile (high   b  j  2  ). The third term measures an adjustment to this effect, namely, that 
information about   θ t    becomes less valuable to an agent if she already has precise 
information about the structural components   x  jt   , and hence about her optimal action. 
The multiplier   μ α    is the shadow value of reducing the residual uncertainty about   a  t  ⋆   
that is attributable to   θ t   .

While these effects are subtle, the underlying intuition is clear. On one hand, 
agents are more likely to pay attention to components that are important for their 
utility, those with large weights   w  xj    in (16). On the other hand, agents also prefer 
to pay attention to volatile components (with a high idiosyncratic variance   b  j  2  ), 
as long as learning spillovers are not too strong. This tendency for attention to 
gravitate towards important and volatile variables is familiar from much of the 
literature on information choice (Veldkamp 2011), and has recently received 
additional empirical support in  microlevel firm data (Coibion, Gorodnichenko, 
and Kumar 2018b). Proposition 3 confirms that this intuition carries over to our 
 component-based model.

Figure 4 provides a numerical example, which illustrates the effects of com-
ponent volatility and utility weighting on agents’ optimal attention choices. To 
demonstrate the role of learning spillovers, the figure considers three scenarios for 
the variance   σ  θ  2   of the latent factor. Intuitively, spillovers are minimized when the 
variance of the latent factor   θ t    is small. The two panels confirm the main points 
in our discussion: The relative attention   m  1  ⋆  /  m  2  ⋆   paid to component  1  increases 
as this component becomes more volatile (  ↑  b  1     in panel A) and more important 
in agents’ objective function (  ↑  w  x1     in panel B). In both cases, the rate of increase 
is smaller when there are strong spillovers (high   σ  θ  2  ). This reflects the intuition 
that strong learning spillovers incentivize an agent to push on all margins to learn 
more about the latent factor, which in turn leads her to respond less strongly to 
 component-specific features.

We have so far kept the functional form of the attention cost function  K (m)   gen-
eral. Online Appendix G derives the  first-order condition (21) explicitly for an 
 entropy-based cost function, and shows that the main comparative statics remain 
the same. In addition, we show that an  entropy-based cost function naturally yields 
limited attention choices   m  j   < 1 , because it implies that the marginal cost of full 
attention is infinite (  lim  m  j  →1   ∂ K (m) /∂  m  j   = ∞ ).

In sum, asymmetric attention arises naturally from costly attention choice if 
some components are either more volatile, or more important to  decision-makers. 
Combined with the insights of the previous section, we can therefore conclude that a 
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rational theory of limited attention can match the survey evidence when  procyclical 
components are either more volatile or more important. In the next section, we apply 
this reasoning to a simple macroeconomic model and show that, for reasonable 
parameters, attention gravitates to procyclical variables.

Before moving on to the application, we consider two more points. First, 
we explore an alternative model of information choice in which agents have 
full flexibility in their information design. Second, we revisit the data and 
show that the survey evidence is consistent with an additional prediction of our  
framework.

C. Fully Flexible Information Choice

Proposition 3 characterizes the solution to a constrained information choice prob-
lem. Equation (9) restricts agents to acquire  N  separate, conditionally independent 
signals   z  ijt    about the components   x  jt    of output. This is one of two popular approaches. 
An alternative approach is to instead allow agents full flexibility when designing 
the conditional distribution of their signals given the state of the economy (e.g., 
Sims 2003). The choice between the two approaches is typically made based on the 
problem at hand, and on tractability. In the context of our analysis, it is interesting 
to compare the predictions of each approach.

Exploiting the characterizations of optimal signal design in Maćkowiak, Matějka, 
and Wiederholt (2018), online Appendix H shows that agents in our model, when 
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Figure 4. Optimal Attention: Numerical Example

Notes: The charts show the properties of optimal attention choices as a function of component volatilities   b  j   , utility 
weighting   w  x j   , and the variance   σ  θ  

2   of the latent factor in a numerical example with two components. The parameters 
not detailed in the figure are set at   a  1   =  a  2   = 1 , ρ = 0.9,   w  θ   = 0 . The cost function  K(m)  is set to the reduction 
in entropy, as derived in Proposition G.1 in the online Appendix.
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equipped with an  entropy-based cost function, would optimally choose to receive a 
single signal of the optimal action:25

(22)   s  it  ⋆   =  a  t  ⋆  + h  ξ t   +  q   ⋆   ϵ it   , 

where  h  depends on the utility weights   w  θ    and   w  xj   ,   ξ t    is a Gaussian white noise 
sequence that depends on the common shocks   η t    and   u  jt   , and   q   ⋆   denotes a scalar 
that depends on the cost of attention  K (m)  . Equation (22) shows that the asymmetry 
of attention now depends on the weight   w  xj    in agents’ optimal action both through 
their influence on   a  t  ⋆   and the coefficient  h  in the optimal signal. This has important 
empirical implications.

For example, consider the benchmark case in which agents’ utility in 
(15) is equivalent to the  mean-squared error of next period’s output forecast  
(  w  θ   = ρ ∑ j       a  j    and   w  xj   = 0 , as discussed above). In this case, it follows 
that  h = 0  in (22).26 As a result, the fully optimal signal boils down to  
  s  it  ⋆   =  (ρ ∑ j       a  j  )   θ t   +  q   ⋆   ϵ it   , which is a simple noisy signal of   θ t   . Similar to the results 
in Proposition 2, and due to the  symmetry of underlying preferences, such a signal is 
inconsistent with extrapolation.27 Indeed, in this case, agents systematically under-
react to new information about current output, yielding  γ > 0  in (1).

Consider now instead the case in which the weights   w  xj    in agents’ optimal 
action are asymmetric across the structural components. In this case, agents’ fore-
casts of future output given   s  it  ⋆    can exhibit extrapolation. Similar to the results in 
Proposition 2, this occurs when the weights   w  xj    are tilted towards procyclical com-
ponents. This is easiest to see in the following example, which extends our previous 
Example 1 to flexible information choice. 

Example 3 (Asymmetric Attention and Extrapolation, cont.): As in Example 1, 
 suppose that output has two components, where   a  1   > 0  and   a  2   < 0 . Agents’  
ideal action depends only on the first component (  w  x1   > 0  while    w  x2   =  
w  θ   = 0 ). Building on the results in Maćkowiak, Matějka, and Wiederholt (2018), 

25 Heuristically, one can apply the results in Maćkowiak, Matějka, and Wiederholt (2018) after expressing   a  t  
⋆   as 

an ARMA process in reduced form. In particular, substituting (7) and (8) into (16) shows that

   a  t  
⋆  =    ( w  θ   + ∑  w  xj    a  j  )   


   

≡   w –   θ  

     θ t   + ∑     w  xj    b  j   
⏟

   

≡   w –   xj  

    u  jt   = ρ  a  t−1  
⋆   +   w –   θ    η t   +   w –    x  ′    u  t   − ρ   w –    x  ′    u  t−1  

 ≡ ρ  a  t−1  
⋆   +  c  0  ′    v  t   +  c  1  ′    v  t−1  . 

Hence,   a  t  
⋆   is an autoregressive-moving-average model (ARMA) process with a vector of innovations   v  t   =  [ η t      u  t  ] ′  . 

In online Appendix H, we further demonstrate that this process can be represented as a standard ARMA rocess with 
scalar innovations   ξ t   , so that we can apply the characterization of optimal signals provided in Maćkowiak, Matějka, 
and Wiederholt (2018).

26 See Proposition H.1 in the online Appendix, or Cover and Thomas (2012) for the standard result in which the 
optimal action   a  t  ⋆   is proportional to a simple AR(1) process.

