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Abstract

We document two stylized facts in expectational survey data. First, professional fore-
casters overrevise their macroeconomic expectations. Second, such overrevisions mask
evidence of both over- and underreactions to public signals. We show that the first fact
is inconsistent with standard models of noisy rational expectations, but consistent with
behavioral and strategic models of forecasters. The second fact, in contrast, presents a
puzzle for existing theories. To explain this evidence, we propose a simple extension of
noisy rational expectations that allows forecasters to be overconfident in their informa-
tion. We show that this feature, when combined with the endogeneity of public signals,
leads to over- and undereaction to public information consistent with the data.

JEL codes: C53, D83, D84, E31 Keywords: Expectations, forecasters, information

1 Introduction

Expectations are central to economics. Because individual expectations are typically unob-
served, however, it is often difficult to discriminate between alternative models of expectation
formation. One exception are professional forecaster surveys, which regularly publish individ-
ual expectations about macroeconomic and financial variables. Indeed, Muth (1961) proposed
the rational expectations theory in part to explain the perceived sluggishness of average survey
expectations as a rational response to noisy information (p. 316 Muth, 1961).
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Although the full-information variant of rational expectations later became the benchmark
of modern macroeconomics, the work of Woodford (2002), Sims (2003), and others,1 has re-
vived interest in noisy information models of rational expectations. In turn, this has rekindled
interest in the use of survey data to better discipline and test such models. In line with a
central prediction of noisy rational expectations, Coibion and Gorodnichenko (2012, 2015)
recently document that the average of survey expectations underreacts to new information
relative to what a full-information framework would prescribe.2 However, such underreactions
of average expectations are not only consistent with noisy rational expectations, but also with
a host of other both rational and behavioral theories of individual expectation formation.

In this paper, we provide new evidence on the statistical properties of individual survey
expectations of macroeconomic variables. We document two stylized facts that present a chal-
lenge for noisy rational expectations. First, individual forecasters overrevise their macroeco-
nomic expectations. Second, such overrevisions mask both over- and underreactions to salient
public signals. We show that the first fact is inconsistent with standard models of noisy ra-
tional expectations, but in line with, e.g., models of strategic forecaster behavior. The second
fact, in contrast, presents a puzzle for existing theories of expectation formation.

Our main contribution is to explain this co-existence of over- and underreactions: We
propose a simple extension of noisy rational expectations that allows forecasters to be over-
confident in the precision of their own information (both relative to the truth and relative to
their perception of others). We show that such overconfidence causes forecasters to overrevise
their expectations and misperceive others’ responses to information. Importantly, such mis-
perception leads forecasters to misinterpret public signals that aggregate others’ information
and actions, and results in over- or underreactions that are consistent with the data.

A well-known consequence of rational (mean-squared optimal) expectations is that indi-
vidual forecast errors should be unpredictable based on known information. The two stylized
facts that motivate our theory test this prediction. Our first test relates individual forecast
errors to individual revisions in fixed-date forecasts.3 Basic introspection by rational fore-
casters requires these two to be uncorrelated, even in the presence of noisy information. Our
second test instead exploits the survey data to relate individual forecast errors directly to ele-
ments of public information that are salient to professional forecasters. Once more, individual
rationality requires individual forecast errors to be uncorrelated with these.

1See, for example, Mankiw and Reis (2002), Angeletos and Pavan (2007), Nimark (2008), Lorenzoni (2009),
Maćkowiak and Wiederholt (2009), and Angeletos et al. (2016).

2Coibion and Gorodnichenko (2012), Andrade and Le Bihan (2013), Ryngaert (2017), Fuhrer (2018), Bor-
dalo et al. (2020), and Kohlhas and Walther (2021) document related evidence.

3In contemporaneous and independent work, Bordalo et al. (2020) propose a similar test. The working
paper version of Bordalo et al. (2020) [Bordalo et al., 2018a, p.7] acknowledges this simultaneity. We discuss
the similarities and differences between the two approaches in the related literature section.
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As a benchmark, we first consider inflation forecasts from the Survey of Professional Fore-
casters (SPF). We use the outcomes of our tests to document two stylized facts.

First, individual forecast revisions are systematically too large. This manifests itself in
a pronounced negative relationship between individual forecast errors, on the one hand, and
individual forecast revisions, on the other hand. Second, such observed overrevisions mask
evidence of both over- and underreactions to salient public signals that are both predictive
about future inflation, relevant, and observed in real-time (e.g., previous consensus forecasts
or changes in the unemployment rate). We document that these patterns extend to forecasts
of macroeconomic variables other than inflation, different forecast horizons, to the euro area,
as well as to other forecasters than those that label themselves professional.

Combined, our empirical results present a challenge for existing models of expectation
formation. While simple models of noisy rational expectations are consistent with an un-
derrevision of average expectations, they are prima facie inconsistent with the overrevision
documented at the individual level. Alternative theories of forecaster behavior that incor-
porate (i) the specific strategic considerations faced by professional forecasters (e.g., Laster
et al., 1999; Ottaviani and Sørensen, 2006; Ehrbeck and Waldmann, 1996); (ii) common be-
havioral biases (e.g., Daniel et al., 1998; Bordalo et al., 2020); or (iii) trembling-hand noise
can explain such overrevisions. However, as we show, these theories either all predict optimal
use of public information (conditional on private information), or that forecasters overreact
to all new information, irrespective of its source. Both predictions are inconsistent with the
simultaneous over- and underreactions to public information that we document in the data.4

To account for our empirical results, we propose a simple extension of noisy rational expec-
tations that allows forecasters to be overconfident in their own information. Specifically, we
allow forecasters to both perceive their private information to be more precise than it actually
is (“absolute overconfidence”; Alpert and Raiffa, 1982; Soll and Klayman, 2004; and others),
and to be more precise than the information of others’ (“relative overconfidence”; Alicke and
Govorun, 2005; Larrick et al., 2007). Both dimensions of overconfidence are commonly used in
the psychology literature (Moore and Healy, 2008), and we find direct evidence for them in the
survey data. We show that, taken together, absolute and relative overconfidence can explain
our empirical results when combined with the central feature that most public signals reflect
the aggregate outcome of others’ choices, and hence their information. The combination of
overconfidence with the endogeneity of public signals further distinguishes our theory from
previous models of overconfidence (e.g., Daniel et al., 1998).

All else equal, absolute overconfidence makes forecasters overreact to private information,
4Angeletos and Huo (2021) show that the overrevisions that we document are also inconsistent with two

common alternatives to noisy rational expectations: “cognitive discounting” and “level-k thinking”.
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and hence makes individual forecast revisions too large. In contrast, relative overconfidence
makes forecasters underestimate the precision of others’ information. This is important.

Any equilibrium model of expectation formation that internalizes that most public signals
reflect others’ choices requires an assumption about people’s views about others’ informa-
tion. Rational expectations solves this problem by imposing the “symmetry assumption”:
that others’ information is equal in quality to an individual agent’s. Relative overconfidence,
by contrast, imposes the empirically motivated “better than others” perception. By under-
estimating the precision of others’ information, relative overconfidence causes forecasters to
expect public signals to respond less to new information and to be less precise.

We show that such misperceptions have two offsetting effects: Underestimating the preci-
sion of public signals, all else equal, leads forecasters to dismiss them, and underreact to their
realizations. However, underestimating the responsiveness of public signals, by contrast, leads
forecasters to over-infer information from any given signal realization, and hence to overreact.

We demonstrate these results within the context of a workhorse noisy information model
with mean-squared error preferences (e.g., Veldkamp, 2011). Although our model is simple,
we quantitatively validate it along three dimensions.

First, we show that our model can match the estimated overrevision of inflation forecasts
at the same time as the estimated overreaction to a particular public signal, previous period’s
consensus forecast. We focus on consensus forecasts because it reflects a public signal that only
aggregates other’s information. This allows us to focus on overconfidence’s role in creating a
friction between forecasters’ perception of a public signal and that which arises in equilibrium.
As argued in Ottaviani and Sørensen (2006), consensus outcomes also represent a particularly
salient public signal for professional forecasters, such as those in the SPF. Second, an attractive
feature of the survey data on professional forecasters is that respondents also report forecast
densities, in addition to point estimates. We show that this additional information, when
combined with auxiliary data on higher-order expectations from Coibion et al. (2021), allows us
to validate our assumptions of absolute and relative overconfidence in the survey data. Third,
two key implications of our model are that (i) forecasters should underreact more to public
signals that are less precise, and (ii) that the magnitude of over- and underreactions should
change with the volatility of the forecasted variable. We demonstrate that both predictions
are in line with the patterns of responses in the data. We conclude the paper by studying the
implications of our model for the distribution of forecast errors.

Finally, professional forecasters may admittedly differ from other economic agents in their
incentives and information about the state of the economy. In this paper, we confront this is-
sue head-on by directly contrasting the ability of agency-based models to explain the observed
under- and overreactions with simple behavioral alternatives. To the extent that the evidence
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we uncover below speaks in favor of widely documented behavioral biases, rather than partic-
ular strategic incentives, we think that our results should carry over to other contexts. Indeed,
we provide some evidence to this effect later in the paper.

Related Literature: Our paper is related to several strands of research. We review these in
order of proximity, starting with the most closely related.

First, our paper relates to studies that use expectational survey data to test models of
noisy rational expectations.5 Recently, Coibion and Gorodnichenko (2012, 2015) document
that average forecasts of several macroeconomic variables, across different surveys, underreact
to new information. Our study departs from this observation, and studies both average and
individual-level forecasts within a unified framework. Complementary to our paper, in con-
temporaneous and independent work, Bordalo et al. (2020) demonstrate similar overrevisions
of individual-level forecasts to those that we document. In contrast to their paper, we show
that these overrevisions mask evidence of both over- and underreactions to salient public sig-
nals. We further show that such simultaneous over- and underreactions present a challenge for
existing models, including Bordalo et al.’s (2020) theory of “diagnostic expectations”. Closely
related, Kohlhas and Walther (2021) also depart from Coibion and Gorodnichenko’s (2015) ob-
servation, but demonstrate that individual forecasters simultaneously extrapolate from recent
events. Such extrapolation can be viewed as an overreaction to a specific public signal: that
of the past outcome of the forecasted variable. Our paper elaborates on this observation and
studies forecasters’ responses to a wide set of salient public signals. Importantly, we demon-
strate that forecasters also occasionally underreact to publicly available information. Finally,
building on the above work and our present study, Angeletos et al. (2020) propose a model
that combines absolute overconfidence with an additional behavior friction (overpersistence).
This model tractably speaks to the above evidence, as well as several auxiliary results.6 We
view the above strand of literature as presenting complementary and related steps towards a
unified model of expectations that is consistent with the survey data.

Second, although forecaster information is sometimes acknowledged to be an upper bound
of that held by the population at large (Marinovic et al., 2013), most studies abstract from the
particular characteristics that separate professional forecasters from the rest of the population.
This has attracted criticism (e.g., Scharfstein and Stein, 1990 and Lamont, 2002) and given

5Apart from the implications discussed here, broad aspects of survey forecasts are clearly consistent with
noisy rational expectations. First, survey forecasts are dispersed and differ across forecasters (Zarnowitz,
1985). Second, forecasts are often smoother, with lower volatility, than the variable that is being forecasted
(Ottaviani and Sørensen, 2006). In fact, one of Muth’s (1961) aims in proposing the rational expectations
hypothesis was to explain these two stylized facts (p. 316 in Muth, 1961).

6Angeletos and Huo (2021) show that the approach proposed in this paper also has the advantage that the
as-if myopia and anchoring that are consequences of noisy rational expectations directly extend to our model
of overconfidence.
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rise to a literature that looks at forecasters’ incentives to distort their stated predictions (e.g.,
Laster et al., 1999; Ehrbeck and Waldmann, 1996).7 Our contribution in this context is to
show, within a common framework, how several of the most prominent of such agency-based
models are inconsistent with individual-level forecasts from a variety of professional surveys.

Third, our paper relates to the substantial body of work that links over- and underreaction
of expectations to asset price anomalies. For example, Daniel et al. (1998) show how a model
of overprecision (leading to overreactions) and self-attribution of skill (leading to underreac-
tions) is consistent with the excess volatility and short-run momentum often found in financial
markets. Barberis et al. (1998), in contrast, show how a model of conservatism (underreaction)
and “representativeness” (overreaction) can explain the underreaction of stock prices to earn-
ings announcements jointly with the overreaction of stock prices to extreme events. Lastly,
and closely related to our notion of relative overconfidence, Eyster et al. (2019) show how
“cursedness” (the failure to extract information from market prices) may explain momentum
in asset prices. In contrast to this work, our evidence of over- and underreactions is based
directly on forecasters’ stated predictions rather than the behavior of equilibrium objects, such
as asset prices. We hence view our evidence as a useful anchor for these models.

2 Empirical Evidence

In this section, we document three features of US inflation forecasts. We show that professional
forecasters’ average inflation forecasts underreact to information received between two periods.
We then show that, at the individual level, the same forecasters by contrast make forecast
revisions that are systematically too large. Lastly, we document that the overrevisions at the
individual level mask evidence of both over- and underreactions to salient public signals.

2.1 Data

We focus on US inflation forecasts from the Survey of Professional Forecasters (SPF).8 At
the start of each quarter, the SPF asks its respondents for their forecasts of a number of key
macroeconomic and financial variables, and publishes them, in anonymous format but with
personal identifiers, shortly thereafter. We study SPF forecasts of the year-on-year percentage
change in the GNP/GDP deflator, for which the survey includes consistent forecasts for the six
quarters following the survey quarter. We focus on inflation forecasts for three reasons. First,

7See also, for example, Graham (1999), Laster et al. (1999), and Ottaviani and Sørensen (2006).
8The SPF is the oldest quarterly survey of individual macroeconomic forecasts in the US, dating back to

1968. The SPF was initiated under the leadership of Arnold Zarnowitz at the American Statistical Association
and the National Bureau of Economic Research, which is why it is also still occasionally referred to as the
ASA-NBER Quarterly Economic Outlook Survey (Croushore, 1993).
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because inflation expectations play a central role in the economy as determinants of wages,
goods and asset prices. Second, to compare our estimates to those of previous studies, which
have focused disproportionally on inflation. And third, because data on inflation forecasts are
available for a substantially longer time-span than forecasts of other variables. Throughout, we
consider first-release realizations of inflation to most accurately capture the precise definition
of the variable being forecasted. Importantly for our purposes, although the precise schedule
over the quarter has changed over time, the administrators of the SPF have consistently and
publicly published the average of survey results well before sending out the next round of
the questionnaire.9 The information set of respondents therefore includes the consensus (or
average) forecast from the previous quarter.

