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Abstract

This paper develops a tractable theory of cautious expectations. We impose the
constraint that agents have to estimate the optimal weight on their information in an
otherwise standard class of linear dynamic economies. Within this framework, we show
that expectations optimally feature dampened responses to new and prior information.
Our theory has several similarities to models of limited attention. However, our theory
is crucially consistent with the broad-based predictability of forecast errors and biased,
overreactive expectations that have otherwise called into question attention-based mod-
els. We illustrate the consequences of our framework in a standard consumption-savings
problem, which shows that cautious expectations can help account for empirical evidence
on the marginal propensity to consume and amplify precautionary savings.

JEL codes: C53, D83, D84, E32 Keywords: Expectations, information, fluctuations

1 Introduction

Uncertainty about the use and content of information plays a central role in many economic
choices. Consider a household that has to decide what a raise of x% tells it about the future
path of income, and hence its consumption choices. How should the household update its
expectations? Building on the work of Woodford (2002) and Sims (2003), over the past two
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decades, many advances in the theory of expectation formation have described such situations
through a rational response to noisy information with known accuracy.1 The household in
our example is uncertain about what share of its raise is caused by an unobserved, persistent
component, relevant to future income, and what share is related to non-persistent noise. But,
because the household in this framework knows the accuracy of its information, the household
crucially also knows the weight to place on current income when updating expectations.

This approach, which reduces people’s uncertainty about information to one about the
content of noisy signals, has proved remarkably successful. The noisy-information framework
entails slow, erroneous responses of all prices and quantities, and of all agents, to all kinds of
information. This contrasts with the fast, error-free reactions of the rational full-information
framework and matches the real-world responses often seen in hard and survey data.2 Yet, the
success of the noisy-information framework has only been partial. Recent evidence by Bordalo
et al. (2020) and Angeletos et al. (2021), amongst others, has chimed in with several earlier
results to question whether rational models with noisy information can account for people’s
tendency to both under- and overreact to information, as well as to report biased forecasts.3

These findings favor models which introduce further deviations to the seamless model. Despite
the clear importance of this issue—additional deviations alter the outcomes and dynamics of
models—no consensus has been reached about the best specification.

In this paper, we develop an estimation-based theory of expectations where people are
uncertain about the accuracy of information, and hence about the optimal weight on informa-
tion. Our framework formalizes the idea that, to form expectations, people first need to decide
based on observations how much weight to accord to the various signals observed. A key dif-
ficulty faced when forming expectations lies not only in the separation of “news from noise”
but also in the determination of the best use of information. The household in our example,
for instance, needs to estimate the optimal weight on income when updating expectations.

Our core contribution is to propose a tractable theory of expectations that accounts for
such uncertainty about the best use of information. We show that uncertainty about the
optimal weight on a signal vector naturally leads to accurate-but-biased forecasts that under-
and overreact to information consistent with survey data on expectations. This contrasts
with other, recent models of expectation formation in which expectations either over- and
underreact (e.g., Bordalo et al., 2020) or are biased (e.g., Marinovic et al., 2013,), but not

1See, for example, Sims (2003), Maćkowiak and Wiederholt (2009), Matějka (2016), Maćkowiak et al.
(2021), and Angeletos et al. (2021). Earlier important contributions are Muth (1961) and Lucas (1972).

2See, for example, Mankiw and Reis (2002), Nimark (2008), Coibion and Gorodnichenko (2012, 2015),
Angeletos and Lian (2016), Coibion et al. (2018), Fuhrer (2018), Kőszegi and Matějka (2020), Angeletos and
Huo (2021), and Kohlhas and Walther (2021).

3These earlier results include, for example, Cagan (1956), Zarnowitz (1985), Cutler et al. (1990), De Long
et al. (1990), Elliott et al. (2008), Barberis et al. (2018), and Bordalo et al. (2018).
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both simultaneously.4 We illustrate the economic consequences of our theory in a standard
consumption-savings problem that lies at the cornerstone of modern macroeconomics.

To study the implications of uncertainty about the best use of information, we impose
the constraint that agents have to estimate the optimal weight on observed signals in an oth-
erwise standard class of linear-quadratic Gaussian economies. We adopt a classical view of
inference so that agents estimate the optimal weight from the history of past observations
alone. This avoids conflating our results with those driven by the specification of prior infor-
mation. We later discuss how to incorporate prior information into our framework. Within
this environment, we derive two main results.

Our first main result characterizes agents’ optimal expectations. Using insights from the
signal processing literature, we demonstrate that agents’ expectations are characterized by a
set of history-dependent caution factors, which scale down agents’ responses to new and prior
information. We describe the comparative statics of these caution factors, and discuss how they
can be re-cast at the economy-wide level as a set of state-and-time dependent attention choices.
We extend our reasoning beyond the linear-Gaussian framework: two auxiliary propositions
generalize our results to prototypical examples of non-linear and non-Gaussian economies.

At the center of our first main result lies a tension between accuracy and bias. On the one
hand, a decreased emphasis on any signal relative to its optimal value when agents know the
accuracy of signals makes agents’ expectations biased, and thus all else equal less accurate.
But, on the other hand, a decreased emphasis also makes agents’ expectations less volatile, all
else equal improving their accuracy. We characterize this fundamental bias-variance trade-off
and show that it makes a cautious response invariably optimal.

Our second main result concerns the empirical predictions of our framework. We show
that our model, in which agents estimate the optimal weight on information, can match a
diverse set of stylized facts on macroeconomic expectations. We proceed in two steps.

First, we document that macroeconomic expectations of output and inflation from the
US Survey of Professional Forecasters (SPF) are biased but more accurate than those from
popular time-series models, especially at shorter horizons. This combines the insights of
Zarnowitz (1985), Elliott et al. (2008), and others, who show that professional forecasts are
often incorrect on average, with those of Stark (2010) and Faust and Wright (2013), who show
that professional forecasts often out-perform model estimates. Consistent with the predictions
of our theory, we document that survey forecasts outperform model-based predictions because
they are less volatile. Crucially, we show that our theory can also quantitatively match the
bias-variance trade-off visible in the survey data for parameter values consistent with the SPF.