27 Consider the extrapolation coefficient in (1) based on   s  it  ⋆   =  (ρ ∑ j        a  j  )   θ t   +  q   ⋆   ϵ it   . It follows that

  γ = cov ( y  t+k   −  E  it    y  t+k  ,  y  t  ) var   [ y  t  ]    −1  

 =  d  0   cov ( θ t   −  E  it   θ,  y  t  )  =  d  0    ∑ 
j
      a  j  var [ θ t   ∣  s  i  ⋆,  t  ]  > 0, 

where we have also used that   y  t   =  ∑ j  
     a  j    θ t   +  ∑ j  

     b  j    u  jt    and that   ∑ j  
     a  j   > 0 .
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Proposition H.1 in the online Appendix shows that, if the costs of attention are suf-
ficiently small, the optimal signal tends to   s  it  ⋆   =  x  1t   +  q   ⋆   ϵ it   . Hence, the information 
structure is  identical to that in Examples 1 and 2, where  0 <  m  1   < 1  and   m  2   = 0 . 
The arguments in Example 1 and 2 now imply that  γ < 0  and  δ > 0 . By continu-
ity, the model with flexible information choice generates  γ < 0  and  δ > 0  as long 
as the weight   w  x1    is sufficiently large relative to   w  θ    and   w  x2   .  

Combined, these examples show that we cannot test, based on survey data alone, 
whether the asymmetry of attention is driven by conditionally independent signals 
or by a flexibly designed, skewed signal. We only know that the fully flexible case is 
rejected by the data if agents care exclusively about the  mean-squared error of out-
put forecasts. By contrast, Proposition 3 shows that the “ conditionally independent 
signals” structure, even in the  mean-squared error case, can be consistent with the 
simultaneous over- and underreactions documented in the data, so long as there are 
differences in the volatility of the underlying components.

D. Are Attention Choices Optimal? Supplementary Evidence

We briefly return to the data to compare the quality of agents’ expectations to 
that of standard time-series models. Figure 5 shows updated values from Stark 
(2010), available from the Federal Reserve Bank of Philadelphia’s website.28  The 
chart illustrates the relative root  mean-squared error (RRMSE ) of  one-quarter- 
and  four-quarter-ahead forecasts of output growth from US SPF relative to three 
 optimally chosen time-series models. An RRMSE ratio below unity indicates that 
the SPF consensus forecast is more accurate. All time-series models fall short of 
survey forecasts at the  one-quarter horizon, while the more sophisticated ARMA 
models achieve a close match with the SPF at the  four-quarter horizon.

This supplementary evidence suggests that forecasters do better than simple 
time-series models at forecasting output. This is consistent with our model, in which 
agents pay attention to underlying, structural components of the forecasted vari-
able, but inconsistent with a model where agents consider only the past time series 
of output (see, for instance, Proposition 11.2 in Lütkepohl 2007). In addition, this 
evidence rejects a simple behavioral story where agents derive forecasts from a mis-
specified ARMA model. Recent behavioral theory, such as Bordalo et al. (2020), is 
more nuanced, and further work would be needed to test whether forecasts in the 
data are more or less accurate than such theories predict. Hence, we interpret the 
supplementary evidence as a sanity check, which implies that our theory is consis-
tent with moments of the data beyond the motivating evidence in Section I.

We now turn to an application of our ideas to a standard macroeconomic model.

IV. A Macroeconomic Example

In this section, we illustrate the sources and effects of asymmetric attention in 
a  flexible-price business cycle model. We analyze an environment in which firms 

28 https://www.philadelphiafed.org/ research-and-data/ real-time-center.html.
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choose output under imperfect information. We show that firms’ output choices can 
be decomposed into two components: First, a productivity component, which sum-
marizes the effects of a firm’s own productivity; and second, an aggregate supply 
component, which captures the effects of other agents’ behavior on an individual 
firm’s output choice. We document that, for standard parameters, the productivity 
component is procyclical, while the aggregate supply component is countercyclical. 
In accordance with the evidence in Coibion, Gorodnichenko, and Kumar (2018b), 
we show that firms’ attention choices are asymmetric and tend to abstract from the 
aggregate component. As a result, and in line with the analysis above, we find that 
firms’ expectations of output mirror the estimated extrapolation and underreactions 
from the survey data. Finally, we show that asymmetric attention leads to more vol-
atility and persistence in output.

A. Model Setup

The economy consists of a representative household and a continuum of monop-
olistically competitive firms  i ∈  [0, 1]  , which specialize in the production of differ-
entiated goods.

Households.—The representative household has lifetime utility

(23)   E  0     ∑ 
t=0

  
∞

     β   t  [log  C  t   −  ξ t    N  t  ] ,  ξ t   > 0, 

where  β  denotes the time discount factor,   C  t    the consumption index at time  t ,   N  t    
the number of hours worked by the household, and   ξ t    a shock to the disutility of 

Figure 5. Forecast Precision Relative to Time-Series Models

Notes: The chart shows updated values from Stark (2010), available from the Federal Reserve Bank of Philadelphia’s 
website. The chart illustrates the relative root mean-squared error (RRMSE) of one-quarter- and four-quarter-ahead 
forecasts of output growth from the US SPF ( S ) relative to three time-series models: NC denotes a random walk 
forecast, IAR forecasts from an ARMA model chosen to minimize one-quarter-ahead forecast errors, and DAR 
forecasts from ARMA models chosen to minimize forecast errors at each forecast horizon. The sample period is 
1985:I–2015:II. An RRMSE ratio below unity indicates that the SPF consensus forecast is more accurate.
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labor. The consumption index   C  t    and associated  welfare-based price index   P  t     
are

(24)   C  t   =   [ ∫ 
0
  
1
   C  it    

σ−1 _ σ    di]    
  σ _ σ−1  

 ,  P  t   =   [ ∫ 
0
  
1
   P  it  1/(σ−1)  di]    

σ−1

 , 

where   C  it    is the amount the household consumes of goods produced by firm  i  at price   
P  it   , and  σ > 1 . The household’s  per-period budget constraint is

(25)   ∫ 
0
  
1
   P  it    C  it   di +  B  t+1   ≤  ∫ 

0
  
1
   Π it   di +  W  t    N  t   +  (1 +  R  t  )   B  t+1   +  T  t  h , 

where   Π it    denotes the profits of firm  i ,   W  t    the nominal wage,   R  t    the nominal rate of 
return on riskless bonds,   B  t    its holdings of riskless bonds, and   T  t  h    lump-sum nominal 
transfers. The representative household’s objective is to maximize its utility (23) 
subject to (25).

Firms.—A representative firm  i ∈  [0, 1]   chooses its output   Y  it    to maximize its 
own expectation of the household’s valuation of its profits, using the stochastic dis-
count factor    ( P  t    C  t  )    −1  . The expected valuation of profits at time  t  is equal to

(26)    it   =  E  it   [  
1 _  P  t    C  t  

    Π it  ] ,  Π it   =  P  it    Y  it   −  W  t    N  it  , 

where the  inverse-demand for a firm’s product is consistent with household 
 optimality:   P  it   =  P  t     ( Y  it   /  Y  t  )    −1/σ  . Firm output is produced in accordance with the 
 production function

(27)   Y  it   =  A  it    N  it  α , α ∈  (0, 1) , 

where   N  it    denotes the amount of labor input used and   A  it     firm-specific productivity.

Shocks.—We let  lowercase letters denote natural logarithms of their  uppercase 
counterparts.  Firm-specific productivity   a  it   = log  A  it    is

(28)   a  it   =  θ t   +  u  t  x  +  ϵ  it  a   , 

where the persistent, common component   θ t    follows an AR(1) process,

(29)   θ t   = ρ  θ t−1   +  u  t  θ ,  u  t  θ  ∼   (0,  σ  θ  2 ) , 

while the transitory and  firm-specific components are distributed as  
  u  t  x  ∼   (0,  σ  x  2 )   and   ϵ  it  a   ∼   (0,  σ  a  2 )  , respectively. This is similar to the decomposition 
used in Kydland and Prescott (1982). The household’s disutility of labor is subject 
to a transitory shock with

(30)  log  ξ t   =  ξ –   +  u  t  n ,  u  t  n  ∼   (0,  σ  n  2 ) , 

where   ξ –   ∈ ℝ . We show below that the labor supply shock introduces a 
 component-specific innovation to aggregate output. In effect,   u  t  n   will play the role of 
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one of the  component-specific disturbances   u  jt    discussed in Section II. We assume 
that the innovations   u  t  x  ,   u  t  θ   ,   u  t  n  , and   ϵ  it  a    are independent of each other, across time, 
and across firms.