2.2 Average Forecasts

We first study the properties of average inflation forecasts. We denote respondent i’s forecast
made in period t of inflation π in period t+h as fitπt+h. We then calculate the average forecast
as ftπt+h = 1

Nt

∑
i=1,..,Nt fitπt+h, where Nt denotes the number of forecasters in period t. A

respondent’s forecast error is πt+h− fitπt+h, while the average forecast error is πt+h− ftπt+h.
A well-known implication of full information and rational expectations (with mean-squared

error preferences) is that forecast errors should be uncorrelated with known information. Our
first test explores this prediction by estimating the Coibion-Gorodnichenko (2015) regression:

πt+h − ftπt+h = a+ b (ftπt+h − ft−1πt+h) + vt. (2.1)

where ftπt+h − ft−1πt+h denotes the average forecast revision between period t− 1 and t, and
vt an error term. We hence estimate the relationship between average errors and average
revisions. Table I presents the results for one-year ahead inflation forecasts (h = 4).

Average revisions are positively correlated with average errors (b > 0). This effect is strong
and highly significant, in line with the results in Coibion and Gorodnichenko (2015), and
others. On average, forecasters underrevise their expectations relative to the full information
rational expectations benchmark, leading to a positive correlation between average errors, on
the one hand, and average revisions, on the other hand.

Although inconsistent with full (common) information and rational expectations, b > 0 is in
line with several popular models of rational expectations that allow for individual-specific noise
in respondents’ information (Coibion and Gorodnichenko, 2015).10 In such noisy information

9See p.8 in the documentation: https://www.philadelphiafed.org/-/media/research-and-data/
real-time-center/survey-of-professional-forecasters/spf-documentation.pdf.

10We note that with noisy public information, least-squares estimates of b in (2.1) are downwardly biased. As
argued in Coibion and Gorodnichenko (2015) Online Appendix A, such downward bias, however, still entails
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Figure 1: Forecast Errors from the Survey of Professional Forecasters
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Note: The left-hand side panel depicts (on the vertical axis) the average of individual forecast errors taken
within equally-sized bins of the distribution of individual forecast revisions (horizontal axis). The right-hand
side panel shows (on the vertical axis) the average of individual forecast errors this time taken within bins of
the distribution of consensus forecasts from the previous wave of the SPF (horizontal axis). All variables are
demeaned by subtracting their (individual) averages during the SPF sample period (1970Q1-2020Q1).

Table I: Estimates from the Survey of Professional Forecasters

Average Forecasts Individual Forecasts
Forecast Error Forecast Error Forecast Error Forecast Error

Forecast Revision 1.118∗∗∗ -0.199∗∗∗ – -0.206∗∗∗
(0.287) (0.067) (0.067)

Previous Consensus – – -0.192∗∗ -0.200∗∗
(0.085) (0.088)

Constant -0.054 – – –
(0.073)

Observations 196 5,480 5,675 5,480
F Statistic 44.067 113.66 118.98 122.67
R2 0.190 0.021 0.022 0.045
Note: Estimates of (2.1), (2.2), and (2.3) using SPF forecasts of one-year ahead inflation (h = 4). Column
1 presents estimates with a constant term. Column 2-4 include individual (respondent) fixed effects. Robust
(double-clustered) standard errors in parentheses. Sample: 1970Q1-2020Q1. ∗ p<.1,∗∗ p<.05,∗∗∗ p<.01.
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models, forecasters revise their expectations by less than a hypothetical agent would do if she
could observe the average information in the population. This is because forecasters rationally
downweigh their own information to account for its noisiness. However, because individual-
specific noise terms cancel on average, this downweighing of new information leads to a positive
correlation between average errors, on the one hand, and average revisions, on the other hand
(b > 0). Relative to the full-information benchmark, noisy private information leads to an
underrevision of average forecasts in response to average information.

We next turn to the statistical properties of individual inflation forecasts. We continue to
explore the implication that rational errors should be orthogonal to known information.

2.3 Individual Forecasts

2.3.1 Overrevision of Individual Forecasts

Equation (2.1) studies the relationship between errors and average revisions.11 However, basic
introspection implies that individual revisions are always known to individual forecasters. This
is even in the presence of noisy private information. This, in turn, implies that even with noisy
information, rational (mean-squared optimal) errors should be uncorrelated with individual
revisions. Estimates of the slope coefficient in (2.1) at the individual level should equal zero.

Figure 1 shows that this implication is prima facie not borne out by the data. The con-
ditional means of individual errors are negatively associated with the means of individual
revisions (left panel), suggesting a negative relationship. To test this implication more for-
mally, we estimate a version of (2.1) at the individual level, using the benchmark specification:

πt+h − fitπt+h = αi + β (fitπt+h − fit−1πt+h) + νit, (2.2)

where αi denotes a respondent fixed effect. Table I confirms our initial impressions.
The estimate of β is significantly negative and numerically large, inconsistent with the

predictions of (noisy) rational expectations. This negative estimated value of β implies that
positive individual revisions are associated with negative errors. Forecasters on average revise
their forecasts by too much relative to the rational expectations benchmark, and hence on
average overreact to the information received between subsequent survey rounds.

However, importantly, such overrevisions of individual forecasts do not inform us about the
composition of responses that lead to a negative estimate for β. All we can conclude is that

that statistically significant findings of b > 0 imply average underreactions relative to full information. This
is because least-squares estimates understate any positive association.

11We further note that equation (2.1) is equivalent to estimating the linear relationship between individual
errors and average revisions. This is because Cov (πt+h − ftπt+h, xt) = 1

N

∑N
i=1 Cov (πt+h − fitπt+h, xt) di for

some common variable xt and assuming N ex-ante identical forecasters. In (2.1), xt ≡ ftπt+h − ft−1πt+h.
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forecasters overreact on average. In particular, estimates of (2.2) do not allow us to separate
between (i) whether the overrevision of expectations is comprised exclusively of overreactions
to new information, or (ii) whether the overall overrevision masks evidence of both over- and
underreactions. As we argue in Section 3, this distinction is important for our analysis, as it
will greatly constrain the set of models that are consistent with the data.

Finally, notice that a positive estimate of b in Table I corresponds to an average under-
revision relative to the full information and rational expectations benchmark. By contrast,
a negative estimate of β suggests an overrevision (or overreaction) relative to the rational
expectations case, allowing for the presence of noisy information. We use both notions of over-
and underrevisions interchangeably below when there is no cause for confusion.

2.3.2 Over- and Underreactions to Public Signals

In order to provide a first pass at a breakdown of the composition of responses that lead
to β < 0 in Table I, our third test considers the relationship between errors and the public
signals that forecast revisions are based on. (We focus on public signals because those are also
observed by researchers.) In particular, we estimate the following regression equation:

πt+h − fitπt+h = αi + δyt + νit, (2.3)

where αi denotes a respondent fixed effect, and yt a public signal that is observed by forecasters.
The third implication of rational expectations that we focus on is that δ should equal zero,
as any non-zero coefficient would contradict the assumption that public information is used
efficiently. The Law of Iterated Expectations implies that if the public signal is included in
forecasters’ information sets yt ∈ Ωit and forecasts are rational fitπt+h = E [πt+h | Ωit], then
there should always be zero correlation between errors and the public signal.12

The predicted zero correlation between rational errors and public information also allows
for a clean interpretation of any non-zero δ−estimates. Because πt+k − E [πt+k | Ωit] is un-
correlated with yt, we can add and subtract E [πt+k | Ωit] from the left-hand side of equation
(2.3). This shows that δ is positive (negative) if and only if the rational expectations forecast
E [πt+k | Ωit] has a stronger (weaker) reaction to the public signal yt than the actual forecast

12In particular, if respondents are rational:

αi + δ × yt = E [πt+h − fitπt+h | yt] = E [πt+h | yt]− E {E [πt+h | Ωit] | yt} (2.4)
= E [πt+h | yt]− E [πt+h | yt] = 0 + 0× yt,

where the second to last line follows from yt ∈ Ωit and the Law of Iterated Expectations. Hence, δ = 0. Notice
that one strength of the approach in (2.3) is that it allows forecasters to rationally choose to disregard other
public signals zt 6= yt. The only requirement in (2.4) is that yt is included in the information sets.
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fitπt+h.13 Consistent with earlier use of the terms, we say that forecasters overreact to yt if
δ < 0. Conversely, we say that forecasters underreact if δ > 0.

To estimate (2.3) requires a particular piece of public information that is at the same time
publicly observed, relevant, and salient to professional forecasters. We first focus on a natural
example of such public information within our context: that of the consensus forecast from
the previous wave of the survey (yt = ft−1πt+h). As argued in the introduction, and more
forcefully in Ottaviani and Sørensen (2006), professional forecasters pay close attention to
realizations of consensus. This is to assess how well they perform relative to their competitors.
Consensus forecasts should therefore provide a conservative benchmark against which to test
the orthogonality of individual forecast errors to public information.

Figure 1 (right panel) depicts the conditional means of individual forecast errors of one-
year ahead inflation (h = 4), and shows that these decrease in previous period’s consensus
forecast. Table I confirms this impression. The estimate of δ in (2.3) is negative and statis-
tically significant, inconsistent with rational expectations. Individual errors are, on average,
more negative not only when individual revisions are more positive, but also when the pre-
vious consensus forecast is higher. We conclude that forecasters appear to overreact to the
information contained in consensus forecasts. These overreactions are corroborated in the final
column of Table I, where we report the coefficient estimates from a multivariate regression
that includes both individual forecast revisions and consensus. These estimates suggest that
even conditional on individual revisions forecasters overreact to consensus.

The negative estimate of δ in Table I may suggest that forecasters overreact to all infor-
mation (implying δ < 0 for all public signals). However, Figure 2 shows that such uniformity
does not exist. The figure presents estimates of δ from (2.3) using a variety of public signals.
We divide this evidence into two types: (i) alternative survey measures of future inflation,
similar to consensus forecasts (left-hand side panel), and (ii) other publicly observable time
series that are often used to predict inflation (right-hand side panel). We take the latter set of
variables from the European Central Bank’s published list of “important inflation indicators”,
to tie our hands with respect to variable selection.14 A similar set of variables are used in
Cecchetti (1995), Canova (2007), and Stock and Watson (2008), among many others. We note

13Specifically, we have that

δ × yt = E [πt+h − fitπt+h | yt] = E [πt+h − E [πt+k | Ωit] + E [πt+k | Ωit]− fitπt+h | yt]

= E [E [πt+k | Ωit]− fitπt+h | yt] .

14See, for example, https://www.ecb.europa.eu/pub/pdf/other/ebart201704_01.en.pdf. The main
difference is that we avoid the inclusion of measures of the “output gap”, since that would entail taking a
stance on the structural determinants of deviations from the flex-price allocation.
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The left-hand side panel shows the coefficient estimates for previous period’s consensus estimate of one-year
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(MICH), the Survey of Consumer Expectations (SCE), and the Livingston Survey (LIV). The right-hand side
panel shows estimates of δ using one-period lagged inflation outcomes (LAG), 10-year inflation expectations
from the TIPS market (TIPS), the year-over-year change in the nominal effective exchange rate (NEER),
the year-over-year change in import prices (IMP), the year-over-year change in the WTI oil price (OIL), the
unemployment rate (U), the Cleveland Fed’s Financial Market-based measure of future inflation (FIN), the
log-linear detrended level of the SP500 (STOX), and the 10-year-2-year term spread (TERM). All variables
have been standardized, and have been signed such that an increase predicts higher inflation one year out. All
variables and growth rates have also been derived using the latest available data at the time of the inflation
forecast. Whisker-intervals correspond to 95 percent robust doubled-clustered confidence bounds. Online
Appendix Table B.1 provides further details on the estimates.

12



that the alternative surveys of type (i) capture different public signal. This is because the
alternative surveys measure the views of other respondents than those in the SPF. To make
our estimates in Figure 2 comparable across series, all variables have been standardized, and
have been signed such that an increase predicts higher inflation one year out.

On balance, we find that, although forecasters overreact to previous consensus forecasts
from the SPF, the evidence for other public signals is more mixed. For example, the left-
hand side panel in Figure 2 shows that forecasters overreact with similar strength to the
observation of respondents consensus estimate from the Livingston Survey (Croushore, 1997).
This is consistent with the Livingston Survey covering many of the same forecasters as the
SPF. However, forecasters underreact to the information contained in the consensus outcome
from the Survey of Consumer Expectations (Armantier et al., 2017), in addition to estimates
of consumer expectations from the Michigan Survey of Consumers (Dominitz and Manski,
2003), although the latter is not statistically significant.15

The right-hand side panel in Figure 2 confirms this picture of over- and underreactions in
response to public signals other than measures of average expectations. When we estimate
the relationship between individual inflation errors and nine common public signals of future
inflation, we find significant overreactions to some (e.g., lagged outcomes, akin to extrapo-
lation), but significant underreactions to others (e.g., changes to the exchange rate or the
unemployment rate). A simple ANOVA exercise shows that the probability of all coefficients
in Figure 2 occurring by chance in the absence of over- or underreactions is less than 0.0001.

Finally, two wider implications of our analysis are worth noting. First, the above analysis
considers multiple public signals. However, our estimates do not attempt to directly estimate
the relative weight placed on any specific signal compared to the rational expectations case.
Such an exercise would require a full list of signals observed by forecasters, including those from
private sources. Instead, our estimates explore the extent to which individual forecasts fitπt+h
are associated more or less with a public signal yt than their rational counterpart Eitπt+h.
Notwithstanding such concerns, Online Appendix Table B.2 shows that a multivariate version
of (2.3) still confirms the above picture of over- and underreactions.

Second, our findings of overreactions to consensus estimates are robust to concerns of
limited attention. Although professional forecasters track developments in the above public
signals closely, if they instead of the consensus signal yt were to observe zit = yt + uit, with
uit ∼ N (0, σ2

u), due to limited attention, then estimates of δ would be upward biased. This
is for the same reason that noisy information leads to a positive b in regression (2.1). We,

15The Livingston Survey is a bi-annual survey of forecaster expectations that covers many different types
of forecasters. It is the oldest continuous survey of forecaster’s expectations. The Federal Reserve Bank of
Philadelphia took responsibility for the survey in 1990. The Michigan Consumer Survey and the Survey of
Consumer Expectations are monthly surveys of a large number of U.S. households.
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nevertheless, view inattention to salient public signals, such as consensus, to be unlikely for
the professional forecasters that comprise our sample.

2.4 Alternative Estimates

We obtain similar estimates to those in Table I and Figure 2 beyond one-year ahead inflation
forecasts from the US SPF. Table II and Figure 3 summarize alternative estimates of (2.1),
(2.2), and (2.3) using different variables and other expectational surveys.