4See, for example, Scharfstein and Stein (1990), Bordalo et al. (2018), Kohlhas and Walther (2021), An-
geletos et al. (2021), Farmer et al. (2022), Da Silveira et al. (2022), Gemmi and Valchev (2022), and Sung
(2022) for both behavioral or rational models of either class.
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Second, we confront our model with recent evidence on the predictability of individual fore-
cast errors. A well-known consequence of rational (mean-squared optimal) expectations when
agents know the optimal weight on information is that individual errors are unpredictable
based on observed information. We show that our theory is not only consistent with previous
evidence on a positive correlation between errors and average revisions (Coibion and Gorod-
nichenko, 2015). This evidence has lent support to noisy-information models with a known
accuracy of information. But also that our model is consistent with stylized facts that are
prima facie at odds with standard noisy-information models. In particular, we show that our
model is simultaneously consistent with a negative correlation between errors and individual
revisions (Bordalo et al., 2020; Broer and Kohlhas, 2022). Our model of cautious responses
is thus also consistent with overreactions to new information. Furthermore, our model can
quantitatively account for such simultaneous under- and overeactions at the same time as
matching the bias and accuracy of survey expectations.

The reason that overreactions to individual revisions arise is that agents in our framework
down-weigh both new and prior information. This contrasts with standard noisy-information
models, where the presence of additional noise in new information leads agents to tilt their
responses away from it and towards prior information. Intuitively, when agents dampen their
responses to prior information, their forecasts place only a small weight on its moderating force.
Hence, when new information is positive, agents, on average, revise up their expectations by
more than an agent who knows the optimal weight on information. This leads to a seeming
overreaction to new information, which manifests itself in a negative correlation between
errors and individual revisions. In this sense, overreactions arise in our framework because
an overreaction to new information can be interpreted as an underreaction (i.e., an extra
down-weighing) of prior information relative to new information.

We show that an additional testable implication of our framework is that forecasters who
are more experienced should have more accurate and less biased expectations, and that fore-
casts accuracy should decrease by more than one-for-one in the standard deviation of shocks.
Consistent with the comparative statics of our theory, we show that forecasters who are in the
SPF for longer produce more accurate, less biased forecasts, and that measured increases in
shock volatility are associated with a greater than one-for-one decrease in accuracy.

To explore the economic consequences of our framework, we embed our model into a multi-
period consumption-savings problem with stochastic income and time-separable preferences.
We choose this application because consumption and saving choices are the bedrock of modern
macroeconomics. We analyze an environment in which an agent with quadratic preferences
is uncertain about the best use of knowledge about her own productivity to predict future
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income, and show that the agent’s problem maps into a special case of our framework.5

We document that, for standard parameters, the agent optimally chooses an upward-
sloping consumption profile and muted, history-dependent responses to income shocks. The
latter is caused by the agent’s history-dependent dampening of expectations. The former,
by contrast, is driven by the agent’s caution factors depending on the number of time-series
observations. All else equal, at the start of the agent’s life, where she has observed few realiza-
tions of income and productivity, the agent optimally chooses to dampen income expectations
more. This causes the agent to choose lower consumption initially and save more.

Lastly, we show that the comparative statics of caution factors cause a type of precautionary
savings, which is distinct from that caused by prudence of the utility specification (Kimball,
1990). Increases in the volatility of income shocks make it harder for the agent to infer the
relationship between current productivity and future income. As a result, the agent becomes
more cautious and decreases income expectations more. This, in turn, leads to a pronounced
fall in current consumption and a precautionary rise in savings, despite linear decision rules.
Our model, calibrated to match data on US income, argues that the empirical size of this
effect is equivalent to that which would have occurred with CRRA preferences with a degree
of relative risk-aversion of around seven, assuming a known optimal use of information.

Finally, two wider implications of our analysis are worth noting. First, our analysis is
in spirit close to those in the rational and behavioral inattention literatures (Sims, 2003;
Maćkowiak et al., 2021; Gabaix, 2017), in which agents observe noisy signals with known
accuracy due to limited attention. The central difference is that our theory focuses on agents’
responses to uncertainty about the use of information. The rational and behavioral inattention
literatures, by contrast, center on what information agents choose to observe. In this sense,
our theory provides a complement rather than a substitute to those based on limited attention.
Each focuses on a different “stage” of the expectation formation process.

Second, the explosion of recent empirical research questioning the full-information rational
expectation paradigm, with its known optimal weight on information, has forced economists
to deal with the complexity of the survey evidence on expectations. This has led to several
alternatives combining multiple behavioral frictions. We view one advantage of the analy-
sis in this paper is that it provides a step towards an integrated, data-consistent model of
expectations based on a minimal set of frictions.

Related Literature: In addition to the literature cited above, this paper relates to several
other areas of research. We review these in order of proximity below.

One departure from full-information and rational expectations (FIRE) that has drawn
5In the appendix, we further show how our framework also modulates insights about monetary policy based

on the Maćkowiak and Wiederholt (2009)-environment.
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considerable attention has been the learning literature following Sargent (1993). Evans and
Honkapohja (2012) provide an overview. In common with this literature, we share the focus on
uncertainty about structural parameters of the economy, instead of uncertainty about latent
factors that are the focal point in the noisy-information literature. This also connects our
work to the robust control literature (e.g., Onatski and Stock, 2000; Hansen and Sargent,
2008), the work on imperfect-optimization (e.g., Ilut and Valchev, 2022; Flynn and Sastry,
2021), and that of “Brainard uncertainty” (e.g., Brainard, 1967).6 Rather than consider
whether simple learning rules converge to the rational expectation outcome, or how policy
should respond to parameter uncertainty, we instead focus on how a simple-but-general type
of parameter uncertainty related to the accuracy of information can help account for survey
data on expectations and explore the consumption-savings implications. In this sense, our
approach is complementary to that in Farmer et al. (2022), who show that learning about
the long-run mean of an economy can also help account for salient features of survey data on
professional forecasters, such as the serial correlation of forecast errors.