Timeline.—In an initial period  t = 0 , firms choose ex ante how much attention 
to devote to the various components of output, which we define below. In each sub-
sequent period  t > 0 , nature determines the realization of the shocks   u  t  x  ,   u  t  θ   ,   u  t  n  , and   
ϵ  it  a   . The economy then proceeds through three stages. In the first stage, firms commit 
to their output choices. After output choices are sunk, the economy transitions to 
the second stage, in which the labor market opens. Each firm hires the amount of 
labor   n  it   =  α   −1  ( y  it   −  a  it  )   that is necessary to implement its previous output choice   
y  it    conditional on realized productivity   a  it   .29 The household observes its marginal 
disutility   ξ t   =  ξ –   +  u  t  n   of labor and the permanent productivity component   θ t   , and 
then makes its labor supply choice.30 The real wage adjusts to clear the labor mar-
ket. In the third and final stage, goods markets open, goods prices adjust, and the 
household consumes.

Information Structure.—To complete the description of the economy, it is neces-
sary to specify the information structure and firms’ associated attention choice prob-
lem. Our assumptions are based on the following decomposition of firms’ expected 
profits. 

PROPOSITION 4: A  second-order approximation of firm  i ’s expected discounted 
profits satisfies

(31)   v  it   ∝ −   1 _ 
2
    E  it   [  ( y  it   −  y  it  ⋆  )    2 ] , 

where the firm’s ideal output under full information   y  it  ⋆    can be decomposed into

(32)   y  it  ⋆   =  x  i1t   +  x  2t   

with

(33)   x  i1t   = r a  it  ,  x  2t   = αr  ( σ   −1   y  t   −  ω t  ) , 

and where   ω t    denotes the real wage,   y  t   =  ∫ 0  1   y  it   di , and  r ≡ σ/ (σ + α (1 − σ) )  > 1 . 

29 We assume that firms do not update beliefs a second time after observing their labor input. That is, we assume 
that firms do not invert their production function to back out a second signal of   a  it   . This assumption is common in 
other models of attention choice, where firms’ actions are  pre-set for the period (e.g., Maćkowiak and Wiederholt 
2009). Vives and Yang (2018) provide a more detailed discussion of the need for such assumptions in models of 
costly attention choice to maintain imperfect information. 

30 Because the household does not observe the realization of   u  t  x   in the second stage, output will respond differ-
ently to innovations in   θ t    and   u  t  x  . This friction creates a meaningful distinction between these two shocks. Without 
this friction, only shocks to the sum   ∫ 0  1   a  it   di =  θ t   +  u  t  x   would matter for output. An equivalent way to create distinct 
dynamics would be to study a model in which one of the factors of production, such as capital, is  predetermined 
before the realization of some of the shocks (see, for example, Angeletos, Iovino, and La’O 2016). 
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In the spirit of Lucas (1977) and Maćkowiak and Wiederholt (2009), equations 
(32) and (33) decompose each firm’s ideal output choice into two components: We 
refer to   x  i1t    as the productivity component, since it depends on a firm’s own produc-
tivity   a  it   . Clearly, each firm produces more when it is more productive. We refer to 
the second component,   x  2t   , as the aggregate supply component, which encapsulates 
the general equilibrium effects of other agents’ behavior on an individual firm’s out-
put choice. The aggregate supply component, in turn, is comprised of two terms: On 
one hand, firms produce more when aggregate demand in the economy   y  t    is high. On 
the other hand, a firm also chooses to produce less when the real wage it faces   ω t    is 
high. Both effects are captured in (33).31

Given this decomposition, our assumptions about firms’ information sets and 
attention choices mirror those in our baseline model. Specifically, we assume that 
firm  i ’s information set consists of the history of  component-based signals:

(34)   Ω it   =  { z  i  0  ∪   ( z  i1s  ,  z  i2s  )   s=1  s=t  } , 

where

(35)   z  i1t   =  x  i1t   +  q  1    ϵ i1t  ,  z  i2t   =  x  2t   +  q  2    ϵ i2t  , 

and   ϵ ijt   ∼   (0, 1)   is independently distributed across time and firms for  j =  {1, 2}  . 
We also assume that in the initial period, after determining their attention choices, 
firms receive a (infinitely) long sequence of signals generated by (35), denoted  
by   z  i  0  . This assumption once more ensures that the firms’ signal extraction problem is 
initialized in steady state. Finally, as in our  reduced-form framework, we assume that 
firms choose normalized attention parameters   m  j   = var ( x  jt   |  θ t  ) / (var ( x  jt   |  θ t  )  +  q  j  2 )   
at a cost  K (m)  .

B. Equilibrium Characterization

We now proceed to characterize equilibrium output in the economy.

Equilibrium with Full Attention.—We start with the case in which firms pay 
full attention to both components (i.e.,   m  j   = 1  for  j = 1, 2 ) and there are no 
 firm-specific productivity shocks (  σ a   = 0) . This special case illustrates some 
important findings, which will carry over to our numerical solution of the full model 
with limited attention. In this special case, Proposition 4 directly implies that each 
firm sets   y  it   =  y  it  ⋆   =  x  i1t   +  x  2t   , so that

(36)   y  t   =  ∫ 
0
  
1
   y  it   di =  x  1t   +  x  2t   , 

31 Unlike the similar decomposition used in Maćkowiak and Wiederholt (2009), the two components   x  i1t    and   x  2t    
are correlated in this application. For example, a shock to   θ t    will affect both components. Furthermore, in contrast 
to the baseline model from Section II, the error terms in the two components are also correlated, since both depend 
on the transitory productivity shock   u  t  x  . Hence, in order to characterize the properties of firms’ expectations, we will 
use the more general results listed in Proposition B.1 in online Appendix B.
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with   x  1t   =  ∫ 0  1   x  i1t   di . Thus, output has the same  component-based structure as in the 
baseline model from Section II. The components   x  jt    of output can now further be 
characterized directly from (33). As for the productivity component   x  1t   , we have

(37)   x  1t   = r  θ t   + r  u  t  x  .

This component is procyclical, since it places a positive weight  r > 0  on the latent 
factor   θ t   . Turning to the aggregate supply component   x  2t   , the real wage in equilib-
rium is   ω t   =  E  ht    y  t   +  u  t  n  , where   E  ht   [ · ]   denotes household expectations. Thus, we 
conclude from (33) and (36) that

(38)   x  2t   = αr (  1 − σ _ σ    y  t   +  (  1 _ 
1 − α   − r)   u  t  x  −  u  t  n )  

 =  (1 − r)   θ t   +  (  1 _ 
1 − α   − r)   u  t  x  − α  u  t  n . 

The first equality in (38) shows that output choices are strategic substitutes: when 
other firms raise their output   y  t   , each individual firm’s output choice responds neg-
atively (since  σ > 1 ). Indeed, the increase in the real wage when output is high 
dominates the increase in demand in (33) for all  σ > 1 . By contrast, when  σ → 1  
the demand and real wage effects precisely offset each other, and firms act inde-
pendently of one another. The second equality in (38) expresses the same relation-
ship in equilibrium, in terms of the latent factor   θ t    and other primitive shocks. We 
conclude that, due to strategic substitutability, the aggregate supply component is 
countercyclical, since it places a negative weight   (1 − r)  < 0  on the latent factor. 
This type of strategic substitutability (or “general equilibrium offset”) arises com-
monly in  flexible-price business cycle models, especially those that generate realis-
tic amounts of volatility in hours worked (Hansen 1985, Rogerson 1988), because 
increases in other firms’ outputs tend to drive up production costs. For example, we 
note that strategic substitutes are also a key feature of the standard, perfectly com-
petitive real business cycle (RBC) model. Indeed, equations (36) to (38) collapse to 
the output choice of firms in a standard RBC model (with logarithmic utility from 
consumption, linear disutility from labor, and no capital accumulation) in the limit 
as  σ → ∞ , which clearly corresponds to strategic substitutes.