First, to complement our benchmark results using GNP/GDP inflation forecasts, we con-
sider forecasts of CPI inflation and real output growth (Real GDP) from the Survey of Pro-
fessional Forecasters (Table II). The estimated coefficients for b in (2.1), β in (2.2), and δ in
(2.3) using past consensus outcomes (yt = ft−1πt+h) all have the same sign as our benchmark
results, and are all statistically significant, with the exception of the CPI estimate of b and the
output estimate for δ. Similar results to those in Table I also hold when we restrict the sample
to after 1992, when the Federal Reserve Bank of Philadelphia took over the administration of
the SPF and substantially increased its coverage (and when inflation was also more stable).16

We also document that similar patterns extend to a semi-annual forecast horizon (h = 2).
Second, we extend beyond the United States and consider professional forecasts for another

geographic area, the Euro Area, as collected by the ECB’s Survey of Professional Forecasters
(Garcia, 2003). We once more find estimates of b, β, and δ using past consensus similar to
those from the US SPF. While the point estimate of β for output is positive, the uncertainty
around this estimate is large because of the short estimation sample that starts only in 2000.
As we discuss below, our model in Section 4 can in any case also account for such observations.

Third, a large share of forecasters in the US and Euro Area SPF comes from financial
sector institutions. We therefore also consider whether our results extend beyond financial
sector forecasters. Table II shows that our results carry over with equal force to the non-
financial sector forecasters in the US SPF, as well as to forecasters that are part of the semi-
annual Livingston Survey, although the power of our estimates is here somewhat reduced. The
non-financial sector forecasters in the US SPF mainly come from large private sector firms
and consultancies, while the Livingston Survey covers a broader range of non-financial sector
institutions (such as academic institutions and government entities, for example). Table B.3
in the Online Appendix shows that our results also extend to the five different classifications
of forecasters in the Livingston Survey.

Fourth, to further complement our baseline results, Figure 3 summarizes estimates of the
under-/overreaction coefficient δ in (2.3), using alternative forecaster surveys and other public

16The 1992Q1 observation corresponds to the first realization of five quarter-ahead inflation forecasts (h+1)
from the SPF after the Federal Reserve Bank of Philadelphia took over the administration of the survey.

14



Table II: Robustness and Alternative Estimates

Description Avr. Forecast Error Ind. Forecast Error
b-coef Std. error β-coef Std. error δ-coef Std. error

GDP Deflator (SPF) 1.118 (0.287) -0.199 (0.067) -0.192 (0.085)

CPI Inflation (SPF) 0.282 (0.230) -0.293 (0.098) -0.461 (0.079)

Real GDP (SPF) 0.783 (0.262) -0.186 (0.061) 0.203 (0.161)

GDP Deflator (SPF, post ’92) 0.572 (0.246) -0.381 (0.048) -0.391 (0.094)

CPI Inflation (SPF, post ’92) 0.272 (0.414) -0.279 (0.175) -0.555 (0.172)

Real GDP (SPF, post ’92) 0.601 (0.379) -0.087 (0.135) -0.584 (0.228)

GDP Deflator (SPF, h=2) 0.266 (0.146) -0.287 (0.051) -0.058 (0.080)

GDP Deflator (SPF, finan.) 0.609 (0.261) -0.377 (0.058) -0.361 (0.083)

GDP Deflator (SPF, non-finan.) 0.295 (0.212) -0.379 (0.039) -0.293 (0.118)

HICP Inflation (EASPF) 0.740 (0.406) -0.169 (0.182) -0.669 (0.665)

Real GDP (EASPF) 0.616 (0.226) 0.411 (0.170) -0.905 (0.210)

CPI Inflation (LIV) 1.550 (0.733) -0.270 (0.077) -0.193 (0.206)

Real GDP (LIV) 0.430 (0.400) -0.325 (0.130) -0.709 (0.371)
Note: Estimates of b in (2.3), β in (2.2), and δ in (2.3), where the estimates of δ use the previous period’s
consensus outcome from the survey in question. LIV denotes the Livingston Survey, while EASPF refers to the
Euro Area Survey of Professional Forecasters. All estimates are computed using year-on-year growth rates that
have been derived using the latest available data at the time of the forecast. Colored coefficients are significant
at the five percent level. Robust (doubled-clustered) standard errors are used. Bold indicates a coefficient
in which fewer than 50 time-clusters have been estimated, and that is significant using the adjustment in
Cameron et al. (2010). Samples: SPF(1970Q1-2020Q1), LIV(1993Q1-2020Q1), EASPF(2000Q1-2020Q1).
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Figure 3: Robustness and Different Public Signals

(a) Livingstone Survey: Inflation
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(b) SPF: Alternative Inflation Measure (CPI)
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Note: The figure shows estimates of δ in (2.3) (on the horizontal axis) for various public signals (on the vertical
axis). The description of the different public signals is explained in the label for Figure 2. Figure B.1 in the
Online Appendix shows similar estimates for the ECB’s Survey of Professional Forecasters. All variables and
growth rates have been derived using the latest available data at the time of the forecast. All variables have
been standardized, and all variables have been signed in accordance with the estimates in Figure 2. Whisker
intervals correspond to 95-percent robust clustered confidence bounds. Because of few time-series observations
for the Livingstone Survey (LIV) when combined with several public signals, we follow the recommended
adjustment in Cameron et al. (2010) and cluster at the individual level.
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signals than previous consensus outcomes from the same survey. The estimates confirm our
initial take-away from Figure 2. The overrevision of individual forecasts appear to be the
product of both over- and underreactions to public signals (δ ≶ 0). For example, similar to
the baseline estimates from the US SPF, the broader set of forecasters from the Livingstone
Survey (Panel a Figure 3) and the ECB’s Survey of Professional Forecasters (Online Appendix
Figure B.1) underestimate the inflationary effects of several publicly observable variables (such
as movements in the exchange rate). However, forecasters equally overreact to the predictive
power of other variables (such as financial prices). Panel (b) in Figure 3 further shows that
this coincidence of over- and underreactions extends to US SPF forecasts of CPI inflation.
Hence, more generally, the documented overrevision of individual forecasts β < 0 is comprised
of both over- and underreactions to public information (δ ≶ 0).

Finally, Tables B.4–6 in the Online Appendix contain further robustness checks. We doc-
ument that the coincidence of over- and underreactions extend to cases where we consider
median-individual estimates of b in (2.1), β in (2.2), and δ in (2.3), and that our results also
carry over to the case where we winsorize outlier observation (Table B.5 and B.6). Further,
Online Appendix Table B.4 shows that if we drop forecaster i from the SPF consensus in
the individual-level regression (2.3) the overreaction to consensus documented above remains.
This also holds when we exclude outlier observations from consensus. Lastly, consistent with
the results in Clements (2018), Table B.4 documents a negative correlation between individual
errors and past deviations of forecasts from consensus. This will important for later.

2.5 Summary and Discussion

In summary, our results suggest that average forecasts are consistent with models of noisy
rational expectations with mean-squared error preferences (b > 0). This confirms the results of
Coibion and Gorodnichenko (2015). However, Individual forecasts show patterns that strongly
contradict such models. Specifically, forecasters systematically overreact, on average, to the
news that they receive between subsequent survey rounds. This leads to too large forecast
revisions relative to the noisy rational expectations benchmark (β < 0). Consistent with this
pattern of overall overrevisions, we find strong evidence of overreactions to a particular public
signal that is salient in the context of professional forecasts, namely the consensus forecast
from the previous round of the survey (δ < 0). We, nevertheless, also find evidence of sizable
underreactions to other public signals (δ > 0). As we have argued in the introduction, and
will show formally below, several prominent models of forecaster behavior, both rational and
behavioral, struggle to explain this coincidence of over- and underreactions. The next section
makes this explicit using a workhorse noisy information framework.

However, before we turn to alternative models, we briefly discuss how our results relate to
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several contemporaneous papers. Complementary to our results, in independent work, Bor-
dalo et al. (2020) demonstrate similar overrevisions of individual-level forecasts to those that
we document above (β < 0). In contrast to their paper, we have shown that these overrevi-
sions mask evidence of both over- and underreactions to salient public signals (δ ≶ 0). We
further argue below that this forcefully constrains the set of models that are consistent with
the data. Kohlhas and Walther (2021) and Angeletos et al. (2020) also depart from Coibion
and Gorodnichenko’s (2015) findings, but focus on how forecasters extrapolate recent events.
Such extrapolation can be viewed as an overreaction to a specific public signal: that of the
past outcome of the forecasted variable. Through this lens, our results above have extended
this observation by studying forecasters’ responses to a wider set of salient public signals.
Importantly, we have demonstrated that forecasters also underreact to publicly available in-
formation. We view this strand of research as presenting complementary steps towards a
unified model of expectations that is consistent with the survey data.

3 Rational and Behavioral Models

A variety of popular models of forecaster behavior are consistent with the under- and over-
revision of forecasts at the average (b > 0) and individual level (β < 0), respectively. In this
section, we show that several of the most prominent of such explanations are nevertheless
inconsistent with the documented over- and underreaction to public information (δ ≶ 0).

3.1 Model Environment

We outline a model that captures several popular environments used to describe economic
forecasts. The model is comprised of a continuum of measure one of forecasters, indexed by
i ∈ [0, 1]. Forecasters minimize the mean-squared error of their forecasts fit of the random
variable πt+h drawn from an uniform distribution over the real line. At time t, all forecasters
have the prior belief that πt+h ∼ N (µit, τ−1

π ) and observe two types of information.17 Their
own private information is summarized by the private signal

xit = πt+h + εxit, εxit ∼ N (0, τ−1
x ), (3.1)

where the noise terms εxit are independent across time and of πt+h, and E[εxitεxjs] = 0 for all
j 6= i and s 6= t. The private signal of one forecaster is not observed by any other forecaster.

17We assume that all prior information forecasters observe is condensed into the initial signal µit = πt+h+νir,
where νir ∼ N

(
0, τ−1

π

)
, observed in period t − 1. Hence, before the observation of period-t information,

forecasters’ beliefs about πt+h ∼ N
(
µit, τ

−1
π

)
. We further have that µit = fit−1πt+h.
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In addition to their private information, all forecasters observe the public signal

yt = πt+h + εyt , εyt ∼ N (0, τ−1
y ), (3.2)

where εyt is independent across time, and of πt+h and εxit for all t and i ∈ [0, 1]. We note
that this environment allows for rich heterogeneity in expectations, arising from both private
information and heterogenous prior forecasts (µit 6= µjt for j 6= i). Finally, we assume that
individual forecasts follow the Generalized Prediction Rule:

fitπt+h = (1− kx − ky)µit + kxxit + kyyt, (3.3)

where kx 6= k?x and ky 6= k?y, and k?x ≡ τx
τπ+τx+τy and k?y ≡

τy
τπ+τx+τy denote the mean-squared

optimal (rational) weights on private and public information, respectively. The rational weight
on the prior µit is τπ

τπ+τx+τy . As with the conditional expectation E [πt+h | µit, xit, yt], an indi-
vidual forecaster in (3.3) updates her prior expectation µit = fit−1πt+h in response to private
and public information, xit and yt, respectively. But, importantly, relative to the conditional
expectation, the forecaster can both over- or underreact to private and public information.

Depending on the precise use of information, the forecasts from (3.3) predict specific values
for the regression coefficients b in (2.1), β in (2.2), and δ in (2.3). We note that if kx = k?x and
ky = k?y, the coefficients b, β, and δ are all equal to zero. Proposition 1 summarizes two other
important cases, which combined capture a popular set of alternative models.18

Proposition 1. Let individual forecasts fitπt+h follow the Generalized Prediction Rule (3.3).

(i) Then, if kx ∈ (k?x, 1) and ky = (1− kx) τy
τπ+τy , so that

fitπt+h = (1− kx)E [πt+h | µit, yt] + kxxit, kx ∈ (k?x, 1) , (3.4)

b > 0 in (2.1), β < 0 in (2.2), but δ = 0 in (2.3).
(ii) Then, if kx = k τx

τx+τy and ky = k τy
τx+τy with k ∈ (k?, 1), where k? ≡ τx+τy

τπ+τx+τy , so that

fitπt+h = µit + k (E [πt+h | xit, yt]− µit) , k ∈ (k?, 1) , (3.5)

b > 0 in (2.1), β < 0 in (2.2), but δ < 0 in (2.3).

The first part of Proposition 1 characterizes individual responses when forecasters over-
emphasize private information kx ∈ (k?x, 1). When forecasters attach more weight to private

18We note that we adjust for the bias caused by public information in our derivation of the regression
coefficient b in Proposition 1. As mentioned in Section 2, because of the downward nature of this bias, our
empirical findings of b > 0 are robust to the presence of public information (see also Online Appendix D).

19



information than optimal, forecasters will, on average, overreact to the information that they
receive between two periods. This leads to a negative correlation between individual errors,
on the one hand, and individual revisions, on the other hand. Furthermore, this negative
correlation coincides with an underrevision of the average forecast (b > 0). This is because
forecasters with kx < 1 still respond less to private information than the optimal reaction to
the average private signal (

∫ 1
0 xitdi = πt+h), which in this case equals one.19

However, while an increased weight on private information is consistent with our first two
stylized facts, it leads to neither an over- nor an underreaction to public information. In fact,
when kx > k?x (or kx 6= k?x), errors remain uncorrelated with the public signal (δ = 0).

The reason is that a regression of individual errors onto any public signal only consid-
ers whether that source of information is used to minimize forecast errors. It does not
consider more broadly whether all sources of information, in general, are accurately em-
ployed. Although forecasters in (3.4) do not optimally use private information to minimize
errors, conditional on this misuse, they still use public information efficiently. The expression
E[πt+h | µit, yt] enters in (3.4). This, in turn, leads to a δ-coefficient that is equal to zero.20

The second part of Proposition 1 considers a natural extension that simultaneously skews
forecasters use of private and public information away from their mean-squared optimal values.
When k exceeds its optimal value (k > k?), forecasters in (3.5) over-emphasize new information
contained in private and public signals relative to their prior expectation. In this sense,
forecasters with k > k? over-emphasize all news that is characteristic of updates relative to
prior beliefs. When forecasters overreact to all information, the resulting forecasts from (3.5)
can also be consistent with the documented behavior of forecast revisions (b > 0 , β < 0). This
occurs when k ∈ (k?, 1). But, because forecasters overreact to all information such forecasts
are also inconsistent with the documented underreaction to public signals (δ > 0). Instead,
such forecast always entail overreactions to public information (δ < 0).

19We note that an increased weight on private information kx ∈ (k?x, 1) is also consistent with our results
in Online Appendix Table B.4, which documents a negative correlation between individual errors and past
deviations of forecasts from consensus (Clements, 2018).

20Consider the forecast error that results from (3.4):

πt+h − fitπt+h = πt+h − kxxit − (1− kx)E[πt+h | µit, yt].

Taking conditional expectations based upon the public signal y then shows that

E [πt+h − fitπt+h | yt] = δ × yt
= (1− kx) (E [πt+h | yt]− E {E [πt+h | µit, yt] | yt}) = 0,

where the last equality follows from the Law of Iterated Expectations. As a result, despite the erroneous use
of private information, individual errors remain uncorrelated with the public signal (δ = 0).
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3.2 Applications and Extensions

A variety of popular models of forecaster behavior fall within the cases described in Propo-
sition 1. These models are hence consistent with underrevisions of average forecasts (b > 0),
overrevisions of individual forecasts (β < 0), but inconsistent with the co-existence of over-
and underreactions to public information (δ ≶ 0). Below, we outline several of these.