The predictability of individual errors, documented in survey data, can be interpreted
as a rejection of the FIRE model under the joint hypothesis that agents minimize squared
forecast errors. However, as Varian (1975) and Scharfstein and Stein (1990) have argued,
rational agents might choose to report forecasts that differ from their conditional expectation
of a variable, due to different preferences. Our results have a similar flavor. We show that
agents with mean-squared error preferences optimally choose to make predictable forecast
errors—not because of non-quadratic preferences or behavioral biases—but because of their
inherent uncertainty about the optimal weight on information. This also connects our results
to a recent burgeoning literature on limited memory (e.g., Afrouzi et al., 2021, Da Silveira
et al., 2022, and Bordalo et al., 2017), where agents’ may choose to make predictable forecast
errors due to the the mental cost of remembering past information.

Finally, the basic trade-off that controls agents’ caution factors within our framework,
the trade-off between the bias and the variance of expectations, is closely related to the
statistical learning literature (e.g., Hastie et al., 2009; Eldar, 2008) and the literature on
Bayesian shrinkage estimators (e.g., Gelman et al., 2013; Canova, 2011). This line of work
has mainly focused on forecasters avoiding “over-fitting” models with predictive variables by
adding costs (such as L1 and L2 norms)7 or tight priors centered around zero to the inclusion

6Interestingly, Brainard’s contribution can be seen as a specific (constrained) signal-design problem:
Brainard (1967) studies how a policymaker should optimally set a policy instrument when faced with un-
certainty about its effect to hit a known target for output. Within the context of our framework, Brainard’s
analysis hence studies the optimal choice of “a signal” given a fixed amount of uncertainty about “a response
coefficient”. In this sense, our paper studies the opposite problem from that in Brainard’s classical analysis.

7These create in linear-normal models, respectively, the Ridge Estimator (often referred as Tikhonov reg-
ularization; Tikhonov and Arsenin, 1977; L2 norm) or the Lasso Estimator (Tibshirani, 1996; L1 norm).
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of additional variables.8 Yet the inclusion of such costs or priors leads to optimal forecasts
that attempt to exploit the same bias-variance trade-off that we explore below. Through this
lens, our contribution is to employ this trade-off descriptively, to argue that caution provides
an optimal response to uncertainty about the best use of information. We further show that
the desire to exploit this trade-off does not rest on the presence of any cost function.

2 A Baseline Framework

We begin by introducing our economic environment with uncertainty about the optimal weight
on information. We then derive agents’ optimal expectations in the next section.

2.1 Actions and Payoffs

The economy is comprised of a continuum of agents of measure one. Each agent chooses a
forecast ftyt+k ∈ R at time t of the random variable yt+k ∈ R at time t + k to maximize her
payoff U ∈ R, which depends upon the mean-squared error of her forecast,

U = −1
2E

[
(yt+k − ftyt+k)2

]
, k ≥ 1. (2.1)

The payoff function for an individual thus exhibits a standard quadratic loss in the distance
between the predicted fundamental yt+k and the agent’s forecast of it ftyt+k. Nevertheless, as
we will show, several of our main results extend more broadly to the class of symmetric payoff
functions, in which individuals care equally about over- and under-predictions.

The fundamental yt+k is assumed to have linear conditional expectation based upon the
presence of n signals xjt,

yt+k = E [yt+k | xt; β] + ηt+k

= β1x1t + β2x2t + . . . + βnxnt + ηt+k, (2.2)

where xt ≡
[

x1t x2t . . . xnt

]′
, β ≡

[
β1 β2 . . . βn

]′
∈ Rn, and ηt+k ∼ N (0, σ2) is

white noise across time conditional on past and future xt. The linear-normal conditional
expectation assumption used in (2.2) is standard in the applied literature. For example,

8This line of work, in turn, builds on the influential work of Stein (1956), who first showed that with
p ≥ 3 independent normally distributed variables shrinking their associated maximum likelihood estimators
for the means towards some constant decreases the sum of the mean-squared errors of the individual parameter
estimates. Unlike Stein’s analysis, but similar to results in the statistical learning literature, we show that
shrinkage towards zero (rather than some other constant) is optimal in our framework. Unlike the statistical
learning literature, the optimal shrinkage that we compute does not derive from the presence of a cost function
attached to the size or number of parameters. We further discuss the relationship between our results and
those explored by the statistical learning literature in Section 3.
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combined with Gaussianity of the signals xjt, (2.1) and (2.2) capture a commonly studied
class of dynamic tracking-problems (e.g., Sims, 2003; Sims, 2006; Maćkowiak and Wiederholt,
2009), in which

{
yt+k, {xjt}j

}
t
evolves across time and expectations are produced in accordance

with the Kalman filter. In this case, one of the predictive signals in (2.2) corresponds to agents’
prior expectation (e.g., x1t = ft−1yt+k). We return to this application later in Section 4.

2.2 Information Structure

We assume that all agents observe the finite history of all signals, and write vt = {vs}s=t
s=1

for the history of any stochastic process vt up to date t. Agents’ information set at time
t is Ωt = {yt, xt

1, xt
2, . . . , xt

n}. However, unlike in workhorse (noisy) rational expectations
models, we do not assume agents know the mapping between the signals they observe xt

and the conditional expectation E [yt+k | xt; β]. Instead, the β-coefficients in (2.2) must be
estimated from the data. Consequently, agents are not endowed with more information than
an econometrician, but must like an econometrician estimate any predictive relationship. We
refer to this assumption as the agent-econometrican assumption, and it provides the central
feature that differentiates our environment from workhorse models of expectations.

2.3 Discussion of Environment

When agents know the mapping between the signals they observe xt and the predicted fun-
damental yt+k, constructing optimal forecasts is simple: the conditional expectation directly
provides the utility maximizing (mean-squared optimal) forecast of yt+k,9

ftyt+k = E [yt+k | xt; β] = x′
tβ. (2.3)

That agents within our framework have to estimate any predictive relationship based on a
finite history of signals should, nevertheless, not be controversial. It accords with ordinary
experience: because of a finite number of data releases, structural breaks in the data, limited
experience with the problem at hand, or limited memory, economic expectations are often
based only on a finite history of observations. The agent-econometrician assumption brings
forward this feature. It is further particularly appealing for two reasons.