In online Appendix I, we consider a model that nests both our example and the 
model in Angeletos and La’O (2010) and Angeletos, Iovino, and La’O (2016). In 
this extension, among other additional parameters, households have a flexible coef-
ficient  ψ  of relative risk aversion (our model fixes  ψ = 1 ). We show that output 
choices are strategic substitutes if and only if  σψ > 1 . Common values in macro-
economics for  σ  and  ψ  are  σ ≥ 4  and  ψ ≥ 1  (e.g., Galí 2008, chap. 2). Hence, 
while qualitative explorations of models of strategic complementarity have yielded 
important insights (e.g., Angeletos, Iovino, and La’O 2016), we view the case in 
which output choices are strategic substitutes as a quantitatively relevant one for 
this class of models.

The properties above, along with our results in Proposition 2 and 3, suggest that 
firms’ expectations about future output will match the characteristics of the survey 
data when firms pay imperfect, asymmetric attention to the first component   x  1t   . For 
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example, consider the case in which all firms except firm  i  pay full attention to both 
components, while firm  i  pays full attention to   x  1t    but none to   x  2t   . Then, it immedi-
ately follows that the slope coefficient in a regression of firm  i ’s forecast errors on 
recent output (that is, similar to (1)) becomes

(39)   γ i   = cov ( y  t+1   −  E  it    y  t+1  ,  y  t  ) var   [  y  t   ]    −1  = − ρ   α _ 
1 − α     

var t    [ θ t  ]     _ 
var [  y  t   ] 

   < 0, 

so that firm  i  appears to extrapolate current output into the future.32

Equilibrium with Limited Attention.—We now return to the full model with lim-
ited attention. We start by describing firms’ optimal output choices under limited 
attention, and their corresponding expected profits. 

PROPOSITION 5: An individual firm’s output choice under limited attention 
 satisfies   y  it   =  E  it   [ y  it  ⋆ ]  =  E  it   [ x  i1t   +  x  2t  ]  , and the associated expected, discounted prof-
its are   v  it  ⋆  ≃ − (1/2)var [ y  it  ⋆  ∣  Ω it  ]  . 

The characterization in Proposition 5 follows from Proposition 4. It further 
implies that, as a function of attention choices, the unconditional expectation of 
firms’ profit is constant across time. This allows us to state an individual firm’s 
attention choice problem as the following static problem: in the initial period  t = 0 , 
the firm chooses attention coefficients   m  1    and   m  2    to maximize

(40)    max  
 { m  1  , m  2  } ∈  [0,1]    2 

   −  1 _ 
2
   var [ y  it  ⋆  ∣  Ω it  ]  − K (m) , 

while anticipating that its optimal output choice in the subsequent periods will be

(41)   y  it   = E [ y  it  ⋆  ∣  z  i1  t  ,  z  i2  t  ]  =  E  it   [ x  i1t   +  x  2t  ] , 

where   x  2t    depends upon   y  t   =  ∫ 0  1   y  it    di . Notice that the problem in (40) and (41) is an 
application of the problem we studied in Section III. There are  N = 2  components 
of output, which determine the firm’s ideal action   y  it  ⋆  . The weight on each compo-
nent   x  jt    is one (  w  j   = 1 ). A small modification is that, due to  firm-specific shocks, 
the ideal output   y  it  ⋆   is now  firm specific.33

Numerical Solution Method.—Unlike the  full-attention version of the model, the 
equilibrium dynamics of output can no longer be derived analytically when firms 

32 This follows from 

   γ i   = cov ( y  t+1   −  E  it    y  t+1  ,  y  t  ) var   [ y  t  ]    −1   = cov [ y  t+1   −  E  it    y  t+1  ,  x  2t   ±   1 _ r   (  1 _ 
1 − α   − r)   x  1t  ] var   [  y  t   ]    −1 

 = ρ cov [ θ t   −  E  it    θ t  ,  (1 − r)   θ t   −  (  1 _ 
1 − α   − r)   θ t  ] var   [  y  t   ]    −1 

 = − ρ   α _ 
1 − α    var t    [  θ t   ] var   [  y  t   ]    −1  < 0. 

33 Nevertheless, from a firm’s perspective,  firm-specific shocks are equivalent to an increase in the volatility of 
 component-specific disturbances. Hence, the same conditions as in Section III apply here. 
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pay limited attention. Instead, we solve the model numerically, looking for linear 
equilibria in which the law of motion for the components and the latent factor take 
the form of an infinite dimensional vector,

(42)   x t   = A  x t−1   + B  u  t  ,  u  t   =  [  u  t  θ    u  t  x    u  t  n  ] ′, 

where   x t   =  [  x –   t−1  ′     x –   t−2  ′   ⋯] ′  with    x –  t   =   [  x  1t     x  2t     θ t   ]  ′    and   x  1t   =  ∫ 0  1   x  i1t   di , and where  
 A  and  B  are matrices of undetermined coefficients whose rows conform with (28) 
and (33).

To solve for the rational expectations equilibrium, we further conjecture that

(43)   y  t    =   E 
–
   t   [ x  1t   +  x  2t  ]  =  [ 1  1  0 ]    E 

–
   t   [ x t  ]  =  [ 1  1  0 ] Ξ  x t   , 

where  Ξ  is another matrix of undetermined coefficients.
Solving the model requires finding values for the matrices  A ,  B , and  Ξ , as well as 

firms’ attention choices  m =  [ m  1    m  2  ]  , which are consistent with firm optimality, 
Bayesian updating of expectations, and  market clearing. We do so by first truncating 
the  infinite-dimensional vector   x t   . In accordance, with Hellwig and Venkateswaran 
(2009) and Lorenzoni (2009), we truncate it at    x –  t−T    where  T = 50 , but our numeri-
cal results are already stable from around  T = 10 . We then iterate on the following 
two steps until convergence.

First, we hold attention choices  m  fixed and derive new matrices  A ,  B , and  Ξ  
implied by Bayesian updating and firm optimality. Specifically, we solve firms’ sig-
nal extraction problem using the Kalman filter, which implies a new matrix  Ξ , char-
acterizing average expectations about   x t   . This matrix, along with firms’ optimality 
conditions, implies new matrices  A  and  B  characterizing the law of motion for   x t   , 
which in turn implies a new matrix  Ξ . We iterate on these updates until the coeffi-
cients in  A ,  B , and  Ξ  converge in the sense of absolute difference.

Second, we hold coefficients in  A ,  B , and  Ξ  fixed and derive new values  m  for 
firms’ optimal attention choices. We derive an expression for firms’ profits in (40) as 
a function of attention choices, which closely resembles the expression in Lemma 2. 
We then find new optimal choices  m  by solving the problem in (40). We halt the iter-
ation between these two steps when attention choices  m  have converged in the sense 
of absolute difference. Online Appendix J contains further details about the solution 
method and its implementation.

C. A Quantitative Exploration

We now explore the quantitative implications of the model. We address two ques-
tions: First, can the model match the magnitude of extrapolation and underreaction 
from the survey data? Second, if so, what are the implications for the dynamics of 
output? To tackle these questions, we parameterize the model and compare esti-
mates of (1) and (2) to those from the data.