1. Strategic Diversification: Laster et al. (1999), Ottaviani and Sørensen (2006), and Mari-
novic et al. (2013) describe the market for professional forecasters as a winner-takes-all com-
petition, where only the most accurate forecast is rewarded. As a consequence, in a symmetric
equilibrium, all forecasters over-emphasize private information and follow (3.4) with kx > k?x.21

2. Reputational Considerations: In Ehrbeck and Waldmann (1996), forecasters are rewarded
based on their perceived accuracy. One set of forecasters has access to more precise private
information than another. As a result, the set of forecasters that receive less precise infor-
mation overreact to their private information in an attempt to mimic their more informed
competitors, and follow (3.4) with kx > k?x. Their more informed competitors set kx = k?x.
The average individual forecast thus follows (3.4) with kx > k?x (Online Appendix C.1).22

3. Behavioral Overconfidence: A considerable literature in psychology has documented that
agents over-emphasize their own information (e.g., Moore and Healy, 2008). As discussed in,
for example, Daniel et al. (1998), and more recently in Angeletos et al. (2020), such inherent
overconfidence could provide a basis for overreactions to new information. Within our context,
overconfident forecasters believe the precision of their private information to be higher than
it actually is. Their forecasts thus follow (3.4) with kx ∈ (k?x, 1). We return to how a suitably
adjusted notion of behavioral overconfidence can capture our stylized facts in Section 4.

4. Models of Generalized Overreactions: A candidate explanation for the overreaction to indi-
vidual information (β < 0) and consensus expectations (δ < 0) that we have documented are
models of generalized overreactions. This includes Bordalo et al. (2018b)’s theory of diagnos-
tic expectations and Evans and Honkapohja (2012)’s theory of excess Kalman Gain learning.
In the former case, forecasters overreact to all new information, because it is perceived to

21To see why, consider an individual forecaster who sets kx = k?x. Increasing the weight on private informa-
tion (kx > k?x) leaves the probability of winning the contest approximately unchanged (as the posterior is flat
at the conditional expectation). But more weight on private information also (in expectation) strictly reduces
the mass of other forecasters that makes the same forecast. In equilibrium, all forecasters therefore choose to
follow (3.4) and set kx such that kx ∈ (k?x, 1) (see, e.g., Proposition 4 in Ottaviani and Sørensen, 2006 and
Proposition 1 and Corollary 1 in Marinovic et al., 2013).

22See the results on p. 24 of Ehrbeck and Waldmann (1996). Online Appendix C.1 extends their model
to explicitly account for public information. We assume that forecasters as well as clients observe the public
signal yt in (3.2). We summarize all initial information in the individual-specific prior µit. With the exception
of these modifications all details are as in Ehrbeck and Waldmann (1996).
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be diagnostic (or representative) of updates relative to prior information. In the latter case,
forecasters instead overreact to increase their speed of learning. Within our framework, these
models are captured by (3.5) with k ∈ (k?, 1) (Online Appendix C.2).

5. Underreactions and Rational Inattention: We close this list by noting that several other,
prominent models of forecaster behavior fall within the cases described in Proposition 1, but
where kx ∈ (0, k?x) or k ∈ (0, k?).23 As a result, these models cannot explain the documented
overrevision of individual forecasts (β < 0). Finally, we note that models of rational inattention
(e.g., Sims, 2003), or other rational models of limited attention (e.g., Gabaix, 2017), are
likewise inconsistent with β < 0. This is because forecasts from these models equal conditional
expectations, and hence satisfy the Law of Iterated Expectations.24

The above examples have shown that several prominent models of forecaster behavior are
consistent with under- and overrevisions of expectations at the average (b > 0) and individual
level (β < 0), respectively. However, none of these models have been simultaneously consistent
with the documented over- and underreaction to public information (δ ≶ 0). This insight
extends beyond the specific applications considered above.

Online Appendix C.3 analyzes a more general model, where strategic incentives skew the
optimal use of information away from its mean-squared optimal value. This appendix shows
that, despite flexible strategic interactions, errors remain uncorrelated with public information.
This result extends to cases with a common noise component in private information. Online
Appendix C.4 shows that our results also extend to circumstances where trembling-hand noise
drives a wedge between reported estimates and actual expectations.

Clearly, extensions or combinations of the above environments could potentially alter the
prediction listed in Proposition 1. But, at this point, it is worth summarizing why these
models fail to match the data. At its heart, the reason is that to explain the survey data
forecasters have to flexibly misperceive public information. As Part (ii) of Proposition 1
shows, forecasters cannot, for example, always place an excessive weight on public information.
Whatever misperception we consider has to result in both too much as well as too little weight
placed on public signals. The next section shows that a natural candidate for such flexible
misperceptions arises from forecasters’ potentially incorrect views about other’s information.

23For example, Graham (1999), Welch (2000), Lamont (2002), and Ottaviani and Sørensen (2006) describe
models in which forecasters all have a rational incentive to herd, as in Scharfstein and Stein (1990). Hirshleifer
et al. (2011) instead detail a model in which security analysts for behavioral reasons underreact to information.
All of these explanations feature either kx ∈ (0, k?x) in (3.4) or k ∈ (0, k?) in (3.5).

24Let x?it denote the optimal signal observed by a capacity-constrained agent with entropy attention cost.
Following Cover and Thomas (2012), x?it follows (3.1) but with a precision τ?x 6= τx that depends upon the
capacity constraint. The agent’s forecast equals fitπt+h = E [πt+h | µit, x?it]. But then the exact same steps as
those taken in the proof of Proposition 1 show that β = 0, because of the Law of Iterated Expectations.
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4 Absolute and Relative Overconfidence

In this section, we show that a simple model in which forecasters are overconfident in the
precision of their own information (both relative to the truth and relative to their perception
of others) can account for all three stylized facts. The next section then explores the potential
of our model to also quantitatively match the magnitude of our empirical estimates.

4.1 Overconfidence and Public Information

We build our model of expectations from first principle starting with the well-documented
overconfidence heuristic. In their overview of behavioral finance, De Bondt and Thaler (1985)
state that “perhaps the most robust finding in the psychology of judgement is that people
are overconfident” (p. 6). In particular, we call overconfident those individuals that are not
only overconfident in the precision of their own information but also wrongly think that their
information is better than others. We therefore merge the two related but distinct notions
of overconfidence commonly used in the psychology literature (Moore and Healy, 2008). We
refer to the first type as absolute overconfidence and the second type as relative overconfidence
(Benoît et al., 2015). Notice that it is the second, relative aspect of overconfidence that
differentiates the notion of overconfidence studied here from that explored in Section 3. To
motivate these assumptions, we briefly return to the survey data.

Panel a in Table III uses data on individual-level density forecasts of one-year ahead
inflation from the US SPF. It shows that respondents’ stated accuracy of their one-year ahead
inflation forecasts exceeds their actual accuracy by a sizable amount. The estimated coverage
ratio of respondents’ 95 percent confidence interval, which describes the percentage of times
when inflation outcomes fall inside an individual respondent’s confidence interval, is only
between 72 and 84 percent, depending on the estimation method. Closely related, Griffin
and Tversky (1992) show that such absolute overconfidence tends to be more prevalent for
forecasters that are faced with prediction tasks that are characterized by a large judgment
component and delayed feedback, such as professional economic forecasters.25

Panel b in Table III uses the recent survey on firm managers’ higher-order expectations of
one-year ahead inflation undertaken by Coibion et al. (2021) in New Zealand.26 Consistent
with absolute overconfidence in individual-specific information, Coibion et al. (2021) document
that the cross-sectional standard deviation of respondents’ inflation forecasts is too large when

25Other prominent examples of overconfidence include the stated precision of forecasts produced by financial
market traders, the certainty in the diagnosis of severe illnesses by physicians, and the probability of a positive
verdict by procedural lawyers. See, for example, Oskamp (1965), Einhorn (1980), Froot and Frankel (1989),
Baumann et al. (1991), Benoît et al., 2015, and the summaries in Odean (1998), Thaler (2000), Moore and
Healy (2008), and Moore and Dev (2017).

26We thank the editor, Olivier Coibion, and an unnamed referee for bringing this data set to our attention.
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Table III: Overconfidence in Survey Data on Expectations

Panel a: Coverage Ratio of Forecasts

Confidence Interval
Estimation Method 95 percent 66 percent
Density Implied 0.84∗∗∗ 0.58∗∗

Giordani and Soderlind (2003) 0.72∗∗ 0.48∗∗

Note: The table uses SPF density forecasts for one-year ahead GDP deflator inflation. The table shows the
coverage ratio (the fraction of cases when actual inflation is inside a forecaster’s confidence band). If forecasters
are rational a 95% confidence band will contain the true but unknown value 95% of the times. The confidence
bands are derived assuming a normal distribution and are calculated as: mean of individual inflation densities
± critical value × standard deviation. Actual inflation is measured as the percentage change in the index
(annual-average) in Q4 of each year. The significance of differences between the nominal confidence level and
the actual are assessed using Christoffersen’s (1998) test. * p<0.10, ** p<0.05, *** p<0.01. The sample period
is 1981Q1 to 2018Q4. For reference, the table also includes estimates from Giordani and Söderlind (2003).
x
x

x Panel b: Uncertainty and Dispersion of Higher-order Expectations

Uncertainty Std. dev. Implied Higher-order Unc.
(1) (2) (1) (2)

Inflation one-year ahead 1.11 3.06 1.76 1.80

Consensus inflation expectation 0.89 2.43 – –
Note: The first column shows data on the average self-reported uncertainty of one-year ahead inflation expec-
tations, as well as the average self-reported uncertainty about the consensus (average) expectation from the
same survey. The second column shows the cross-sectional standard deviation (disagreement) of point forecasts
of inflation and consensus. The data in the first two columns are taken from Table II [initial wave] in Coibion
et al. (2021). The last two columns instead use the data in the first two columns to compute respondents’
perception of other respondents’ uncertainty of future inflation (“implied higher-order uncertainty”; Appendix
A.6), measured as 1/(precision of prior + perceived precision of others’ information). The third column uses
the data in column one to compute this value, while the fourth column uses the data on disagreement in
column two. Uncertainty is in all cases measured in terms of standard deviation. We throughout assume that
the unconditional variance of inflation, the inverse of the prior precision, equals that realized post-1985 (Great
Moderation) in New Zealand, the country to which the Coibion et al. (2021) survey pertains.
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compared to the predictions from simple noisy rational expectation models. However, crucially,
Panel b also shows that the elicited higher-order moments from the survey combine with their
first-order counterpart to imply substantial amounts of relative overconfidence (Appendix A.6).
In particular, we use the information encoded about individual views of other’s information
in the data on uncertainty and disagreement about consensus expectations. This suggest that
respondent i’s perception of respondent j 6= i’s uncertainty of future inflation is, on average,
much above that of her own, consistent with the hallmark of relative overconfidence. Indeed,
respondents’ estimates suggest that individuals believe, on average, that their expectations
are 45 percent more accurate than their competitors.

Finally, our model explicitly accounts for the fact that most public signals are endogenous.
A central feature of the information landscape that people observe is that most of it reflects
the realized choices of others. This is true whether one considers data releases on past infla-
tion or output, the observation of asset or goods prices, or the observation of previous period’s
consensus estimate. Because of this endogeneity of public signals, any equilibrium model of
expectation formation requires an assumption about individuals’ views about the precision
of others’ information. Rational expectations commonly solves this issue by imposing the
symmetry assumption that others’ information is equal in quality to one’s own. Relative over-
confidence, by contrast, imposes the empirically motivated “better than others” perception.
Individual views about others’ information become especially salient when we consider public
signals such as consensus, which reflect simple averages of individual expectations.

4.2 Environment with Overconfidence

We modify our previous environment from Section 3. We assume that inflation πt+h is drawn
from the normal distribution πt+h ∼ N (0, τ−1

π ). At the start of period t − 1 and t, each
forecaster i ∈ [0, 1] receives the private signal xiτ about the fundamental πt+h,

xiτ = πt+h + εxiτ , εxiτ ∼ N
(
0, τ−1

x

)
, (4.1)

where τ = {t− 1, t} and εxiτ is independent of πt+h with E
[
εxiτ ε

x
js

]
= 0 for all j 6= i and s.27

We introduce the period t−1 signal to later allow the public signal that forecasters observe to
depend on the previous period’s consensus expectation. All forecasters exhibit absolute and
relative overconfidence. They believe the precision of their private signals equals τ ′x > τx, and
thus to be greater than the truth (absolute overconfidence). At the same time, forecasters also

27Hence, at time t, a forecaster receives two private signals: one for πt+h and one for πt+h+1. To avoid
complicating the notation further, we do not add an additional subscript on xiτ to keep a track of the distinct
private signals observed at time t. We can do so because of the independence of πt+h and πt+h+1. Neither of
our results, however, depend on this independence feature; it merely simplifies the exposition.
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believe that other forecasters’ private signals have a precision smaller than their own (relative
overconfidence) equal to τ̂x < τ ′x. We make no assumptions about the relative size of τ̂x and
τx. We note that the observation of xit−1 at time t − 1 results in a period-t prior of πt+h of
the exact form used in Section 3 (see below).

At the start of period t, each forecaster, in addition, observes the endogenous public signal

yt = α1πt+h + α2ftπt+h + εyt , εyt ∼ N
(
0, τ−1

y

)
, (4.2)

where αj ≥ 0 for j = {1, 2}, and εyt is independent of πt+h and εxis for all i ∈ [0, 1] and s.28 The
key difference between the public signal in (4.2) and that explored in (3.2) is the endogeneity
of the signal to average individual expectations ftπt+h. For example, when α1 = 0 and α2 = 1,
equation (4.2) directly becomes the consensus (average) forecast of inflation from the previous
period. Vives (2010) and Veldkamp (2011) summarize the importance of public signals of the
form (4.2) for the social value of public information, the benefits of social learning, and the
volatility of asset prices and business cycles, among others.

We proceed in two steps. We first derive individual expectations of inflation πt+h in period
t − 1 and t, and show how relative overconfidence causes forecasters to flexibly misperceive
the public signal yt. We then provide a set of sufficient conditions for individual expectations
to be consistent with all three of our stylized facts.

Consider forecaster i’s expectation of πt+h in period t− 1:

fit−1πt+h = vxit−1, (4.3)

where v ≡ τ ′
x

τ ′
x+τπ

exceeds the mean-squared optimal weight on the private signal v? ≡ τx
τx+τπ

,
because of forecaster i’s (absolute) overconfidence in her private information. Importantly, the
coefficient v also exceeds the weight that the forecaster believes others place on their private
information (because of relative overconfidence), equal to v̂ ≡ τ̂x

τπ+τ̂x .