First, as we will show, it can account for a wide range of observations about survey fore-
casts, using a simple mechanism. As such, it provides a parsimonious explanation for several
broad aspects of survey data on expectations. Second, by exploiting ideas about biased esti-
mation from the signal processing literature (e.g., Eldar, 2008), it arrives at predictions that

9Notice that we here condition the agent’s expectation E [yt+k | xt; β] on β. This is to make clear that the
agent knows the true value of β ∈ Rn when constructing her optimal forecast.
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are independent of additional parameters to characterize individual beliefs; free parameters
for which we often have little direct evidence (e.g., Carlsson and Skans, 2012; Caplin and
Dean, 2015; Dewan and Neligh, 2020). In this sense, the predictions that arise from our
framework are closer to being expectation parameter free (Sargent, 1993, 1987). We return to
the advantages and disadvantages of our framework later in Section 3.

The rest of the assumptions on our environment are standard. The quadratic preferences
in (2.1) preclude pre-cautionary motives in expectation formation arising from a positive third
derivate of the utility function (also known as prudence; Kimball, 1990). They also preclude
strategic complementarities in actions and expectations, such as those studied in Morris and
Shin (2002) and Angeletos and Pavan (2007), among others. Both features allow us to focus
on how uncertainty about the optimal weight on the signal vector xt alone twists agents’ use
of information in a manner that produces cautious responses. For the same reason, we also
abstract from individual-specific signals to start with. We extend our framework to account
for such possibilities in Section 4. We also here note that the quadratic preferences in (2.1) are
equivalent to minimizing the relative-distance entropy between the agent’s predicted model
and the true model in (2.2) (as in, for example, Golan et al., 1997).10

Finally, although the linear-normal framework that we employ is particularly tractable
for our purpose, none of our main results rest on either the linearity of the environment or
the normality of the shocks. Appendix B.2 shows that our main results extend to both non-
linear and non-Gaussian economies. We also later comment on how to extend our results to
circumstances in which agents are endowed with prior information about β.

3 Optimal Expectations

We proceed to characterize agents’ optimal expectations. To do so, we first define our notion
of a cautious response and review an important result from the signal processing literature.
We then derive several important consequences of our framework.

3.1 Definition of Caution

Let β̂ ≡
[

β̂1 β̂2 . . . β̂n

]′
denote an agent’s estimate of β. In accordance with this estimate,

the agent’s expectation of yt+k is ftyt+k = x′
tβ̂. We say that an agent exhibits caution towards

the jth signal xjt if and only if the weight placed on the jth signal in her expectation β̂j is,
on average, below the optimal-but-unknown value βj.

10We thank Edouard Schaal for this comment.
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Definition 1. An agent exhibits caution to signal j iff. the weight on the jth signal xjt in
her expectation ftyt+k = x′

tβ̂ satisfies E
[
β̂j | xt

]
= mj(xt)βj when βj ̸= 0, where mj ∈ [0, 1).11

The above definition is natural. When mj = 0, an agent does not alter her expectation in
response to a new realization of xjt. The agent shows complete caution with respect to any
information contained in the signal. By contrast, if mj = 1, then the agent on average changes
her expectation in response to xjt precisely as a fully-informed rational agent, who knows the
optimal weight on the signal, would. In this sense, mj captures how much weight the agent
places on the jth signal relative to the informed choice. We therefore call mj the caution
dedicated to the jth signal. Finally, note that our definition of caution is closely related to
common definitions of limited attention (e.g., Gabaix, 2017). In both cases, agents shrink their
responses to new information towards zero by a factor mj ∈ [0, 1). The key difference is that
Definition 1 allows mj to depend on the history of signal realizations xt, and that agents are
also allowed to shrink mj(xt) < 1 their responses to signals that summarize prior information.

3.2 The Benefit from Caution

An important feature of our environment is that caution is optimal. To demonstrate why
caution leads to more accurate expectations, consider an agent’s payoffs in (2.1). Deducting
and adding E [yt+k | xt; β] within the quadratic term shows that12

U = −1
2
(
V [ηt+k] + Ex

[
x′

tmse
(
β̂ | xt

)
xt

])
, (3.1)

where

mse
(
β̂ | xt

)
≡ E

[(
β − β̂

) (
β − β̂

)′
| xt

]
= V

[
β̂ | xt

]
+ E

[(
β − E

[
β̂ | xt

]) (
β − E

[
β̂ | xt

])′
| xt

]
(3.2)

denotes the mean-squared error matrix of the agent’s estimate of β. The first term in (3.1)
illustrates the welfare loss that arises in the baseline case, where the agent knows the optimal
weight on the signal vector. The second term in (3.1), by contrast, shows the added welfare
loss that arises from the agent’s uncertainty about the true value of β.

Equation (3.2) decomposes this additional welfare loss into two further terms. One that

11Definition 1 conditions on xt in its statement of the caution factor mj (E
[
β̂j | xt

]
= mj(xt)βj). Consistent

with the statistics and econometrics literatures, this is because the signals xt themselves are random variables
and because we focus on the (average) weight β̂j after a given history of signal realizations xt. The average
caution factor, across different histories of the signal vector xt, is Ex [mj(xt)].

12With Ex [v (xt)] we denote the expectation of the random variable v (xt) taken with respect to xt.
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reflects the covariance matrix of the parameter estimate V
[
β̂ | xt

]
, and one that reflects the

outer-product of the bias vector

E
[(

β − E
[
β̂ | xt

]) (
β − E

[
β̂ | xt

])′
| xt

]
.

This is important. As is well-known, least-squares has the appealing property that among
all possible unbiased estimators of β in (2.2), least-squares has the lowest variance. As a
result, least-squares provides the best unbiased forecast of the fundamental yt+k within our
framework (e.g., Harvey, 1990). However, as the following example demonstrates, the qualifier
is here important. By trading-off a lower variance versus a larger bias, it is possible to obtain
a parameter estimate with a lower mean-squared error, and hence a more accurate forecast.
Such an improved forecast, in turn, always features a cautious response.