Calibration.—We set the labor share  α = 2 / 3  and elasticity of substitu-
tion  σ = 10 . The persistence of the latent factor   θ t    is set to  ρ = 0.90  and the stan-
dard deviation of the shock to   σ θ   = 0.75 . The standard deviation of the transitory 



2913KOHLHAS AND  WALTHER: ASYMMETRIC ATTENTIONVOL. 111 NO. 9

component of productivity is set to   σ x   = 1.25 , while the standard deviation of the 
labor supply shock is set to   σ n   = 0.1 . These values are all within the range used in 
standard dynamic stochastic general equilibrium models with monopolistic compe-
tition. Our baseline calibration eliminates  firm-specific productivity shocks by set-
ting   σ a   = 0 , to cleanly illustrate the effect of attention choices without exogenous 
noise in firms’ information. We later explore the robustness of our results towards 
this assumption.

For the attention cost function, we use the functional form  K (q)  = μ ∑ j       q  j  −2  ; 
that is, a marginal cost  μ  multiplied by the sum of signal precisions  1 /  q  j  2   across 
the components of output (Veldkamp 2011).34 The free parameter is the mar-
ginal cost  μ , which determines the overall imperfection in firms’ information. For 
 example, if  μ = 0 , then we obtain the full information benchmark, because firms 
can obtain infinitely precise signals at no cost.

As Coibion and Gorodnichenko (2015) points out, information frictions relate 
directly to the observable coefficient  δ  in (2) that measures underreactions in aver-
age revisions. Hence, we calibrate  μ  to match estimated underreactions. Concretely, 
we solve the model repeatedly, varying  μ , until the estimate of   δ ˆ    obtained from 
the model’s output matches the empirical estimate obtained from  one-quarter-ahead 
forecasts in the SPF. This approach yields  μ = 2.00 . This calibration implicitly 
assumes that forecasts reported by respondents in the SPF are similar to the expec-
tations of firms in our model. Clearly, survey respondents may instead be moti-
vated by career concerns, a desire to attract publicity, or other biased incentives 
(e.g., Ehrbeck and Waldmann 1996, Lamont 2002, Ottaviani and Sørensen 2006). 
The related empirical evidence is mixed.35 Following the literature, we view the 
 estimates from professional forecasters as providing a useful  lower-bound on devi-
ations from  full-information rationality.36

Components of Output and Attention Choices.—Recall from Proposition 2 and 3 
that (i) asymmetric attention to procyclical variables can rationalize apparent extrap-
olation and underreactions, and that (ii) these patterns are consistent with optimal 
attention choices if procyclical variables are either more volatile or more important 
for agents’  decision-making. Figure 6 and Table 2 illustrate these mechanisms in 
general equilibrium.

Figure  6 shows that, as in the full information case, the productivity compo-
nent is procyclical, while the aggregate supply component is countercyclical in 
 equilibrium. Output as a whole is procyclical. The first two columns in Table  2 
show the significance of the productivity and the aggregate supply component in 
firms’ decision problem. While both components have a utility weight of one in 
firms’ ideal output choice (Proposition 4), the productivity component is much more 

34 In equilibrium, there is a  one-to-one mapping between the precision parameters   q  j    and the attention parame-
ters   m  j   . Similar conclusions as those presented in Table 2 arise with an  entropy-based cost function. 

35 For example, Lamont (2002) finds evidence for strategic forecasts in the  nonanonymized Business Week 
Survey, but Stark (1997) argues that the same hypothesis is rejected in the anonymized SPF. Ehrbeck and Waldmann 
(1996) rejects a model of strategically biased forecasts in  Treasury bill forecasts from the  Blue Chip survey.

36 See, for example, Lorenzoni (2009), Nimark (2014), and Angeletos and Huo (2021). We note that the SPF 
includes forecasts from large industrial firms, in addition to those from financial and government institutions, and 
forecasting agencies. The  biannual Livingston Survey estimates reported in Section I, which resemble those from 
the SPF, include a broader range of  nonfinancial firms. 
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 volatile for baseline parameters.37 The third and fourth columns in Table 2 show 
firms’ optimal attention choices (  m  j   ), or equivalently noise choices (  q  j   ), for both 
output components. As expected, attention gravitates towards the productivity com-
ponent   x  1t    because of its larger volatility. In particular, firms optimally choose to pay 
around four times more attention to   x  1t   . This is consistent with the conclusions from  
Lucas (1977) and Maćkowiak and Wiederholt (2009) (also cited in the introduction) 
that for most firms there is little reason to pay particularly close attention to aggre-
gate conditions. Coibion, Gorodnichenko, and Kumar (2018b) provides evidence in 
favor of this supposition. We now explore the implications of these asymmetries for 
firms’ expectations in equilibrium.

37 Notice that, because firms have imperfect information about both components, the variance of each compo-
nent in Table 2 can exceed that of output itself (which is the expectation of the sum).

Figure 6. Cyclicality of Structural Components and Output

Notes: The figure depicts the impulse response function to a unit standard deviation shock to   θ t    on the vertical axis. 
Time is measured in quarters on the horizontal axis.
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Table 2—Attention Choices in Equilibrium

Component Variance Weight q m

Productivity component (  x  1t   )  2.44  1.00  1.29  0.87 
Economy-wide component (  x  2t   )  0.74  1.00  1.66  0.14 

Note: Variances have been scaled by the variance of output.
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Over- and Underreactions.—The first two columns in Table 3 panel A show the 
results of estimating the extrapolation regression (1) and the underreactions regres-
sion (2) on firms’ simulated expectations of  one-quarter-ahead output in equilib-
rium. The third and fourth columns compare these estimates to the magnitude of 
those obtained in the survey data at the  one-quarter horizon (Table C.2 in the online 
Appendix). The underreaction coefficient  δ  at the  one-quarter frequency was a tar-
geted moment. Due to firms’ asymmetric attention to the procyclical component of 
output, the coefficient  γ  on current output in (1) is negative, generating apparent 
overreactions in expectations that are close to those in the data. As a result, firms’ 
expectations are simultaneously consistent with extrapolation and underreactions.

Table 3 panel B shows the implied estimates at the  four-quarter horizon, which 
mirror the horizon in Table 1. The model does not match the increase in the magni-
tude of these coefficients. One difference that may drive this quantitative discrep-
ancy is that the  model-implied estimates in Table 3 use forecast errors about the 
level of output, since our model assumes that output follows a stationary process, 
while our empirical estimates in Table 1 are based on forecasts about the growth 
rates of output.38 Despite this simplification, the model estimates are still of a com-
mensurable size to the empirical estimates at the  four-quarter horizon, neither of 
which were targeted moments in the calibration.39

38 We note that an alternative calibration of the model that increases the standard deviation of the persistent 
component to   σ θ   = 1.00  with  σ = 6  accurately matches the size of the estimates in Table  C.2 in the online 
Appendix using firms’ expectations of the growth rate of output instead of the level. The  model-implied estimate 
of  μ  is 1.30, and the estimates at the  four-quarter horizon still decline in magnitude. None of the main conclusions 
from Section IVC and IVD change under this alternative calibration. 

39 An alternative approach is to calibrate the model by targeting the  four-quarter  δ  estimate in Table 1. In this 
case, we arrive at estimates for  γ  that are close to their empirical counterparts. The implied  one-quarter-ahead esti-
mates, however, suggest slightly more extrapolation that what we see in the data. 

Table 3—Over- and Underreactions

Model estimates SPF estimates

Forecast error Forecast error Forecast error Forecast error

Panel A. One-quarter-ahead horizon
Current realization  − 0.09  − 0.05 

(—)   (0.06)  
Average revision  0.38  0.38 

(—)   (0.16)  
Sample (—) (—) 1970IV:2019IV 1970IV:2019IV
RRMSE  0.93 

Panel B. Four-quarter-ahead horizon
Current realization  − 0.06  − 0.12 

(—)   (0.05)  
Average revision  0.30  0.68 

(—)   (0.19)  
Sample (—) (—) 1970IV:2019IV 1970IV:2019IV
RRMSE  0.92 

Notes: Double-clustered robust standard errors in parentheses. The top/bottom 1 percent of forecast errors and revi-
sions has been trimmed pre-estimation. RRMSE denotes the root mean-squared error of individual forecasts relative 
to an estimated AR(1).
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The last row in Table 3 shows that firms in the simulated model make better fore-
casts (in a  root-mean square error sense) than they would achieve using a simple 
time-series model. This is consistent with our empirical results in Section III.