Let µit ≡ fit−1πt+h denote forecaster i’s prior expectation at the start of period t with
perceived precision τπ ≡ τπ + τ ′x. To derive forecaster i’s period-t expectation, we first need
to differentiate between two different public signals: (i) the realized public signal yt, and (ii)
the perceived public signal ŷt. The former measures the actual signal in (4.2),

yt = α1πt+h + α2

∫ 1

0
fit−1πt+hdi+ εyt = ηπt+h + εyt , (4.4)

where η ≡ (α0 +α1v) > 0. The latter, by contrast, measures the public signal that forecasters
28We restrict the sign of α1 and α2 to avoid having to always separate between positive and negative signals

of the fundamental in our discussions. Neither of our main results depend critically on this assumption.
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believe they observe when confronted with observations of yt,

ŷt = η̂πt+h + εyt , (4.5)

where η̂ ≡ (α0 + α1v̂) > 0. Notice that the signals yt and ŷt differ only because of forecasters’
misperception about the overconfidence of others (η > η̂); that is, because all forecasters attach
a weight of v > v̂ to private information in (4.3). This shows how relative overconfidence boils
down to a simple one-parameter deviation from rational expectations.

We are now ready to state forecasters’ period-t expectation. Combining the public signal
in (4.4) with forecasters’ perception about it in (4.5), as well as with the period-t private signal
in (4.2), shows that

fitπt+h = (1− kx − ky)µit + kxxit + ky ×
1
η̂
yt (4.6)

= (1− kx)F [πt+h | µit, yt] + kxxit, (4.7)

where kx ∈ (k?x, 1), ky ≶ k?y, and k?x and k?y once more denote the mean-squared optimal weight
on private and public information, respectively (Appendix A.2).

We conclude from (4.6) that forecasters’ expectations are a special case of those from the
generalized prediction rule in (3.3). Equation (4.7) shows that these expectations can also be
recast in a form similar to that studied in case (i) in Proposition 1. The difference being that
the conditional expectation E [πt+h | µit, y] in (4.7) is replaced with the overconfident forecast
F [πt+h | µit, y] that accounts for the misperception of the public signal; that is, the conditional
expectation of πt+h based on µit and yt, but where a forecaster perceives yt to be governed by
equation (4.5) instead of equation (4.4).

4.3 Over- and Underreactions to Public Information

Because of the misperception of the public signal, a correlation naturally arises between indi-
vidual errors, on the one hand, and the public signal, on the other hand. Taking conditional
expectations of forecaster i’s error based upon the realized public signal yt shows that

δ × y = E [πt+h − fitπt+h | yt]

= (1− kx) (E [πt+h | yt]− E [F [πt+h | µit, yt] | yt])

= (1− kx)E {E [πt+h | µit, yt]− F [πt+h | µit, yt] | yt} 6= 0, (4.8)

where we have used the expectation in (4.7) and the Law of Iterated Expectation to arrive at
the second and third condition, respectively. Unlike with case (i) in Proposition 1, the Law
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of Iterated Expectations in (4.8) does not imply orthogonality between individual errors and
public information. This is because E [πt+h | yt] 6= E {F [πt+h | µit, yt] | yt}. The misperception
of the public signal breaks the implication of the Law of Iterated Expectations that forecast
errors are orthogonal to public information. Proposition 2 computes an expression for the
over- and underreaction coefficient δ in (4.8).

Proposition 2. The over- and undereaction coefficient δ in (2.3) equals

δ = ∆ (κ? − κ̂) , (4.9)

where ∆ ∈ R+, κ? ≡ η2τy
τπ+η2τy

× 1
η
denotes the rational weight on the public signal yt in

E [πt+h | yt], while κ̂ ≡ η̂2τy
τπ+η̂2τy

× 1
η̂
denotes the corresponding misperceived weight.

Intuitively, how forecasters respond to a public signal, such as past consensus outcomes,
depends on their views about its precision (conditional variance) and its interpretation (con-
ditional mean). Relative overconfidence causes forecasters to mistake both. On the one hand,
it causes forecasters to underestimate the precision of public signals. The realized public
signal yt in (4.4) is more precise than the perceived public signal ŷt in (4.5). The precision
of the former is η2τy, while the precision of the latter is only η̂2τy, where η2τy > η̂2τy since
v > v̂. This dismissal of other forecasters’ information straightforwardly leads forecasters to
underreact to the public signal (δ > 0 as it causes κ? > κ̂). On the other hand, relative
overconfidence also causes forecasters to over-infer movements in fundamentals from public
signals. The realized public signal yt loads onto the fundamental πt+h with η in (4.4), while
the perceived public signal ŷt only loads onto the fundamental with η̂ < η in (4.5). Hence, a
movement of dπt+h > 0 in the fundamental causes forecasters to, all else equal, believe in a
movement equal to (η/η̂)dπt+h > dπt+h, based on the observation of the public signal alone.
This misinterpreation of the public signal, in turn, leads forecasters to overreact to its realiza-
tions. When forecasters over-infer values of the fundamental from observations of the public
signal, they all else equal attach more weight to it than warranted (δ < 0 as it causes κ? < κ̂).

Depending on the relative strength of these effects, Proposition 2 shows that both under-
and overreactions to a public signal can arise from individuals’ dismissal of other’s private
information. Indeed, equation (4.9) provides the condition for δ ≶ 0.

We close this subsection with two additional observations that follow from Proposition 2.
First, we note that overreactions (underreactions) to public signals naturally arise when the
public signal that forecasters observe is sufficiently precise (imprecise). Equation (4.9) shows
that limτy→0 δ > 0 while limτy→∞ δ < 0. In Section 5, we relate this finding to our empirical
estimates of δ for different public signals in Figure 2. Second, we note that when forecasters
believe others’ information is poor τ̂x → 0, equation (4.9) shows that underreactions always
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occur (δ > 0). This can provide a lens through which to interpret some of our estimates using
alternative consensus estimates in Section 2.

Corollary 1. If the public signal yt becomes sufficiently precise τy →∞ (or imprecise τy → 0)
overreactions (underreactions) always occur δ < 0 (δ > 0). Underreactions δ > 0 also occur
when forecasters almost fully disregard others’ information τ̂x → 0.

4.4 Data-consistent Expectations

Unlike the models in Section 3, the expectations in (4.7) can be consistent with all three
stylized facts documented in Section 2. We show this concretely by focusing on our results in
Table I (b > 0, β < 0, and δ < 0), where we consider previous period’s consensus estimate as
the relevant public signal (α1 = 0 and α2 = 1). Section 5 explores the quantitative potential
of our model to also match the magnitude of the empirical estimates.

Proposition 3. Suppose α1 = 0 and α2 = 1, such that the public signal yt corresponds to
previous period’s consensus estimate, and consider individual i ∈ [0, 1]’s forecast

fitπt+h = (1− kx)F[πt+h | µit, yt] + kxxit, kx ∈ (k?x, 1) . (4.10)

If η2τy > max (χ, 1) τπ, where χ ≡
τπ η̂

τ ′
x(1−η̂) , then there exists c0, c1 ∈ R+ such that, for ε > 0

and τ ′x = τx + c0ε and η̂ = η − c1ε, the coefficients satisfy β < 0, δ < 0, and b > 0.

Proposition 3 combines the insights of Proposition 1 and 2. The first and second result
in Proposition 3 (b > 0 and β < 0) resemble those in case (i) of Proposition 1. On the one
hand, because of the dispersion in private signals, the average information across forecasters
is more precise than any individual’s. This, in turn, causes average forecasts to underreact to
the average information observed (b > 0). On the other hand, despite these underreactions
at the average level, at the individual level, forecasters overrevise their expectations (β < 0).
This is once more in part due to forecasters’ overconfidence in their own private information.

However, where Proposition 3 differs from case (i) of Proposition 1 is that forecasters
also overreact to the past consensus outcomes (δ < 0). These overreactions occur because
forecasters’ perceived and actual weight on private information are sufficient to ensure that
the perceived under-responsiveness of consensus dominates its perceived under-precision. The
condition η2τy > max (χ, 1) τπ ensures that relative overconfidence η̂ < η delivers κ̂ > κ? in
(4.9) in Proposition 2. Combined with the dispersion and overconfidence in private informa-
tion, this then ensures that the expectations from equation (4.7) are consistent with all three
stylized facts documented in Table I.
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5 Quantitative Implications

We have shown how our model of overconfidence can be qualitatively consistent with stylized
facts about individual forecasts. Although our model is simple, in this subsection we explore
the capacity of the model to also quantitatively match the survey data. We show that our
model can account for the baseline estimates in Table I, and that our calibrated model entails
degrees of absolute and relative overconfidence that are in line with auxiliary data. We also
test several key implications of our model, and discuss its economic consequences.

5.1 Model Calibration

We use a simulated method of moments procedure to choose parameter values. Normalizing
the variance of inflation to one and employing the restriction that τ̂x = τx, identification
of the three parameters τx, τ ′x, and τy requires at least three target moments. We choose
the individual overrevision and overreaction coefficients β in (2.2) and δ in (2.3), respectively,
documented in Table I. We choose the previous consensus expectation as the benchmark public
signal because its structure is simple and known (α1 = 0, α2 = 1 in 4.2), and because its only
relationship with future inflation is that of aggregating others’ information. We then later show
that the calibrated model also matches dimensions of the responses of individual errors to other
public signals than consensus. Finally, we also include the estimate of information frictions b
to our list of target moments. In particular, to account for the special feature that our baseline
model only has one public signal, and not numerous as used by professional forecasters, we
target the bias-adjusted measure of information frictions from Goldstein (2021). This estimate,
in effect, bias-adjusts the b−coefficient in (2.1) for the presence of public information, and
hence provides a more comparable estimate of the extent of information frictions to that of
our model.29 The criterion we choose to minimize is the sum of absolute deviations of target
moments from model simulated moments.

29Online Appendix D provides details on the Goldstein (2021)-adjustment of the Coibion and Gorodnichenko
(2015) estimate of information frictions in (2.1). In particular, the Goldstein (2021)-adjustment produces an
unbiased estimate that is positively proportional to the bias-adjusted b−coefficient in (2.1).
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Table IV: SMM Estimation: Inflation Forecasts

β δ b? Cons. dev. √
τx

√
τy

√
τπ

√
τ ′x

Data -0.19 -0.20 0.42 -0.59 – – – –
Model -0.18 -0.19 0.58 -0.79 0.41 4.74 1.00 0.95

Note: The table presents the values of the moments β in (2.2), δ in (2.3), and b? from Goldstein (2021) (see
also Online Appendix D). The table compares estimates using one-year ahead US SPF inflation forecasts (first
row) and model estimates (second row). The table also reports the results for the (non-targeted) Clements
(2018) regression (Cons. dev.), corresponding to column three in Online Appendix Table B.4, as well as the
calibrated values of the model’s precision parameters.
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Table IV presents the results for one-year ahead inflation, where for ease of interpretation
we report the square root of the precision, the inverse of the standard deviation. Our model
is able to capture all three data moments well. We estimate private signals to be rather
noisy (√τx = 0.41) and the noise in consensus to be small (√τy = 4.74). At a level of
overconfidence that increases the square-root of the perceived precision of private signals
by somewhat more than two, the model predicts accurately the overrevision of individual
forecasts β and the overreaction to past consensus realizations δ. This is consistent with our
previous discussion, which showed that the combination of a precise consensus and meaningful
overconfidence, all else equal, makes overreactions more pervasive. The model also matches the
level of information frictions well, although it entails somewhat too high information frictions.
Finally, Table IV shows that our estimates also capture well the non-targeted Clements (2018)
regression of individual errors onto consensus deviations.

5.2 Model Evaluation

5.2.1 Estimates of Overconfidence

The estimates in Table IV entail a noticeable degree of overconfidence. We next turn to how
the implied estimates of absolute and relative overconfidence match those from survey data.

Estimates of Absolute Overconfidence: The individual density forecasts of one-year-ahead
inflation, available in the US SPF, allow us to evaluate whether the implied degree of absolute
overconfidence from our model is reasonable. Panel a in Table V presents this comparison in
the form of coverage ratios, describing the percentage of times when actual inflation outcomes
fall inside an individual forecaster’s 95 (or 66) percent confidence band. Panel a contrasts the
coverage ratios implied by our benchmark estimates in Table IV with those that are estimated
from US SPF data in Table III. On balance, the implied degree of absolute overconfidence
captures well that in the US SPF data. Forecasters’ 95 percent confidence band has a coverage
ratio of only 70 percent, consistent with a sizable amount of absolute overconfidence. This
matches the magnitude of the US SPF estimate. In fact, Giordani and Söderlind (2003) find
similar degrees of absolute overconfidence to those implied by our model estimates, using
a somewhat more advanced estimation method to deduce individual confidence bands from
reported forecast densities. We view the estimates in Panel a in Table V as important auxiliary
evidence that corroborates our first main assumption of absolute overconfidence.

Estimates of Relative Overconfidence: Reported forecast densities can be used to assess the
extent of absolute overconfidence, or the perceived precision of forecasters’ information relative
to the truth. In contrast, to assess the extent of relative overconfidence requires information
about forecasters’ perception of other forecasters’ uncertainty (or expectations). This is typi-
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Table V: Overconfidence in Survey and Model Data

Panel a: Coverage Ratio of Forecasts

Confidence Bands Confidence Level
95 percent 66 percent

SPF Density Implied 0.82∗∗∗ 0.56∗∗

Giordani and Soderlind (2003) 0.72∗∗ 0.48∗∗

Model Implied 0.70 0.41

x
Note: The table shows the implied coverage ratio. The confidence bands from the SPF are derived assuming
a normal distribution and are calculated as: mean of individual density forecast ± critical value × standard
deviation. Actual inflation is measured as the percentage change in the GDP Deflator (annual-average). The
significance of differences between the nominal confidence level and the actual are assessed using Christof-
fersen’s (1998) test. * p<0.10, ** p<0.05, *** p<0.01. The sample is from 1981Q1 to 2018Q4.
x
x
x
x

x Panel b: Ratio of Higher-order Uncertainty to First-order Uncertainty

Level Share
(1) (2) (1) (2)

Survey Data 1.59 1.62 1.00 1.00

Model Implied 1.28 1.28 0.81 0.79

x
Note: The table estimates the ratio of higher-order uncertainty to first-order uncertainty in the survey data
from Coibion et al. (2021), using the implied estimates in Table III. The table then compares these estimates
to the model-implied counterparts. The model-implied results use the estimates of τ ′x and τ̂x = τx from Table
IV. An absence of relative overconfidence results in a ratio of one. Uncertainty is measured in units of standard
deviation. We express the results in terms of share of the data in the final two columns to account for the
different volatilities of inflation in New Zealand and the US, and to account for our model only being calibrated
to US data. We note that there is only one model estimate, consistent with only one calibration of the model.
Consistent with Table III, columns denoted with a (1) use survey data on uncertainty about consensus to
estimate higher-order uncertainty. Columns denoted with a (2) instead use survey data on the cross-sectional
dispersion of forecasts of consensus to estimate higher-order uncertainty.
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cally not available in expectational survey data. The only exceptions that we are aware of are
the survey of New Zealand firm managers, conducted by Coibion et al. (2021) and discussed
in Table III, and the German ZEW survey (Köhler and Schmidt, 2021). The former asks
its participants about their uncertainty about the consensus estimate of future inflation; the
latter, by contrast, asks its respondents every month for their best forecast of the consensus
estimate of an aggregate index of German economic activity.