Example 1. The Benefit from Caution: Let n = 1, so that an agent’s expectation of yt+k

is based only on one signal. Suppose further that the agent considers estimates of the form
β̂⋆ = mβ̂ls, where β̂ls denotes the least-squares estimator and m ∈ R. That is, suppose she
considers to scale her least-squares estimate, and hence also her expectation ftyt+k = xtβ̂ by
m. Inserting β̂⋆ = mβ̂ls into (3.2) and (3.1) shows, after a few simple derivations, that

U = −1
2
(
V [ηt+k] + Ex

[
x2

1tmse
(
β̂ | xt

)])
(3.3)

mse
(
β̂⋆ | xt

)
= m2V

[
β̂ls | xt

]
+ (1 − m)2β2. (3.4)

Hence, the optimal choice of m⋆ for all values of xt is always between zero and one (m⋆ ∈ (0, 1);
see Figure 1), and it is invariably optimal for the agent to shrink her estimate and expectation
relative to least-squares. We further conclude that, as a consequence, it is optimal for the
agent to exhibit caution (E

[
β̂⋆ | xt

]
= m⋆E

[
β̂ls | xt

]
= m⋆β, m⋆ ∈ (0, 1)).13

Example 1 shows that caution is optimal because it allows an agent to exploit the funda-
mental trade-off that exists between the variance and bias of her expectations. On the one
hand, the shrunken parameter estimate associated with a cautious response has a smaller vari-
ance. This decreases the variance of the agent’s forecast, all else equal improving the accuracy
of her expectation. On the other hand, however, caution also leads to bias, and thus all else
equal a less accurate expectation. It is this fundamental bias-variance trade-off that makes a
cautious response optimal. We explore the determinants of this trade-off further in the next
subsection, where we derive an agent’s optimal expectation in the n-variable case and show
that a simple scaling of the least-squares estimator is indeed optimal.

13We here exploit that the least-squares estimator is unbiased (E
[
β̂ls | xt

]
= β).
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Figure 1: The Benefit from Caution

0 1

mse

m*

Note: The solid orange line in the figure depicts the mean-squared error of the parameter estimate in (3.4)
for a given value of xt. Each of the gray lines shows one of the two sub-components (either m2V

[
β̂ls | xt

]
or

(m − 1)2β2, respectively). The optimal value of m is denoted by m⋆.
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3.3 Optimal Expectations

We start by characterizing a lower-bound for the variance of any estimator β̂, and hence for
the variance of expectations. This extends the Fréchet-Cramér-Rao (Fréchet, 1943; Cramér,
1946; Rao, 1945) lower-bound result to the general case in which estimators can be biased.

Proposition 1 (Adapted from Van Trees and Bell, 1968). Assume that the data {ys, xs}s≤t

follows a continuously differentiable probability density function f (yt, xt; β) with respect to β,
and assume that its support does not depend upon β itself. Let β̂ be an estimator of β with
differentiable bias function b(β) ≡ E

[
β̂ | xt

]
− β. Then, V

[
β̂ | xt

]
is bounded below by

V
[
β̂ | xt

]
⪰ [I + D (β)] J−1 (β) [I + D (β)]′ , (3.5)

for any bias-gradient vector D (β) ≡ db (β) /dβ, where

J(β) ≡ E
{[

d log f (yt, xt; β)
dβ

] [
d log f (yt, xt; β)

dβ

]′

| xt

}

denotes the information matrix.14

To interpret Proposition 1, note that in the unbiased case, where b(β) = 0 and D(β) = 0,
condition (3.5) collapses to the standard Fréchet-Cramér-Rao (FCR) bound: the minimal
variance that an unbiased estimator can attain is the inverse of the information matrix. This
is the variance that maximum likelihood attains, which for (2.2) is equal to least-squares.
Proposition 1 states that to extend this result to a biased estimator all one needs to do is
account for how the bias changes with respect to the underlying parameters. In particular, the
biased FCR lower-bound depends on the bias gradient D(β) and not the bias b(β) itself. This
makes intuitive sense since any constant bias is removable, even if it is very large, and therefore
should not affect the variance of the estimator. Finally, notice that Proposition 1 extends much
beyond the linear-normal case that we consider, to any continuously-differentiable density
function for the data. This is important for our extensions in Appendix B.2.

A natural question that Proposition 1 raises is whether an estimator exists that attains
the biased FCR lower-bound within our framework. The following proposition shows that a
simple scaling of least-squares β̂ls achieves this aim.15

Proposition 2. Suppose β̂ = Mβ̂ls, where M ̸= In denotes an n × n matrix that can be a
function of xt. Then β̂ attains the biased FCR lower-bound with bias (M − In)β ̸= 0.

14We here use the notation A ⪰ B to mean that A − B is a positive semi-definite matrix.
15This proposition has appeared in several places in the signal processing literature (see e.g., Eldar, 2008).
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Intuitively, Proposition 2 follows from two properties of least-squares. First, because
the least-squares estimator of β attains the unbiased FCR lower-bound. Second, because
E
[
β̂ | xt

]
= ME

[
β̂ls | xt

]
= Mβ, the bias function when β̂ = Mβ̂ls is b(β) = (M − IN) β ̸= 0.

A linear combination of least-squares estimators exhibits a linear bias function. Combined,
these two properties ensure that β̂ = Mβ̂ls attains the biased FCR lower-bound.

Equipped with Proposition 1 and 2, we are now ready to derive an agent’s optimal ex-
pectation and in the process her implied caution choices. To do so, it is instructive to first
re-write the agent’s problem. Inserting (3.5) from Proposition 1 into the agent’s payoff in (3.1)
and (3.2), and using Proposition 2, shows that we can re-write her problem as

max
M∈RN ×RN

−1
2
(
V [ηt+k] + Exx′

t

[
MJ−1M ′ + (In − M)ββ′(In − M)′

]
xt

)
, (3.6)

where the information matrix equals J = σ−2∑t
τ=1 xτ x′

τ .

The solution to this problem for all xt provides us with Proposition 3.

Proposition 3. Consider an agent’s optimal expectation f ⋆
t yt+k = ∑

j β̂⋆
j xjt = x′

tβ̂
⋆.