D. Further Implications of Asymmetric Attention

We leverage our calibrated model to illustrate two wider implications of asym-
metric attention. First, we show that asymmetric attention causes the equilibrium 
dynamics of output to be more persistent and more volatile. Second, we show that 
our model is also consistent with increased responsiveness to new information, and 
increased extrapolation, after the onset of the Great Moderation (as we also docu-
ment empirically in the online Appendix).

Asymmetric Attention and Output Dynamics.—We compare the dynamics of out-
put in our model with those that arise in an equivalent model where attention is 
limited but symmetric. In this symmetric case, firms observe only one noisy signal 
of their optimal output:

(44)   s  it   =  y  t  ⋆  +  q  ⋆    ϵ it   =  x  1t   +  x  2t   +  q  ⋆    ϵ it  ,  ϵ it   ∼   (0, 1) , 

where the noise parameter   q  ⋆    is calibrated to match firms’ uncertainty about their 
optimal output choice in the asymmetric attention version of the model.

Figure 7 summarizes the results. The left panel shows that the model with asym-
metric attention results in more persistence in output (larger autocorrelation). This 
is intuitive: when firms focus their attention on the procyclical, productivity com-
ponent, their beliefs and actions become more persistent, because this component 
directly tracks the dynamics of the latent factor. This increase in persistence occurs 
even though all input choices happen within the period. An additional,  predetermined 
factor of production, such as capital, would amplify these effects by allowing firms’ 
extrapolative expectations to directly affect future output.

Relatedly, the right panel in Figure 7 shows that output responses are also more 
correlated with the latent factor itself when there is asymmetric attention. The bot-
tom panel, in turn, shows that asymmetric attention also causes the unconditional 
variance of output to increase. For the same overall information friction (as mea-
sured by  δ  in (2)), the asymmetry of attention increases the volatility of output, and 
pushes it closer to its full information value.

Finally, in line with our previous results, we note that the model with symmetric 
attention produces a positive estimate of  γ   ( γ = 0.15 ).

Asymmetric Attention and the Great Moderation.—One manifestation of the 
Great Moderation was a reduction in the size of aggregate versus  firm-specific 
shocks. As discussed in, for example, Arias, Hansen, and  Ohanian (2007) and 
Galí and Gambetti (2009), the standard deviation of aggregate productivity shocks 
declined by around  40–50 percent after 1985, while the volatility of  firm-specific 
shocks appears mostly unchanged (Comin and  Philippon 2005). We explore the 
implications of a similar structural shift in our model.



2917KOHLHAS AND  WALTHER: ASYMMETRIC ATTENTIONVOL. 111 NO. 9

Following Arias, Hansen, and Ohanian (2007), we assume that all of the decrease 
in the volatility of aggregate productivity is due to a decrease in the common, per-
sistent component   σ θ   . To model the economy before the Great Moderation, we use 
our baseline calibration above, but  re-introduce  firm-specific productivity shocks   
σ a   > 0 . This parameter is calibrated to match the level of information frictions 
before the Great Moderation, which we estimate by running regression (2) for 
 one-quarter-ahead forecasts on a sample until 1985:I. To model the economy after 
the Great Moderation, we then reduce the volatility of   σ θ    by 45 percent.

Table 4 shows the resulting estimates of (1) and (2) on  model-generated data 
before and after the Great Moderation. As in the equivalent regressions on the actual 
survey data, underreactions become weaker while extrapolation becomes somewhat 
stronger. This is because the decrease in the volatility of common shocks causes 
firms to choose more asymmetric attention. Indeed, compared to the  pre-Great 
Moderation values, our solution shows that  post-Great Moderation firms pay 2 per-
cent more attention to the procyclical component (as measured by   q  1   ), and 27 per-
cent less attention to the countercylical component.

The results in this subsection have highlighted two implications of asymmet-
ric attention. First, asymmetric attention not only affects the properties of expec-
tations, but also heightens the persistence and volatility of output fluctuations in 
general equilibrium. Second, an exploration of the Great Moderation provides some 

Figure 7. Asymmetric Attention and Output Dynamics

Notes: The left panel shows the autocorrelation of output on the vertical axis, with the lags of output up to four 
quarters on the horizontal axis. The right panel shows the correlation of output with total factor productivity  
  a  t   =  θ t   +  u   t  

x   once more up to a four-quarter lag. We depict these both for the calibrated asymmetric attention 
model, the symmetric attention model, as well as the full information case. The bottom panel illustrates the variance 
of output in the asymmetric and symmetric cases relative to the full information benchmark.
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 validation of our example framework. A simple model based on asymmetric atten-
tion to a procyclical, local component of output can qualitatively match the styl-
ized feature that extrapolation strengthened while underreactions subsided at a time 
when aggregate productivity became less volatile.

V. Conclusion

In this paper, we have contributed to a research agenda that seeks to find a 
 data-consistent model of expectation formation. The framework we have consid-
ered relies on minimal frictions relative to the classical benchmark. The only prim-
itive deviation from full information and rational expectations is limited attention. 
Previous work by Woodford (2001), Sims (2003), Angeletos and Huo (2021), and 
others, have demonstrated that limited attention offers an explanation for the myopia 
and anchoring to past outcomes commonly documented in macroeconomics. Our 
results show that extrapolation, and more generally overreactions to public informa-
tion, can also be explained by this framework.

We have documented that households’, firms’, and professional forecasters’ 
expectations simultaneously overreact to recent outcomes of the forecasted variable 
but underreact to new information on average. These facts are inconsistent with 
standard behavioral models of extrapolation, as well as with models that combine 
the overconfidence inherent to extrapolation with noisy information. To resolve this 
friction, we have proposed a simple, rational model of limited attention in which 
people internalize that a forecasted variable is comprised of several components. 
We characterized the conditions under which this model is consistent with the data. 
In doing so, we have developed a rational theory of extrapolation that is also consis-
tent with observed underreactions. This theory is based on individuals’ asymmetric 
attention to procyclical variables. Through the lens of this model, the overreactions 
to recent outcomes documented in survey data can be viewed as underreactions to 
countercyclical components.

To illustrate our results, we embedded our analysis in a workhorse macroeco-
nomic model. For reasonable parameters, we showed that firms’ expectations exhibit 
extrapolation and underreactions, similar to their empirical counterparts. This appli-
cation also allowed us to study the implications of asymmetric attention for the 
dynamics of output, and to validate the model further by studying its implications 
for structural changes around the Great Moderation.

Table 4—Model Estimates Pre/Post-Great Moderation

Pre-Great Moderation Post-Great Moderation

Forecast error Forecast error Forecast error Forecast error

Current realization −0.09 — −0.13
(—) (—)

Average revision 0.55 0.47
(—) (—)

Notes: Columns 1 and 3 report estimates using one-year-ahead forecast, while columns 2 and 4 
employ one-quarter-ahead forecasts. Column 2 is calibrated. The equilibrium noise in signals about 
the components is pre-Great Moderation   q  1   = 1.43  and   q  2   = 2.05 , and post-Great Moderation   
q  1   = 1.40  and   q  2   = 2.61 .
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Beyond the analysis in this paper, our results suggest that models of limited, 
asymmetric attention can account for flexible patterns of predictability in people’s 
forecast errors. We see important scope for extending our results to account for the 
more general under- and overreactions to public information documented in the 
literature.40 Another avenue for future research is to combine models of  optimal 
information choice with insights from behavioral economics, such as those dis-
cussed recently by Bordalo, Gennaioli, and Shleifer (2018). The latter approach 
would allow for an empirical estimate of the relative contribution of each compo-
nent to the  predictability of forecast errors. Overall, we view the research in this 
paper as a useful step towards a unified,  data-consistent model of expectations 
based on a minimal set of frictions.