Panel b in Table V shows the model-implied estimates of the ratio of higher-order uncer-
tainty (i.e. a forecaster’s estimate of another forecaster’s uncertainty about future inflation) to
first-order uncertainty of future inflation, using the parameters from Table IV. An absence of
relative overconfidence results in a ratio of one. The table compares these estimates to those
implied by the Coibion et al. (2021) survey, reported in Table III. Consistent with relative
overconfidence, our model estimates show that forecasters perceive their own expectations to
be around 30 percent more accurate than their competitors. As a result, our model accounts
for around 80 percent of the relative overconfidence implied by the Coibion et al. (2021) data.
That said, clearly, the implied estimates from our model, based on US SPF data, are not fully
comparable to those from the Coibion et al. (2021) survey, because of differences in respondent
types (professional forecasters vs. managers) and countries covered (US vs. New Zealand).
Notwithstanding these discrepancies, the fact that the implied estimates in Panel b are of
a similar magnitude is comforting, and the table does provide independent validation of our
second main assumption of relative overconfidence.

Finally, Online Appendix F uses the time series data on higher-order expectations of
economic activity, available from the ZEW survey, to directly estimate the actual and perceived
weight on private information. Consistent with relative overconfidence, we estimate the actual
weight on private information v to be around twice the perceived weight attached by others v̂,
although the difference is only borderline statistically significant when accounting for outlier
observations. In the calibrated model, the weight on private information v is around three
times the perceived weight.30 We view these estimates, although pertaining to another variable
and country, as lending further support to our assumption of relative overconfidence.

5.2.2 Heterogeneity in Responses to Public Information

We revisit the evidence in Figure 2, documenting heterogeneous responses to public informa-
tion, ranging from over- to underreaction (δ ≶ 0). In particular, we analyze how the over-
and underreaction coefficient δ from our model changes with respect to the precision of public
information. We then compare these predictions to estimates in the survey data.

30We note that the estimated weight on private information in the ZEW is smaller than the model-implied
estimate. The estimate from the ZEW data is though roughly in line with that backed out by Coibion et al.
(2021). This is consistent with the presence of several, additional public signals, beyond consensus estimates.
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The left-hand panel in Figure 4 computes the model-implied estimates of δ as a function
of the precision of the consensus signal in (4.4). The figure highlights two features of our
model: First, all else equal, forecasters overreact more strongly to more precise signals (see
also Corollary 1). Second, the precise parameters of the model determine the magnitude of
over- and underreactions for any given precision of public information. The right-hand panel
of Figure 2, by contrast, returns to the survey data. It illustrates the relationship between the
precision of different public signals of one-year ahead inflation and the over- and underreaction
coefficient δ in (2.3), using our estimates in Figure 2 but for a common sample. In line with
the prediction of our model, we observe stronger overreactions to more precise signals. We
note that the range of values in the left- and right-hand panel do not necessarily overlap, as
the right-hand panel uses estimates employing other public signals than consensus. Overall,
the results in Figure 4 lend credence to the notion that an important determinant of over- and
underreactions to public signals is the noisiness of the signal in question.

5.3 Implications and Discussion

We conclude this section by discussing auxiliary implications of our calibrated model. The top
left-hand panel in Online Appendix E shows the (demeaned) distribution of individual period-
t forecasts implied by the model. Compared to rational, mean-squared optimal forecasts, the
standard deviation of the overconfident forecast distribution is about three times larger. This
is because overconfidence causes individuals to put additional weight on private information.
Overconfidence in the precision of private information can thus help explain the a priori
puzzling amount of dispersion in macroeconomic expectations (e.g., Mankiw et al., 2003).

However, importantly, this increase in dispersion does not lead to substantially more im-
precise expectations in equilibrium. Online Appendix E shows that the standard deviation of
individual errors is only slightly larger in the overconfident case. As a result, forecasters in our
model would face difficulty inferring from the accuracy of their own forecasts alone that they
were indeed overconfident. The bottom panel in Online Appendix E illustrates the reason for
this close equivalence: the endogenous public signal (consensus, in this case) is substantially
more precise in the overconfident case. Because overconfident forecasters put more weight on
private information, the endogenous consensus outcome embeds more of the sum of forecast-
ers’ private information, the only truly new information that forecasters can learn from each
other. In effect, overconfidence in private information counteracts the standard learning ex-
ternality that exists in markets with endogenous public information and which causes agents
to attach too little weight to private information (e.g., Amador and Weill, 2010).
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Figure 4: Overreaction and the Precision of Public Signals
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Note: The left panel illustrates model-implied variations in δ as a function of the precision of consensus τy
relative to its calibrated value from Table I (black line). A value of one on the horizontal axis, therefore,
corresponds to a precision of public information equal to that in Table I. The gray line decreases the precision
of private information τx and forecasters’ beliefs about it τ ′x by 25 percent. The right hand panel shows the
estimates of δ for different public signals (along the vertical axis), using the variables from Panel (a) and (b) in
Figure 2, as a function of the signals’ estimated precision (along the horizontal axis). Consistent with Section
4, we estimate the precision of public signals as the inverse of the variance of an error term. For consensus
signals of the same forecast horizon (Panel a in Figure 2), the error term equals the difference between the
realized value of one-year ahead inflation and its consensus forecasted value. For other public signals (Panel b
in Figure 2), the error terms are instead constructed as the residuals from a linear regression of one-year-ahead
inflation onto the public signal in question. To make the precision and δ-estimates comparable across series,
we focus on the longest common sample available (1981Q1-2020Q1) and standardize the variables over this
sample. Notice that this contrasts to Figure 2, where δ is estimated on the full-sample for each series. Finally,
we drop the TIPS from the figure, as it is only available after 2015.
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A core argument for rational, mean-squared optimal expectations is that such beliefs make
agents as well-off as they can be. However, this rationale for rational expectations relies upon
agents being strictly worse off with non-rational beliefs. As Online Appendix E shows, this is
not necessarily the case in our model. This connects our results with those of Smith (1982)
and others that attempt to find “group optimal explanations” for individual biases.

Finally, a substantial literature in macroeconomics has explored whether noise shocks to
public information can explain business cycle fluctuations. Because agents in our model attach
more weight to public information than optimal, any such shock also has a heightened effect
on individual expectations. Compared to a rational model, our model therefore predicts larger
responses to public noise shocks. This illustrates one potentially important implication of the
combination of absolute and relative overconfidence. Other potential implications include: (i)
increases in trade in financial assets, due to increases in the dispersion of (relative) beliefs;
(ii) “over-shooting” of asset prices in response to public announcements; and (iii) increases in
investments into new product lines. We leave these topics, and others, for future research.

6 Concluding Remarks

Expectations are central determinants of economic allocations. In part because of this central
role, a considerable debate has arisen since Muth’s (1961) seminal contribution about the
best model of expectation formation. Recently, influential evidence has shown that average
forecasts across a wide variety of surveys are consistent with models of noisy information and
rational information use (Coibion and Gorodnichenko, 2015). By contrast, in this paper we
have explored the implications of such models for individual professional forecasts.

We have demonstrated that the statistical properties of individual inflation forecasts con-
tradict simple versions of noisy rational expectations. Specifically, we have documented two
stylized facts: First, individual forecasters’ overrevise their macroeconomic expectations. Sec-
ond, such overrevisions mask evidence of both over- and underreactions to salient public
signals. We have shown that such responses violate a basic tenet of noisy rational expecta-
tions, the Law of Iterated Expectations, and demonstrated that such violations also contradict
several common agency-based and behavioral models of expectation formation.

In place, we have proposed a simple extension of noisy rational expectations, consistent
with the stylized facts, building on two frictions: Forecasters believe that their own private
information is not only better than it truthfully is (absolute overconfidence), but also better
than that available to others (relative overconfidence). Combined, these biases entail that
forecasters both overreact to private information and misperceive the informativeness of en-
dogenous public signals that aggregate other agents’ private information. We showed that
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the latter can cause forecasters to both under- and overreact to public signals in a manner
that is consistent with the data. Finally, we have demonstrated that our model is not only
qualitatively consistent with survey data but also captures key features quantitatively.

We hope that our paper may serve as a stepping stone for further empirical and theoretical
research, along similar lines. Our model has illustrated how simple behavioral biases can
combine with the endogeneity of public information to create rich patterns of predictability
in individual forecast errors. This basic idea is more general than our particular forecaster
application. For example, in future research, it would be valuable to consider asset price and
business cycle implications of richer descriptions of absolute and relative overconfidence. This
would also have the advantage of creating further testable predictions.
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A Proofs and Derivations

A.1 Proof of Proposition 1

The proof studies each of the two cases in isolation.31

Case (i): Overreaction to private information. The prediction rule followed is

fiπ = (1− kx)E [π | µi, y] + kxxi, kx ∈ (k?x, 1), (A1)

where the mean-squared optimal forecast can be written as

E [π | xi, µi, y] = (1− k?x)E [π | µi, y] + k?xxi, k?x = τx
τπ + τx + τy

. (A2)

The coefficient β in (2.2) is, in this case,32

β ∝ Cov [π − fiπ, fiπ − µi]

= Cov [π − E [π | xi, µi, y] + E [π | xi, µi, y]− fiπ, fiπ − µi]

= Cov [E [π | xi, µi, y]− fiπ, fiπ − µi]

= (k?x − kx)Cov [xi − E [π | µi, y] , kxxi − µi] = (k?x − kx) kxV [xi − E [π | µi, y]] ,

where we have used (A1) and (A2). Thus, β < 0 since kx > k?x.
The coefficient δ in (2.3) is

δ ∝ Cov [π − fiπ, y]

= Cov [π − kxπ − kxεxi − (1− kx)E [π | µi, y] , y]

= (1− kx)Cov [π − E [π | µ, y] , y] = 0.

Hence, δ = 0.
Finally, notice that we can write fiπ in (A1) as

fiπ = (1− kx) [wµi + (1− w)y] + kxxi, w ≡ τπ
τπ + τy

= kxxi + wyy + (1− kx − wy)µi, wy ≡ (1− kx)(1− w).

Therefore,
fπ = kπ + (1− k)µ+ wyεy,

31In this section, to ease notation, we disregard time subscripts.
32We use the sign ∝ to denote “positively proportional to”.
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where k ≡ kx + wy and µ ≡
∫ 1

0 µidi. Using this expression, we arrive at

π − fπ = 1− k
k

(fπ − µ)− wy
k
εy

= (1− kx)w
kx + (1− kx)(1− w) (fπ − µ)− (1− kx)(1− w)

kx + (1− kx)(1− w)εy.

We conclude that, adjusting for the bias term − (1−kx)(1−w)
kx+(1−kx)(1−w) < 0 caused by the presence of

public information (Section 5; Online Appendix D), b > 0 in (2.3) since kx < 1.33

Case (ii): Overreaction to all information. The prediction rule followed is

fiπ = µi + k (E [π | xi, y]− µi) , k ∈ (k?, 1), (A3)

where the mean-squared optimal forecast can be written as

E [π | xi, µi, y] = µi + k? (E [π | xi, y]− µi) , k? ≡ τx + τy
τπ + τx + τy

. (A4)

The coefficient β in (2.2) is now

β ∝ Cov [π − fiπ, fiπ − µi]

= Cov [E [π | xi, µi, y]− fiπ, fiπ − µi]

= (k? − k)Cov [E [π | xi, y]− µi, fiπ − µi] = (k? − k) kV [E [π | xi, y]− µi] ,

where we have used (A3) and (A4). Hence, β < 0 since k > k?.
The coefficient δ in (2.3) is

δ ∝ Cov [π − fiπ, y]

= Cov [E [π | xi, µi, y]− fiπ, y]

= (k? − k)Cov [E [π | xi, y]− µi, y] = (k? − k)
(

1− τx
τx + τy

)
1
τy
.

Thus, δ < 0 since k > k?.
Lastly, notice that (A3) implies that

fiπ = µi + k [π + wεxi + (1− w)εy − µi] , w ≡ τx
τx + τy

.

33Recall that because presence of public information, the least-squares estimates for b > 0 that we document
in Section 2 underestimate the true extent to which b > 0. The evidence for underrevisions of average forecasts
is, in this sense, robust to the presence of public information.
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Averaging this expression across i, and rearranging terms, then shows that

π − fπ = 1− k
k

(fπ − µ)− (1− w) εy. (A5)

Thus, once more adjusting for the bias term − (1− w) < 0 caused by the presence of public
information (Section 5; Online Appendix D), b > 0 in (2.3) because k < 1. �

A.2 Derivation of Equation (4.6) and (4.7)

We note that the perceived precision of the public signal yt is η̂2τy. The perceived respon-
siveness to the fundamental πt+h is η̂. The two private signals xit−1 and xit about πt+h have
a perceived precision of τ ′x and a loading on the fundamental πt+h of one.

Bayesian updating then provides us with

fitπt+h = kxxit−1 + kxxit + kyyt, (A6)

where
kx = τ ′x

τπ + 2τ ′x + η̂2τy
, ky = η̂2τy

τπ + 2τ ′x + η̂2τy
× 1
η̂
. (A7)

Now, notice that µit = fit−1πt+h = vxit−1 with v = τ ′
x

τπ+τ ′
x
, and that τπ = τπ + τ ′x. Hence,

fitπt+h = kx
1
v
µit + kxxit + kyyt

= τπ
τπ + τ ′x + η̂2τy

µit + kxxit + kyyt

≡ kµµit + kxxit + kyyt (A8)

where
kx = τ ′x

τπ + τ ′x + η̂2τy
, ky = η̂2τy

τπ + τ ′x + η̂2τy
× 1
η̂
.

The mean-squared optimal weight on xit, conditional on the prior µit and the misperception
of the public signal yt, is k?x = τx

τπ+τx+η̂2τy
, so that kx ≤ k?x.