(i) The optimal weight β̂⋆ on the signal vector xt is

β̂⋆ = M⋆β̂ls, M⋆ = In − J−1
(
J−1 + ββ′

)−1
≼ In, (3.7)

where J = σ−2∑t
τ=1 xτ x′

τ describes the information matrix.
(ii) The optimal weight β̂⋆ exhibits caution towards all signals,

E
[
β̂⋆

j | xt
]

= m⋆βj, m⋆
(
xt
)

=
∑n

i=1
∑n

j=1 βiβj

(
x′

ixj

σ2

)
1 +∑n

i=1
∑n

j=1 βiβj

(
x′

ixj

σ2

) ∈ [0, 1) . (3.8)

Proposition 3 characterizes an agent’s optimal expectation, both in terms of the weight
placed onto the signal vector β̂⋆ and in terms of her implied caution choice m⋆. As in the simple
example, the agent optimally chooses to down-weigh her responses to signal realizations, to
trade-off the bias with the variance of her expectations. This is true both relative to the
informed case (m⋆ < 1), where the agent knows the optimal weight on the signal vector, as
well as relative to least-squares (M⋆ ≼ In). In this sense, caution provides an optimal response
to the uncertainty that exists about the best use of information.

The proposition further shows that the optimal down-weighing of information depends
crucially on the information matrix J = σ−2∑

k

∑
τ xkx′

τ . This is intuitive: the more variation
there is in observed signals xt relative to noise σ2, the easier it is for the agent to infer the
optimal-but-unknown value β to attach to new information. The higher the signal-to-noise
ratio of observations is, the less cautious the agent on average becomes. We analyze the
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comparative statics of agents’ caution choices in detail in the next subsection, and discuss the
relationship between our results and those in the statistical literature in Section 3.6.

A more subtle feature of Proposition 3 is that the agent’s implied caution choice is the
same for all signals (m⋆

j = m⋆ for all j). As a result, the agent in expectation shrinks her
informed forecast by m⋆: E [f ⋆

t yt+k | xt] = x′
tE
[
β̂⋆ | xt

]
= m⋆x′

tβ. This symmetry of caution
choices arises for two reasons. First, because the agent’s payoff in (2.1) depends only the
properties of her forecast f ⋆

t yt+k = x′
tβ̂

⋆. The expected benefit of increased caution towards
one signal can therefore be mimicked by more caution towards another. Second, because the
expected cost of increased caution depends only on the bias gradient D (β) = db (β) /dβ with
b(β) = E

[
β̂ | xt

]
− β and not the bias itself (see condition 3.5). Combined, these two features

push the agent to optimally choose to equate the expected change in the bias gradient across
different signals, and hence lead her to choose the same m⋆ for all xjt.

This symmetry of caution choices closely resembles the symmetry of attention choices that
arises in models of rational inattention (Sims, 2003; Maćkowiak et al., 2021). A rational-
inattention agent, who knows the structure of the economy, would choose to observe a uni-
variate signal of the conditional expectation, zit = E [yt+k | xt; β] + ϵit with ϵit ∼ N (0, σ2

ϵ ).
Hence, as in Proposition 3, the agent would optimally choose to down-weigh all components
of xt by the same amount.16 We further note that, as in the rational inattention literature,
the optimal choice of m⋆ obviously depends on the structure of the variable being forecasted.
If this variable is comprised of several factors yt+k = ∑

h αhyht+k, where αh ∈ Ωt, with dif-
ferent β-coefficients on xt, the resulting m⋆

j would naturally vary across j. Maćkowiak and
Wiederholt (2009) provide one example of this “different factors approach” within the rational
inattention context. We consider an example within our framework in Appendix B.3.

Finally, similar to the results in the statistical learning literature (e.g., Hastie et al., 2009)
and Gabaix (2014), a stark feature of Proposition 3 is that the optimal response to information
depends upon the true-but-unknown β. Clearly, because of the quadratic nature of (3.2), any
amount of caution m ∈ (2m⋆ − 1, 1) is preferable to a full response. But, a natural question
remains about how agents should best implement (3.7) and (3.8). A simple solution is to
insert least-squares estimates into (3.7), and then iterate. Proposition B.1 in Appendix B.1
shows that the limit of such iterations dominates unbiased approaches. Another solution is
to implement a robust (min-max) caution choice that is optimal even under the worst-case
outcome for the true parameters. Proposition B.2 in Appendix B.1 shows how such robust
choices can easily be made. Lastly, Appendix B.2 considers an alternative setup, where there
are only two realizations of the shock ηt+k, and shows that in this case the optimal response

16For example, assume that x′
tβ ∼ N

(
0, σ2

x

)
. In this case, the rational inattention agent’s expectation

equals mzit = m (x′
tβ) + mϵit, where m = σ−2

u

σ−2
u +σ−2

x
. The agent dampens her responses to all xjt equally.
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is independent of the true parameters. In what follows, we will for simplicity assume that
agents’ expectations satisfy (3.7) and (3.8) with equality. In our quantitative application in
Section 5, inserting least-squares estimates into (3.7) achieves 9/10th of the potential accuracy
improvement with similar comparative statics—adjusting further for a Jensen’s inequality term
pushes this closer to 93 percent.17 Yet, as we note, there are indeed several avenues for agents
to implement real-time approximations of their optimal responses.18

We proceed with analyzing the comparative statics of an agent’s caution choice, to cast
more light on the forces behind agents’ optimal expectations.

3.4 Comparative Statics of Caution Choices

An agent’s implied caution choice m⋆ in (3.8) is driven by the informativeness of observations.
To see this, let us first define a signal’s own and cross information. We refer to the portion
of the information matrix J = 1

σ2
∑

k

∑
τ xkx′

τ that is caused by a signal’s own with-in sample
variation relative to noise as its “own information”. By contrast, the portion attributable to
a signal’s co-variation with another signal, we refer to as “cross information”.

Definition 2. A signal xjt’s own information is defined by ∑t

(
xjt

σ

)2
, while the signal’s cross

information with another signal xht, j ̸= h is defined by ∑t

(
xhtxjt

σ2

)
.

Own and cross information are useful concepts because they provide a prism through which
we can understand the comparative statics of agents’ caution choices. Specifically, we can use
these concepts to understand the effects of changes in the number of time-series observations,
the number of signals observed, as well as the effects of changes to the with-in sample volatility
and correlation of signals. Proposition 4 takes a first step towards this goal.