Appendix A. Proofs and Derivations

A. Alternative Models

PROOF OF PROPOSITION 1: 
The proof proceeds in three steps. We first derive the  moving average (MA) form 

for the nowcast    f  it    y  t   . We then use this result to derive slope coefficients in (1) and (2).

Step (i):  MA form of nowcast. Solving (5) backwards for  k = 0 , we find that

(A1)   f  it    y  t   =  g  0    z  it   + λρ (1 −  g  0  )   f  it−1    y  t−1   =  g  0     ∑ 
h=0

  
∞

    λ   h  ρ   h    (1 −  g  0  )    h   z  it−h  , 

where we have also used that   f  it−1    z  it   =  f  it−1    y  t   = ρ  f  it−1    y  t−1   .

Step (ii): Slope coefficient  γ  in (1). The overreaction coefficient  γ  equals

  γ = cov [ y  t+k   −  f  it    y  t+k  ,  y  t  ] var   [  y  t   ]    −1  

 =  ρ   k  cov [  y  t   −  f  it    y  t  ,  y  t   ] var   [  y  t   ]    −1  =  ρ   k  (1 − cov [  f  it    y  t  ,  y  t   ] var   [  y  t   ]    −1 ) , 

because   f  it    y  t+k   =  ρ   k   f  it    y  t   , and where (A1) shows that

  cov [  f  it    y  t  ,  y  t   ]  =  g  0     ∑ 
h=0

  
∞

    λ   h   ρ   h    (1 −  g  0  )    h   ρ   h  var [  y  t   ]  =  g  0     1 ____________  
1 − λ  ρ   2  (1 −  g  0  ) 

   var [  y  t   ] . 

Hence,

  γ =  ρ   k  
(

1 −    g  0   ____________  
1 − λ  ρ   2  (1 −  g  0  ) 

  
)

  =  ρ   k  (1 −  g  0  )    
1 − λ  ρ   2   ____________  

1 − λ  ρ   2  (1 −  g  0  ) 
   . 

40 Consider, for example, our baseline model from Section II, and suppose that instead of regression (1) we 
regress forecast errors onto one component   x  jt    of output. The slope coefficient from this regression would be propor-
tional to   a  j    (1 −  m  j  )  , which could be either positive (representing an underreaction to   x  jt   ) or negative (representing 
an overreaction), depending on the cyclicality of   x  jt    (the sign of   a  j   ). In principle, we therefore conjecture that the 
conditions in Proposition 2 could be extended and used to account for the much broader patterns of predictability 
documented, for example, by Pesaran and Weale (2006) and Fuhrer (2017).
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We conclude the sign of  γ  depends only the sign of   ρ   k  (1 −  g  0  )  =  ρ   k  −  g  k   , since 
the responsiveness coefficient   g  k    satisfies   g  k   =  g  0    ρ   k   from (5) and   f  it    y  t+k   =  ρ   k   f  it    y  t   .

Step (iii): Slope coefficient  δ  in (2). Averaging (5) across  i  for  k = 0 , using 
that    f 

–
  t    y  t+k   =  ρ   k    f –  t    y  t   , and rearranging terms as in Coibion and  Gorodnichenko 

(2015) shows that:

   y  t+k   −   f 
–
  t    y  t+k   =   1 −  g  0   _  g  0      ρ   k  (   f –  t    y  t   − λ   f 

–
  t−1    y  t  )  +  u  t, t+k  , 

where   u  t,t+k    denotes a linear combination of future shocks    ( u  t+s  )  0<s≤k    to output.
Thus, the underreaction coefficient  δ  equals

  δ = cov [ y  t+k   −  f  it    y  t+k  ,   f 
–
  t    y  t+k   −   f 

–
  t−1    y  t+k  ] var   [ χ t  ]    −1  

 = cov [ y  t+k   −   f 
–
  t    y  t+k   ,   f 

–
  t    y  t+k   −   f 

–
  t−1    y  t+k  ] var   [ χ t  ]    −1 

 =  ρ   k    1 −  g  0   _  g  0      ρ   k  cov [   f 
–
  t    y  t   − λ    f 

–
  t−1    y  t  ,   f 

–
  t    y  t   −   f 

–
  t−1    y  t  ] var   [ χ t   ]    −1 , 

where   χ t   ≡   f 
–
  t    y  t+k   −   f 

–
  t−1    y  t+k    , and the second equality follows from the lin-

earity of the covariance operator, and because the signals in (4) have the same 
 steady-state distribution for all  i . We have used that    f 

–
  t    y  t+k   =  ρ   k    f –  t    y  t    for the third 

equality. Finally, because   g  k    satisfies   g  k   =  g  0    ρ   k  , all that remains to show is that  
 cov [   f 

–
  t    y  t   − λ   f 

–
  t−1    y  t  ,   f 

–
  t    y  t   −   f 

–
  t−1    y  t  ]  > 0 .

Multiplying out terms, and using the stationarity of forecasts, we find that

         cov [   f 
–
  t    y  t   − λ   f 

–
  t−1    y  t  ,   f 

–
  t    y  t   −   f 

–
  t−1    y  t  ]  

 =  (1 + λ  ρ   2 ) var [   f 
–
  t    y  t  ]  − ρ (1 + λ) cov [   f 

–
  t    y  t  ,   f 

–
  t−1    y  t−1  ]  

 ≥  (1 − ρ)  (1 − λρ) var [   f 
–
  t    y  t  ]  > 0 ,

since    f 
–
  t−1    y  t   = ρ   f 

–
  t−1    y  t−1    and  var [   f 

–
  t    y  t  ]  ≥ cov [   f 

–
  t    y  t  ,   f 

–
  t−1    y  t−1  ]  > 0 .41 We conclude 

the sign of  δ  depends only the sign of the sufficient statistic   ρ   k  −  g  k   . This completes 
the proof. ∎ 

COROLLARY 1:  Consider the diagnostic expectations model:   f  it    y  t+k   =  E  it−1    y  t+k   + 
 g  k   ( z  it   −  E  it−1    y  t  ) .  Then, the coefficients  γ  in (1) and  δ  in (2) both have the same sign 
as   ρ   k  −  g  k   .

41 It follows from (5) that

    f 
–
  t    y  t   = ρ [1 + λ (1 −  g  0  ) ]    f 

–
  t−1    y  t−1   − λ  ρ   2  (1 −  g  0  )    f 

–
  t−2    y  t−2   +  g  0    u   t   . 

Thus,

  cov (   f 
–
  t    y  t  ,   f 

–
  t−1    y  t−1  )  = ρ   

1 + λ (1 −  g  0  )   ____________  
1 + λρ  (ρ −  g  0   ρ)    var [   f 

–
  t    y  t  ]  > 0. 
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PROOF:
The proof follows from Proposition 1. To see this implication, first notice that the 
diagnostic nowcast error at time  t  equals

   y  t   −  f  it    y  t    =  (1 −  g  0  )  ( y  t   −  E  it−1    y  t  )  −  g  0    ϵ it  

 =  (1 −  g  0  )  ( y  t   −   1 _____ 
1 −  g  0  ⋆ 

    E  it    y  t   +   
 g  0  ⋆  _____ 

1 −  g  0  ⋆ 
    z  it  )  −  g  0    ϵ it  

 =  (1 −  g  0  )   (1 −  g  0  ⋆ )    −1  ( y  t   −  E  it    y  t  )  +  [ g  0  ⋆  (1 −  g  0  )   (1 −  g  0  ⋆ )    −1  −  g  0  ]   ϵ it   , 

where the second equality exploits (5) in the rational case, and we let  
  g  0  ⋆  ∈  (0, 1)   denote the noisy rational expectation gain on   z  it   . It now follows from  
  y  t+k   −  f  it    y  t+k   =  ρ   k  ( y  t   −  f  t    y  t  )  +  u  t, t+k   , where   u  t, t+k    denotes a linear combination of 
future shocks    ( u  t+s  )  0<s≤k    to output, that

   y  t+k   −  f  it    y  t+k   =  (1 −  g  0  )    (1 −  g  0  ⋆ )    −1  ( y  t+k   −  E  it    y  t+k  )  + t.u.w., 

where t.u.w. denotes terms uncorrelated with   y  t    or    f 
–
  t    y  t+k   −   f 