Finally, let F [πt+h | µit, yt] = F [πt+h | xit−1, yt] be the conditional expectation of πt+h under
the misperception that yt is governed by (4.5). Hence,

F [πt+h | µit, yt] = τ ′x
τπ + τ ′x + η̂2τy

xit−1 + η̂2τy
τπ + η̂2τy

× 1
η̂
yt

= τπ
τπ + η̂2τy

µit + η̂2τy
τπ + η̂2τy

× 1
η̂
yt.
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But then (A8) shows that

fitπt+h = kxxit + (1− kx)
[

τπ
τπ + η̂2τy

µit + η̂2τy
τπ + η̂2τy

× 1
η̂
yt

]
= kxxit + (1− kx)F [πt+h | µit, yt] . (A9)

A.3 Proof of Proposition 2

The forecast error at time t is

πt+h − fitπt+h = (1− kx) (πt+h − F [πt+h | µit, yt])− kxεxit.

Thus,

δ × y = E [πt+h − fitπt+h | yt] = (1− kx) {E [πt+h | yt]− E [F [πt+h | µit, yt] | yt]}

∝ E [πt+h | yt]− E [F [πt+h | µit, yt] | yt] ,

where

• E [πt+h | yt] = η2τy
τπ+η2τy

× 1
η
yt

• E [F [πt+h | µit, yt] | yt] = τ ′
x

τπ+τ ′
x+η̂2τy

× η2τy
τπ+η2τy

× 1
η
yt + η̂2τy

τπ+η̂2τy
× 1

η̂
yt.

Hence,

δ × y ∝
[

η2τy
τπ + η2τy

1
η
− τ ′x
τπ + τ ′x + η̂2τy

η2τy
τπ + η2τy

1
η
− η̂2τy
τπ + η̂2τy

× 1
η̂

]
yt

=
[

τπ + η̂2τy
τπ + τ ′x + η̂2τy

η2τy
τπ + η2τy

1
η
− η̂2τy
τπ + τ ′x + η̂2τy

× 1
η̂

]
yt ∝

[
τπ + η̂2τy
τπ + η2τy

ητy − η̂τy
]
yt.

Rearranging terms then shows that

δ = ∆
(

η2τy
τπ + η2τy

× 1
η
− η̂2τy
τπ + η̂2τy

× 1
η̂

)
, (A10)

where ∆ > 0. This completes the proof. �

A.4 Proof of Corollary 1

The proof proceeds in two steps.
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First, let the coefficient γ be defined by

γ ≡ τπ + η̂2τy
τπ + η2τy

× η − η̂. (A11)

Notice that γ determines the sign of δ in (A10). It follows that

lim
τy→0

γ = η − η̂ > 0 : δ > 0,

and

lim
τy→∞

γ = η̂2

η2 × η − η̂ < 0 : δ < 0.

The first part of the statement then follows from ∆ > 0 for all τy.
Second, it follows from (A11) that

lim
τ̂x→0

γ = lim
η̂→0

γ = τπ
τπ + η2τy

× η > 0.

Combined with ∆ > 0, this completes the proof of the statement. �

A.5 Proof of Proposition 3

The proof proceeds in two steps. We first derive expressions for the additional regression
coefficients b and β. An expression for the coefficient δ is stated in (A10). We then consider
a special case, which leads to the proposition.

Step 1: Additional Coefficients. We start with the coefficient β in (2.2).
The forecast error at time t is

πt+h − fitπt+h = πt+h − kxxit−1 − kxxit − kyy.

= (1− 2kx − ηky)πt+h − kx
(
εxit−1 + εxit

)
− kyεyt ,

where kx and ky are given by the expression in (A7). The associated forecast revision is

fitπt+h − fit−1πt+h = (kx − v)xit−1 + kxxit + kyyt

= (2kx + kyη − v)πt+h + (kx − v) εxit−1 + kxε
x
it + kyε

y
t .
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Hence,

β ∝ Cov [πt+h − fitπt+h, fitπt+h − fit−1πt+h]

= (1− 2kx − ηky [2kx + kyη − v] τ−1
π − (2kx − v) kxτ−1

x − k2
yτ
−1
y .

A few simple but tedious manipulations then show that this expression equals

β ∝
τxτ
′
xη̂

2τ 2
y (η − η̂) (η̂ − 1) + τπη̂τy [τxτy (η − η̂) + η̂τ ′x (τ ′x − τx)] + τ 2

πτ
′
x (τx − τ ′x)

τπτx (τπ + τ ′x) (τπ + 2τ ′x + η̂2τy)
. (A12)

We next turn to the b−coefficient in (2.1). Similar steps to those that lead to (A5) show that

πt+h − fitπt+h = 1− k
k

(fitπt+h − fit−1πt+h)−
ky
k
εyt + (η̂ − η) ky

k
vπt+h,

where k ≡ kx + ηky ∈ (0, 1). We conclude that, adjusting for the usual bias caused by the
presence of public information −ky

k
εyt , the coefficient b equals

b = 1− k
k

+ (η̂ − η) ky
k
vCov (πt+h, fitπt+h − fit−1πt+h)V [fitπt+h − fit−1πt+h]−1 . (A13)

Step 2: Over- and underrevisions and Overreactions. We first let τ ′x → τx from above. Equa-
tion (A12) shows that β is, in this case, positively proportional to

β ∝
[
τ ′xη̂τy (η̂ − 1) + τ 2

π

]
τxτyη̂ (η − η̂) ,

so that β < 0 if η̂2τy > χτπ, where χ ≡
τπ η̂

τ ′
x(1−η̂) , as η̂ < η.

We second let Ω ≡ η2τy
τπ+η2τy

× 1
η
− η̂2τy

τπ+η̂2τy
× 1

η̂
, so that δ = ∆Ω in (A10) with ∆ > 0. We

note that ∂Ω
∂η̂ η̂=η

< 0 if τπ < η2τy. Hence, δ < 0 for η̂ → η from below.
We third notice that b in (A13) is positive for τ ′x → τx and η̂ → η as k < 1.
Combined, this shows that if η2τy > max (χ, 1) τπ, then there exists values c0, c1 ∈ R+

such that for ε > 0 and τ ′x = τx + c0ε and η̂ = η − c1ε the coefficients β < 0, δ < 0, and b > 0.
The continuity of slope coefficients in the parameters ensures that this is the case. �

A.6 Relative Overconfidence and Survey data

We use the model framework from Section 4, although other model environments could also
be employed. The key features necessary are (i) that forecasters can exhibit relative overcon-
fidence, and (ii) that individual forecasts are in part based on individual-specific information.
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Consider the (initial wave) period t− 1 expectation of forecaster i:

fit−1πt+h = vxit−1, v = τ ′x
τπ + τ ′x

. (A14)

The average forecast ft−1πt+h and perceived average forecast f̂t−1πt+h across i is

ft−1πt+h = vπt+h, f̂t−1πt+h = v̂πt+h, (A15)

where v̂ = τ̂x
τπ+τ̂x < v because of relative overconfidence.

Let U0 denote forecaster i’s perceived mean-squared error of πt+h. Wet let U1 denote
forecaster i’s perceived mean-sqyared error about ft−1πt+h, accounting for the misperception
embedded in the expression for f̂t−1πt+h. Thus,

U0 = 1
τπ + τ ′x

, U1 = v̂2U0. (A16)

Let S0 denote the realized cross-sectional variance of forecasts E
[
(fit−1πt+h − ft−1πt+h)2

]
,

and let S1 denote its first higher-order expectation counterpart E
[
(fit−1ft−1πt+h − ft−1ft−1πt+h)2

]
.

Using equation (A14) and (A15), these are equal to

S0 = v2 1
τx
, S1 = v̂2S0. (A17)

The moments in (A16) and (A17) are reported in Table II of Coibion et al. (2021). As-
suming a value for τπ thus allows one to compute forecaster i’s perception about forecaster
j 6= i’s reported uncertainty of πt+h, equal to (τπ + τ̂x)−1, from either (A16) or (A17).
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B Additional Empirical Results

Table B.1: Regression of forecast errors on public signals

Panel a: survey expectations
Estimate Std. error Observations

Survey of Prof. Forecasters -0.536∗∗∗ 0.160 5,469

Michigan Survey of Consumers 0.031 0.115 4,499

Survey of Consumer Expectations 0.322∗∗∗ 0.061 775

Livingston Survey -0.609∗∗ 0.248 2,762

Panel b: other public signals
Estimate Std. error Observations

Lagged Outcomes -0.406∗∗ 0.151 5,668

TIPS Spread 0.059 0.057 2,203

Nominal Eff. Exchange Rate 0.294∗∗∗ 0.066 5,668

Import Prices 0.082∗∗ 0.043 3,992

Oil Prices 0.055 0.063 5,668

Unemployment Rate 0.335∗∗∗ 0.091 5,668

Financial Inflation Index -0.032 0.057 4,169

Stock Prices -0.398∗∗∗ 0.101 5,668

Term Spread 0.043 0.039 4,169

Note: Estimates of (2.3) with respondent fixed effects using different public signals and one-year ahead inflation
forecasts (h = 4) from the Survey of Professional Forecasters. Panel a shows the coefficient estimate on previous
period’s consensus forecast from the Survey of Professional Forecasters, the Michigan Survey of Consumers, the
Survey of Consumer Expectations, and the Livingstone Survey. Panel b presents the coefficient estimate for
one-period lagged inflation, 10-year inflation expectations from the TIPS market, the year-over-year change in the
nominal effective exchange rate, the year-over-year change in import prices, the year-over-year change in the WTI
oil price, the unemployment rate, the Cleveland Fed’s Financial Market-based measure of future inflation, the
log-linear detrended level of the SP500 stock prices, and the 10-year-2-year term spread. All variables have been
standardized, and have been signed such that an increase predicts higher inflation one year out. All variables
and growth rates have also been derived using the latest available data at the time of the inflation forecast.
Double-clustered robust standard errors in parentheses. ∗ p<.1,∗∗ p<.05,∗∗∗ p<.01.
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Table B.2: Multivariate estimate of forecast errors on public signals

Panel a: public signals
Estimate Std. error Observations

Survey of Prof. Forecasters -0.364∗∗∗ 0.130 3,992

Lagged Outcomes -0.173 0.208 3,992

TIPS Spread – – –

Nominal Eff. Exchange Rate 0.176∗∗∗ 0.045 3,992

Import Prices -0.150∗ 0.082 3,992

Oil Prices 0.060 0.067 3,992

Unemployment Rate 0.023 0.079 3,992

Financial Inflation Index 0.081 0.097 3,992

Stock Prices 0.039 0.113 3,992

Term Spread 0.045 0.057 3,992

Panel b: survey expectations
Estimate Std. error Observations

Survey of Prof. Forecasters 0.212 0.326 400

Michigan Survey of Consumers -0.325∗∗ 0.163 400

Survey of Consumer Expectations 1.378∗∗∗ 0.195 400

Livingston Survey -0.217∗∗ 0.133 400

Note: Estimates of multivariate version of regression (2.3) with respondent (individual) fixed effects using public
signals and one-year ahead inflation forecasts (h = 4) from the Survey of Professional Forecasters. Panel a
shows the coefficient estimates on previous period’s consensus forecast of inflation from the Survey of Professional
Forecasters, one-period lagged inflation, the year-over-year change in the nominal effective exchange rate, the
year-over-year change in import prices, the year-over-year change in the WTI oil price, the unemployment rate,
the Cleveland Fed’s Financial Market-based measure of future inflation, the log-linear detrended level of the SP500
stock prices, and the 10-year-2-year term spread. We exclude 10-year inflation expectations from the TIPS market
from this panel due to sample limitations. Panel b shows that estimates on the consensus forecast of one-year
ahead inflation from the Survey of Professional Forecasters, the Michigan Survey of Consumers, the Survey of
Consumer Expectations, and the Livingstone Survey. All variables have been standardized, and have been signed
such that an increase predicts higher inflation one year out. All variables and growth rates have also been derived
using the latest available data at the time of the inflation forecast. Double-clustered robust standard errors in
parentheses. ∗ p<.1,∗∗ p<.05,∗∗∗ p<.01.
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Figure B.1: Euro Area Survey: inflation errors and public signals
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Note: The figure shows estimates of δ in (2.3) (horizontal axis) for various public signals (vertical axis) using
one-year ahead (h = 4) forecasts from the ECB’s Survey of Professional Forecasters. EASPF denotes the previous
period’s consensus forecast from the ECB’s Euro Area Survey, CONS consumers’ one-year ahead inflation expec-
tations from the European Commission’s Consumer Survey, and lastly FM EXP financial market expectation of
one-year ahead inflation as derived from Euro Area inflation swaps. The description of the other public signals
used are in the label for Figure 2. We proxy developments in Euro Area stocks with the DAX index. All variables
have been standardized and signed so that an increase predicts higher inflation one-year out. All variables and
growth rates have also been derived using the latest data at the time of the forecast. Whiskers correspond to
95-percent robust clustered confidence bounds. Because of the presence of few time-clusters (often around 50),
we follow the recommended adjustment in Cameron et al. (2010) and cluster at the individual level.

Table B.4: Regression of forecast errors on alternative consensus measures

(1) (2) (3) (4)
Previous Consensus -0.192∗∗ – – –

(0.085)

Previous Consensus −i – -0.182∗∗ – –
(0.083)

Previous Conensus Dev. – – -0.591∗∗∗ –
(0.096)

Previous Conensus Wins. – – – -0.187∗∗

(0.085)
Observations 5,675 5,675 5,675 5,675
F Statistic 118.98 116.83 1,025 136.85
R2 0.022 0.021 0.160 0.025

Note: Estimates of (2.3) with respondent fixed effects. “Previous Consensus −i” denotes the previous consensus
estimate that arises if, for all i, we drop respondent i from the consensus average. “Previous Consensus Deviation”
denotes the difference between respondent i’s forecast of inflation at time t + h and the previous consensus
estimate. Finally, “Previous Consensus Winsorized” winsorizes the top- and bottom one percent of forecast errors
pre-estimation. Double-clustered robust standard errors in parentheses. ∗ p<.1,∗∗ p<.05,∗∗∗ p<.01.
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Table B.5: Median individual estimates for inflation

Panel a: individual forecasts PGDP inflation
Forecast Error Forecast Error Forecast Error

Avr. Forecast Revision 0.714 – –

Ind. Forecast Revision – -0.100 –

Previous Consensus – – -0.212

Panel b: individual forecasts CPI inflation
Forecast Error Forecast Error Forecast Error

Avr. Forecast Revision 0.184 – –

Ind. Forecast Revision – -0.224 –

Previous Consensus – – -0.538

Note: Column 1: estimates of the cross-sectional median of bi in πt+h−fitπt+h = αi+bi (ftπt+h − ft−1πt+h)+vit.
Column 2: estimates of the cross-sectional median of βi in πt+h − fitπt+h = αi + βi (fitπt+h − fit−1πt+h) + vit.
Column 3: estimates of the cross-sectional median of δi in πt+h − fitπt+h = αi + δi (fitπt+h − fit−1πt+h) + vit.
We consider forecasters with more than 20 individual forecasts. Estimates use one-year ahead SPF inflation
forecasts (h = 4) and include respondent fixed effects. Sample: 1970Q1-2020Q1.