Proposition 4. Consider an agent’s implied caution choice m⋆.

(i) m⋆ increases in signal j’s own information.
Suppose further that βjβh < (>)0 for h ̸= j. Then:

(ii) m⋆ decreases (increases) in the jth signal’s cross information with h.

Proposition 4 formalizes the effects that own and cross information have on implied caution
choices. The larger a signal’s own information ∑

t

(
xjt

σ

)2
is, the easier it is for an agent to

17The statistical learning literature often combines a similar approach with a cross-validation test, which
uses out-of-sample observations to verify the choice of approximating parameter (Hastie et al., 2009). One
can further improve the accuracy of the approximation in our case by adjusting for a Jensen’s inequality term
that arises from β2 having to be estimated with an unbiased approach in (3.7) rather than β itself.

18Gabaix (2014) also considers an alternative argument: Following Kahneman and Tversky (1973), Gabaix
(2014) argues that the design of an optimal choice is done by “system 1” in the brain of an agent, under full
information about the true parameters of the model. Actual choices are then enacted intuitively by “system
2”, according to (3.7) and (3.8), not knowing the true parameters.
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correctly infer the optimal-but-unknown value βj to attach to the signal from a given history
of observations. The signal-to-noise ratio of observations is, all else equal, larger. As a result,
the agent optimally chooses to shrink her responses by less and becomes less cautious (m⋆ ↑).

The second part of the proposition, by contrast, shows that cross information can scramble
the information that agents have about a signal. For example, suppose the cross information
between two signals is positive (∑t

(
xhtxjt

σ2

)
> 0), but that one of the signals has a positive

effect on yt+k while the other has a negative effect (βj > 0 while βh < 0). Then, any variation
in this latter signal makes it more difficult for the agent to infer the optimal weight to assign
to xjt. The variation in the second signal effectively scrambles the information about the first.
Through this mechanism, cross information can cause caution to increase (m⋆ ↓).

Proposition 5 uses the results in Proposition 4 to detail the effects of additional signals
and time-series observations on an agent’s caution choice.

Proposition 5. Suppose all signals are orthogonal ∑t xhtxjt = 0 for h ̸= j. Then, for any xt:
(i) m⋆ increases in the number of signals n.

Suppose instead that β2
h

∑
t x2

ht/σ2 + βh
∑

j ̸=h 2βj
∑

t xhtxjt < 0 for some signal h. Then:
(ii) m⋆ decreases with the observation of the hth signal.

Finally, irrespective of the sample covariance ∑t xhtxjt between signals:
(iii) m⋆ increases in the number of time-series observations t.

All else equal, the more signals n an agent observes, the more own information she has to
infer the optimal-but-unknown weights β to attach to new information. This explains why
the number of signals decreases an agent’s caution (m⋆ ↑) when there is no cross information
(∑t xhtxjt = 0 for h ̸= j). However, Proposition 5 also shows that such effects can be
overturned if the cross information scaled by the true parameters is sufficiently negative. In
this case, the observation of the hth signal decreases the overall information that exists, and
increases the amount of caution (m⋆ ↓). Thus, depending on the relative size of own and cross
information effects, caution can either decrease or increase in the number of signals.

Unlike the observation of an additional signal, observing more time-series observations
however always decreases an agent’s caution choice. Although cross information can mitigate
the increase, observing more data points invariably increases agents’ knowledge about the
optimal-but-unknown weights β to attach to xt. This explains why m⋆ always increases in
the number of time-series observations t. Finally, we note that if t → ∞, m⋆ → 1 becomes
optimal for any xt. Although the speed of convergence depends crucially on the own- and
cross information structure of signals, with an infinite amount of observations, the optimal
expectation in (3.7) eventually converges to E [yt+k | xt; β] in (2.3).19

19We here also use that β̂ls converges in probability to β as t → ∞. We discuss the speed of convergence in
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3.5 A Partial Equivalence Result

The optimal expectation in (3.7) resembles but is distinct from that which arises in noisy-
information models where agents know the optimal weight on information. Proposition 6
explicitly compares an agent’s expectation to those that arise from a simple model with noisy
information. The proposition formalizes our earlier discussion by providing a partial equiv-
alence result between the two approaches. Notice that the noisy signal we consider in the
proposition corresponds to the optimal rational inattention signal (Section 3.3).

Proposition 6. Consider a continuum of agents i ∈ [0, 1]. Suppose agent i′s forecast equals
her conditional expectation fityt+k ≡ E [yt+k | zit; m] based on the noisy signal

zit = x′
tβ + ϵit, (3.9)

where x′
tβ ∼ N (0, σ2

x) and ϵit ∼ N (0, σ2
ϵ ) with E [ϵitϵℓt] = 0 for ℓ ̸= i. We denote the weight

on zit in E [yt+k | zit; m] by m(σx, σϵ) ∈ (0, 1). Then, there exists a noise choice σϵ such that

∫ 1

0
E [yt+k | zit; m] di = E [f ⋆

t yt+k | xt] ∀xt. (3.10)

Proposition 6 highlights similarities and differences between the two frameworks. The
proposition shows that the dampened expectations that arise at the aggregate level in the
noisy-information framework resemble those which occur due to uncertainty about the best
use of information. This is because, in both cases, agents shrink their expectations towards
zero. However, equation (3.10) also hints at important differences.

The equation equates individual optimal expectations from (3.7) with average expecta-
tions from the noisy-information framework. The individual expectations from the noisy-
information framework are more volatile, due to the reliance on the noisier signal zit. Further-
more, the comparative statics of individual expectations are also different. An increase in the
noise component σϵ will, all else equal, cause a decline in the weight on new information m in
the noisy-information framework. This will tilt agents’ expectations away from new informa-
tion zit towards prior information x′

tβ ∼ N (0, σ2
x). By contrast, an increase in σ in (2.2) will

cause m⋆ in (3.8) to fall across all signals xjt. This includes also signals that summarize prior
information. Section 4 further explores this difference using survey data on expectations.