–
  t−1    y  t+k   , and we have 

used (3) and   E  it    y  t+k   =  ρ   k   E  it    y  t   . We conclude  γ =  (1 −  g  0  )   (1 −  g  0  ⋆ )    −1   γ NRE    and  
 δ =  (1 −  g  0  )   (1 −  g  0  ⋆ )    −1   δ NRE    , where   γ NRE    and   δ NRE    denote the over- and 
 underreaction coefficients, respectively, in the noisy rational expecta-
tion case. Proposition 1 implies   γ NRE   > 0  and   δ NRE   > 0 . Thus, the sign 
of  γ  and  δ  depend only  1 −  g  0   =  ( ρ   k  −  g  k  )   ρ   −k  , which depends only on  
  ρ   k  −  g  k   . ∎

B. Asymmetric Attention

PROOF OF LEMMA 1: 
The proof follows directly from the derivation of the Kalman gain   g  j   .

At date  t , agent  i ’s signal   z  ijt    is informationally equivalent to the signal

    z ˆ   ijt   ≡   
 z  ijt   _  a  j     =  θ t   +   1 _  a  j     ( b  j    u  jt   +  q  j    ϵ ijt  )  ≡  θ t   +  ξ ijt   , 

which has precision   τ j   ≡ var   [  z ˆ   ijt   ∣  θ t  ]    −1   equal to

   τ j   =   
 a  j  2  _ 

 b  j  2  +  q  j  2 
   =   

 a  j  2  _ 
 b  j  2 

    m  j  . 

The standard formula for Gaussian updating now implies that

(A2)   E  it   [ θ t  ]  =  E  it−1   [ θ t  ]  +  ∑ 
j
     
(

  
 τ j   _______ 

 τ –  +  ∑ k  
 
    τ k  

  
)

  (  z ˆ   ijt   −  E  it−1   [  z ˆ   ijt  ] ) , 
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where   τ –  ≡ var   [ θ t   ∣  Ω it−1  ]    −1  , while the posterior precision satisfies  

 var   [ θ t   ∣  Ω it  ]    −1  =  τ –  +  ∑ k  
 
    τ k   .

Combining terms, and inserting the definition of    z ˆ   ijt    into (A2), we obtain that

   E  it   [ θ t  ]  =  E  it−1   [ θ t  ]  +  ∑ 
j
    var [ θ t   ∣  Ω it  ]    

 a  j   _ 
 b  j  2 

    m  j    ( z  ijt   −  E  t−1    z  ijt  ) . 

Equating   g  j   = var [ θ t   ∣  Ω it  ]  ( a  j  / b  j  2 )  m  j    then completes the proof. ∎

PROOF OF PROPOSITION 2: 
We start with the characterization of the extrapolation coefficient  γ  in (1). 

Equation (12) shows that the sign of  γ  is determined by

(A3)  γ ∝  ∑ 
j
    cov [ θ t   −  E  it    θ t  ,  x  jt  ]  =  ∑ 

j
     ( a  j   cov [ θ t   −  E  it    θ t  ,  θ t  ]  +  b  j   cov [ θ t   −  E  it    θ t  ,  u  jt  ] )  

  =  ∑ 
j
     ( a  j   var [ θ t   ∣  Ω it  ]  −  b  j   cov [ E  it    θ t  ,  u  jt  ] ) , 

since  cov ( θ t  ,  u  jt  )  = 0  and  cov [ θ t   −  E  it    θ t  ,  θ t  ]  = E [  ( θ t   −  E  it    θ t  )    2 ]  = var [ θ t   ∣  Ω it  ]  .
Lemma 1 now implies that

  cov [ E  it    θ t  ,  u  jt  ]  = cov [ g  j    z  ijt  ,  u  jt  ]  =  g  j    b  j   = var [ θ t   ∣  Ω it  ]    
 a  j   _  b  j  
    m  j  . 

Substituting this expression into (A3), we conclude that

  γ ∝  ∑ 
j
    cov [ θ t   −  E  it    θ t  ,  x  jt  ]  = var [ θ t   ∣  Ω it  ]  ∑ 

j
      a  j   (1 −  m  j  ) . 

This completes the first step of the proposition.
Turning to the characterization of the underreaction coefficient  δ  in (2), we start 

by solving the Kalman filter in (11) backwards to obtain

(A5)   E  it   [ θ t  ]  =   ∑ 
h=0

  
∞

    λ   h    z ˆ   it−h  , 

where we define the  precision-weighted signal    z ˆ   it   ≡  ∑ j  
 
    g  j    z  ijt   , and let  

 λ ≡  (1 −  ∑    
 
    g  j    a  j  ) ρ . The average  precision-weighted signal is   ∫ 0  1    z ˆ   it   di =   z ˆ   it   −   ϵ ˆ   it    

for all  i ∈  [0, 1]   with    ϵ ˆ   it   ≡  ∑ j  
 
    g  j    q  j    ϵ ijt   .

We thus find that the average forecast revision equals

    E 
–
   t    θ t   −   E 

–
   t−1    θ t    =   E 

–
   t    θ t   − ρ   E 

–
   t−1    θ t−1  

 =   ∑ 
h=0

  
∞

    λ   h  (  z ˆ   it−h   −   ϵ ˆ   it−h  )  − ρ  ∑ 
h=1

  
∞

    λ   h−1  (  z ˆ   it−h   −   ϵ ˆ   it−h  ) . 
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By the projection theorem, agent  i ’s forecast error   θ t   −  E  it    θ t    is uncorrelated 
with    z ˆ   it−h    for all  h ≥ 0 . Thus, the characterization of  δ  in (13) yields

  δ ∝ cov [ θ t   −  E  it    θ t  ,   E 
–
   t    θ t   −   E 

–
   t−1    θ t  ]  

 = cov [ θ t   −  E  it    θ t  , −   ∑ 
h=0

  
∞

    λ   h    ϵ ˆ   it−h   + ρ  ∑ 
h=1

  
∞

    λ   h−1    ϵ ˆ   it−h  ] 

 = cov [  ∑ 
h=0

  
∞

    λ   h    z ˆ   it−h  ,   ∑ 
h=0

  
∞

    λ   h    ϵ ˆ   it   − ρ  ∑ 
h=1

  
∞

    λ   h−1    ϵ ˆ   it−h  ] 

 =  [1 +   ∑ 
h=1

  
∞

    λ   h  ( λ   h  − ρ  λ   h−1 ) ] var [  ϵ ˆ   it  ] 

 =   1 − λρ _ 
1 −  λ   2 

   var [  ϵ ˆ   it  ] , 

where the second and third equality use  cov [ θ t  ,   ϵ ˆ   it−h  ]  = 0  and  cov [  z ˆ   it−ℓ  ,   ϵ ˆ   it−h  ]   
=  1 ℓ=h   var [  ϵ ˆ   it  ]  .

Since  λ < ρ ≤ 1 , we conclude that

  δ ∝ var [  ϵ ˆ   it  ]  =  ∑ 
j
      g  j  2   q  j  2  = var [ θ t   ∣  Ω it  ]  ∑ 

j
       
 a  j  2  _ 
 b  j  2 

     m  j    (1 −  m  j  ) . 

This expression is positive whenever  0 <  m  j   < 1  for at least one  j . ∎
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