Table B.6: Estimates without outliers

Individual Forecasts
Forecast Error Forecast Error Forecast Error

Ind. Forecast Revision -0.132∗∗ – –
(0.058)

Avr. Forecast Revision – 1.174∗∗∗ –
(0.273)

Previous Consensus – – -0.195∗∗

(0.084)
Observations 5,480 5,675 5,675
F Statistic 55.26 831.42 137.99
R2 0.011 0.134 0.025

Note: Estimates of (2.1), (2.2), and (2.3), using individual forecast errors on the left-hand side of (2.1) and SPF
forecasts of one-year ahead inflation (h = 4). All columns include individual (respondent) fixed effects. The top-
and bottom one percent of forecast errors (in percent) have been winsorized. Robust (double-clustered) standard
errors in parentheses. Sample: 1970Q1-2020Q1. ∗ p<.1,∗∗ p<.05,∗∗∗ p<.01.
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C Analysis of Alternative Models1

C.1 Forecasts with Reputational Considerations

We follow Ehrbeck and Waldmann (1996), but extend their setup to allow for public information.

There is a continuum of measure one of forecasters i ∈ [0, 1] with prior beliefs π ∼ N
(
µi, τ

−1
π

)
.

Each forecaster i observes a private signal

xji = π + εj , εj ∼ N
[
0,
(
τ jx
)−1]

,

where j = {1, 2} and τ1x > τ2x . In line with Ehrbeck and Waldmann (1996), we assume that

i ∈ [0, 1/2[ observe x1i , while i ∈ [1/2, 1] observe x2i . In addition, forecasters observes y in (3.2).

We consider linear equilibria, in which forecaster i’s prediction rule is characterized by

fiπ =
(
1− wj

)
E[π | µi, y] + wjxji ,

where wj (potentially) differs from its mean-squared optimal value w?. Following the same steps

as in Ehrbeck and Waldmann (1996) shows that if we only consider Nash equilibria in which able

forecasters are frank (and forecasters care only about the posterior odds of being viewed as able

by their clients), then w2 > w? for i ∈ [1/2, 1]. It now follows from Proposition 1 that, across all

forecasters i ∈ [0, 1], b > 0, β < 0, but δ = 0. We summarize these results in Proposition C.1

Proposition C.1. In the extended Ehrbeck and Waldmann (1996) model with public information,

the regression coefficients b > 0 in (2.1), β < 0 in (2.2) , but δ = 0 in (2.3).

C.2 Forecasts with Generalized Overreactions

The information contained in xi and y can be summarized by zi ≡ E [π | xi, y]. The expected

value of π conditional on an information set Ω as well as xi and y, E [π | xi, y,Ω], is equal to

the expected value of π conditional on Ω and z, E [π | xi, y,Ω] = E [π | zi,Ω]. In this sense, z

captures all of the new information observed by forecaster i. In Bordalo et al. (2018)’s theory

of diagnostic expectations, forecaster i overreacts to z (k > k?), because it is perceived to be be

diagnostic of updates relative to prior information. In Evans and Honkapohja (2012)’s theory of

excess Kalman Gain learning forecasters instead overreact to increase their speed of learning.

Proposition C.2. Let k = (1 + χ)k?, where χ > 0. Then, forecasts that follow (3.5) in

Proposition 1 exhibit a δ in (2.3) equal to δ = −χk?
(

τx
τx+τy

+ 1
)

τy
τx+τy

.

Proof. The forecasting rule in (3.5) can be re-stated as:

fiπ = µi + (1 + χ) k? (wxxi + wyy − µi) (OA1)
1In this appendix, we abstract from time subscripts, to simply our notation.
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where wx = τx
τx+τy

and wx + wy = 1. Now, notice that

δ × y = E [π − fiπ | y] ,

= E [π − E [π | µi, xi, y] + E [π | µi, xi, y]− fiπ | y] = E [E [π | µi, xi, y]− fiπ | y]

where E [π | µi, xi, y] equals the forecast in (OA1) when χ = 0. Thus,

δ × y = −χk?E [wxxi + wyy | y] = −χk? (wxwy + wy) y,

and we conclude that δ = −χk? (wx + 1)wy < 0. �

C.3 Forecasts with Strategic complementarity and Error Correlation

The paper discusses several models in which strategic incentives skew the optimal use of infor-

mation away from its mean-squared optimal value. In place of these more specific models, a

more general way to capture the basic idea that strategic incentives skew individuals’ use of pri-

vate and public information is to extend the baseline framework to allow for arbitrary strategic

complementarity between individual forecasts. Suppose forecaster i’s estimate of π follows

fiπ = (1− r)E [π | µi, xi, y] + rE [fπ | µi, xi, y] , (OA2)

where fπ =
∫ 1
0 fiπdi and r ∈ (−1, 1) is the amount of strategic complementarity (substitutabil-

ity) between forecasters. The case where r → 1 corresponds to the case where forecasters care

only about aligning their forecasts to the average estimate. By contrast, r = 0 corresponds to

the benchmark, mean-squared optimal case from Section 3. In addition, following Myatt and

Wallace (2011), we allow for arbitrary correlation between the errors in public and private infor-

mation. In particular, we allow for a common noise component: forecasters’ private information

takes the form xi = θ + εi + cu, where c ∈ R and u ∼ N
(
0, τ−1u

)
, while the public signal y is

y = θ + u+ εy. The coefficient c controls the correlation between the error terms.

As shown by Angeletos and Pavan (2007), the coefficient r maps directly into the weight

on private information kx. Specifically, whenever there is strategic complementarity (r > 0),

the weight on private information falls below its mean-squared optimal value (kx < k?x), and

conversely when there is strategic substitutability (r < 0). Proposition C.3 shows that, despite

the flexible amount of strategic complementarity and the presence of error correlation, individual

errors remain uncorrelated with public information (δ = 0).

Proposition C.3. If individual forecasts follow (OA2), then δ in (2.3) is equal to zero.

Proof. The orthogonality of errors to public information follows from a similar argument to

8



that which establishes Proposition 1. Since fπ =
∫ 1
0 fiπdi, we can re-write (OA2) as

fiπ = E

r
∞∑
j=0

(1− r)jĒj [π | µi, xi, y]

 , (OA3)

where Ē [π | µi, xi, y] =
∫ 1
0 E [π | µi, xi, y] di and Ēj [π | µi, xi, y] =

∫ 1
0 E

{
Ēj−1 [π | µi, xi, y]

}
di for

j ≥ 1. But now notice that from the Law of Iterated Expectations:

E [fiπ | y] = r

∞∑
i=0

(1− r)iE [π | y] = r
1

1− (1− r)
E [π | y] = E [π | y] .

Hence,

δ × y = E [π − fiπ | y] = 0.

�

C.4 Forecasts with Trembling-hand Noise

Let f̃iπ ≡ fiπ + ei denote forecaster i’s stated forecast, while fiπ denotes her actual forecast.

We further assume that ei ∼ N
(
0, τ−1e

)
. In this case, forecasters stated predictions are subject

to “trembling-hand” noise. The results in Proposition 1 to a large extent carry over to this

case. In fact, as the below proposition shows, the only difference between such trembling-hand

forecasts and those analyzed in Section 3 is that the coefficient on individual revisions becomes

more negative. Let the slope coefficient from the associated regression using forecasters’ stated

predictions be denoted by β̃. Then, β̃ = χ
(
β − τ−1e V [fiπ − µi]−1

)
, where χ ≡ τe

τe+V[fiπ−µi]−1 .

As a consequence, even when forecasters are rational, and their actual forecasts correspond

to their conditional expectation, forecasters still appear to overrevise their expectations (β̃ =

− V[fiπ−µi]−1

τe+V[fiπ−µi]−1 < 0). However, importantly, our results about the correlation between individual

errors and public information remain as before. The coefficient δ equals that in Proposition 1 (δ̃ =

δ). In particular, it is still the case that conditional expectation forecasts remain uncorrelated

with public information (δ̃ = 0). Finally, we note that for conditional expectation forecasts to

be consistent with the estimate of β in, for example, Table 1, the standard deviation of the

noise should be around 40 percent of the standard deviation of the forecast revision. Although

we doubt that forecasters’ stated predictions are subject to this much noise (see Juodis and

Kucinskas, 2019), the result suggests that our third implication of noisy rational expectations

(δ = 0) provides a more robust test than the second (β = 0).

Proposition C.4. Suppose forecasts are subject to noise f̃iπ ≡ fiπ + ei, where ei ∼ N
(
0, τ−1e

)
,

and let d̃ ∈
{
β̃, δ̃
}

denote the regression coefficient from (2.2) or (2.3) using the noisy forecast.

The coefficient from this regressions using the underlying forecasts is denoted without a tilde.

Then, β̃ = χ
(
β − τ−1e V [fiπ − µi]−1

)
, where χ ≡ τe

τe+V[fiπ−µi]−1 , and δ̃ = δ.

9



Proof. We have that

β̃ = Cov
(
π − f̃iπ, f̃iπ − µi

)
V
[
f̃iπ − µi

]−1
=

Cov (π − fiπ, fiπ − µi)− τ−1e
V [fiπ − µi] + τ−1e

.

Thus,

β̃ = β
τe

τe + V [fiπ − µi]−1
− V [fiπ − µi]−1

τe + V [fiπ − µi]−1
.

However,

δ̃ = Cov
(
π − f̃iπ, y

)
V [y]−1 = Cov (π − fiπ − ei, y)V [y]−1 = δ.

�

D Accounting for Bias in Estimates of (2.1)

The estimate of the extent of information frictions b in regression (2.1) is biased by the presence of

public information (e.g., Coibion and Gorodnichenko, 2015). Goldstein (2021) considers a simple

solution to this problem. Consider the prediction rule from Section 3 and suppose forecasters

report mean-squared optimal expectations. Their forecasts equal (Appendix A.1)

fitπt+h = (1− k?x)E [πt+h | µit, yt] + k?xxi, k?x =
τx

τπ + τx + τy
. (OA4)

Let w ≡ τπ
τπ+τy

denote the optimal weight on the prior µit in E [πt+h | µit, yt]. Then, taking

averages of (OA4) and manipulating the resulting expression shows that

πt+h − ftπt+h =
(1− k?x)w

k?x + (1− k?x)(1− w)
(ftπt+h − µit)−

(1− k?x)(1− w)

k?x + (1− k?x)(1− w)
εyt . (OA5)

This shows that estimates of b in (2.1) are biased by the presence of public information, because

of the correlation that arises between the noise term − (1−k?x)(1−w)
k?x+(1−k?x)(1−w)

εyt and the forecast revision

(ftπt+h−µit) in (OA5). However, notice that because this bias is negative, any estimate of b > 0

from (2.1) still shows that an unbiased estimate of the coefficient is positive.

Goldstein (2021) considers a simple solution to the problem of a biased estimate of information

frictions. Instead of regressing average errors onto average revisions, regress deviations from

consensus onto its previous value; that is, consider the regression equation

fitπt+h − ftπt+h = αit + b? (fit−1πt+h − ft−1πt+h) + uit. (OA6)

Taking averages of (OA4) and manipulating the resulting equation shows that

fitπt+h − ftπt+h = (1− k?x)w (µit − µt) + εxit, (OA7)

so that b? = (1− k?x)w, α = 0, and uit = k?xε
x
it in (OA6). Notice that b? > 0 if and only if the

bias-adjusted value of b, equal to (1−kx)w
kx+(1−kx)(1−w) , in (OA5) is positive. Both are positive if and
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only if k?x < 1; that is, if and only if there are information frictions.

Table D.1 shows the estimates of regression (OA6) alongside those of regression (2.1).

Table D.1: Goldstein (2021) Estimates of Information Frictions

Average Forecasts Individual Forecasts
Forecast Error Consensus Deviation

Average Forecast Revision 1.118∗∗∗ –
(0.287)

Previous Consensus Deviation – 0.411∗∗∗

(0.057)

Constant -0.054 –
(0.073)

Observations 196 5,480
F Statistic 44.067 1,151.4
R2 0.190 0.181

Note: Column 1: estimates of the Coibion and Gorodnichenko (2015) regression in (2.1).
Column 2: estimates of the Goldstein (2021) regression in (OA6) with individual fixed-effects.
Robust (double-clustered) standard errors in parentheses. Sample: 1970Q1-2020Q1. ∗ p<.1,∗∗ p<.05,∗∗∗ p<.01.
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E Distribution of Forecasts and Errors

Figure E.1: The Behavior of Calibrated Individual Forecasts
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Note: The top left-hand panel depicts the distribution of the difference between individual period t forecasts (fi2)
and consensus (f2). It does so for both the overconfidence model and the corresponding mean-squared optimal
rational expectations model. In both cases, we use the parameters listed in Table IV. The top right-hand panel,
by contrast, shows the corresponding distribution of individual forecast errors in the two cases, where θ = πt+h.
The bottom panel depicts the distribution of the errors in the period t− 1 consensus forecast (f1).
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F Relative Overconfidence and the ZEW Survey

Every month, the Zentrum für Europäische Wirtschaftsforschung (ZEW) asks its survey respon-

dents not only for their own expectation of (an index of) aggregate German economic activity

six months from now, but also for their forecast of the average (or consensus) estimate. Such

information can, in turn, be used to construct a test for relative overconfidence.

Consider the consensus expectation of the fundamental θ = πt+h from Section 4 (α1 = 0,

α2 = 1 in 4.2):

ft−1θ = yt = vθ + εyt , (OA8)

and compare it to the consensus estimate that forecasters perceive

f̂t−1θ = ŷt = v̂θ + εyt , (OA9)

where v > v̂ due to relative overconfidence. Because of the misperception inherent to relative

overconfidence, if forecasters are asked to provide an expectation of consensus, they will report

a forecast of (OA9) instead of (OA8). As a result, a relationship arises between the average

forecast error of consensus, on the one hand, and consensus and the fundamental itself, on the

other hand. Specifically, (OA8) and (OA9) imply the linear relationship:

ft−1θ − ft−1 [ft−1θ)] = vθ − v̂ft−1θ + u, (OA10)

where u = εyt denotes an error term respectively.

Table F.1 provides the estimate of v and v̂ in (OA10). Consistent with relative overconfidence,

Table F.1 shows an estimate of v that exceeds that of v̂. Section 5.2 contains further discussion

of these results and their interpretation.

Table F.1: Relative Overconfidence and ZEW Forecasts

Consensus Forecast Error
Fundamental (v) 0.02∗∗

(0.008)

−Consensus (v̂) 0.01
(0.013)

Obs. 209
F Statistic. 3.089∗∗

R2 0.029
x
Notes: The table shows estimates of v and v̂ in (OA10). A constant term is included in the regression. The top
and bottom 5 percent of forecast errors and consensus realizations have been winsorized. Robust standard errors
in parentheses: * p<0.10, ** p<0.05, *** p<0.01. Sample: 2003:3 – 2019:10.
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