Finally, notice that Proposition 6 equates the average expectation from the noisy-information
case with the expected value of the optimal expectation in (3.7) conditional on the realization
of the signal vector xt period-by-period. This is to account for the fact that an agent’s caution
choice in (3.8) is history-dependent (see also the discussion below).

Section 3.6.
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3.6 Discussion and Extensions

In most economic circumstances the best means to use any piece of information is unknown.
The analysis in this section has shown that such uncertainty leads agents to optimally dampen
their responses to information, consistent with a cautious approach. Through this lens, we
have shown that caution provides a purely rational response to the uncertainty that exists
about the best weight on information. Six further features are worth highlighting.

1. Parameter sparse expectations: First, notice that the expectations that arise from our
framework (Proposition 3) do not depend on the choice of any cost function on beliefs. In this
sense, agents’ expectations are closer to being “expectation parameter free” (Sargent, 1993);
they do not depend on extraneous parameters to characterize frictions to individual beliefs.
Our framework, as a result, provides a parsimonious model of expectations.

2. A Bayesian perspective: Second, the results that we have derived so far have all employed
a classical view of inference, avoiding thorny questions about the shapes and origins of initial
priors. However, our results can also be given a strictly Bayesian interpretation. Our main
results (Proposition 3 to 5) are, for example, identical to those that would arise if we equip
agents at t = 0 with a (conjugate) Gaussian prior over β with mean 0 and covariance matrix
σ2Λ−1, where Λ−1 ∈ Rn×n. The mean posterior estimate of β would for any t > 0 always equal
(3.7) for a particular choice of Λ−1.20 This shows that our results can also be interpreted within
a Bayesian context. Indeed, we can in this case view the optimal expectation in (3.7) as the
conditional expectation of yt+k based on the history of observables (xt, yt) and a specific initial
prior over β, β ∼ N (0, σ2Λ−1) (f ⋆

t yt+k = E [yt+k | xt, yt; pβ], where pβ denotes the prior).
Furthermore, for any initial prior, one can extend our results to the Bayesian case with the
help of the Bayesian FCR bound (Aras et al., 2019). Similar steps to those outlined above,
replacing the FCR bound with its Bayesian counterpart that accounts for the information
contained in the prior, will then characterize an agent’s conditional expectation.

3. Law of Iterated Expectations: Third, the Bayesian perspective also hints at an important
feature of agents’ optimal expectations. As with the rational expectations framework with
a known optimal use of information, the optimal expectations in (3.7) abide by a Law of
Iterated Expectations: f ⋆

t−1f
⋆
t yt+k = f ⋆

t−1yt+k (Appendix B.4). This demonstrates that an
agent with expectations characterized by Proposition 3 will never expect to revise her own
expectations. Section 5 shows that a key corollary of this result is that linear dynamic models

20Equating the Bayesian estimator β̂bayes = (X ′X + Λ)−1
X ′Y , where X ≡

[
x′

1 ... x′
t

]′ and Y ≡[
y1 ... yt

]′, with β̂⋆ shows that Λ−1 = J−1σ−2
[[

In − JM⋆J−1]−1 − In

]
. Notice that Λ−1 is symmetric

and positive semi-definite. The equivalence between the two estimators follows immediately in the special case
in which n = 1; both estimators are in this case part of the “Tikhonov regularization class” (Appendix B.4).
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with expectations characterized by Proposition 3 are no harder to solve than their FIRE
counterpart, and can even be solved using the same solution methods.

4. Predictable forecast errors: The fourth feature is equally important. Unlike models of
rational expectations with a known optimal use of information, the forecast errors that result
from our framework are predictable based on information observed by individual agents. This
is because each agent down-weighs her own information. Section 4 discusses the importance
of this result for the ability of our framework to match recent evidence on agents’ expecta-
tion formation. The predictability of individual errors, documented in the literature, can be
interpreted as a rejection of the FIRE model under the joint hypothesis that agents minimize
squared errors. However, as Varian (1975) and Scharfstein and Stein (1990) have argued, fully
rational agents might choose to report forecasts that differ from their conditional expectation
due to different preferences. Our results have a similar flavor: they show that agents with
mean-squared error preferences may optimally choose to make predictable forecast errors—
not because of non-quadratic preferences or any behavioral frictions— but merely because of
their inherent uncertainty about the optimal weight on information.

5. History-dependent caution choices: Fifth, recall that an agent’s caution choice m⋆ in (3.8)
is history-dependent, and depends on the realization of xt. This allows our framework to
speak to the evidence on history-dependent expectations (Section 4). It also highlights a key
difference between Proposition 3 and similar results in the behavioral and rational inattention
literatures. Unlike the results in, for example, Sims (2003), how much an agent down-weighs
information depends on the history of signal realizations through own- and cross-information
terms, rather than only on the properties of the data-generating process. Furthermore, this
history-dependence can serve as the basis for additional heterogeneity in expectations.

6. Finite sample economy: The sixth and final feature of our framework follows directly
from the agent-econometrician assumption. Similar to the problem faced by econometricians,
an agent in our model has only a finite sample (and hence limited information) to base her
expectations on. This is what drives the agent to down-weigh information, to exploit the fun-
damental trade-off between the variance and the bias of her expectations. The consequences
of the finite sample nature of economic observations is, in turn, exacerbated within our frame-
work by the presence of (i) multiple structural breaks; (ii) serial correlation in the error term;
(iii) a low number of degrees of freedom, due to a large number of signals n, some of which
negatively co-vary; and (iv) limited memory on the part of agents. All of these features,
decrease the effective informativeness of observations, and hence increase an agent’s caution
choice (m⋆ ↓). Building on the work of Kozlowski et al. (2020) and others, Farmer et al. (2022)
show that a modest increase in the complexity of the underlying model can drastically slow
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down learning about unknown parameters, such as the optimal weight on information. An
increase in the complexity of the model in (2.2) would, all else equal, further amplify decreases
in m⋆. Notwithstanding such additional limits to the informativeness of observations, in what
follows, we continue to use a reductionist approach that caps agents’ information at a fixed
number of observations. This allows us, in an analytically tractable manner, to study the
consequences of uncertainty about the optimal weight on information.

We close this section with one final observation. The fundamental bias-variance trade-off
that is at the core of our analysis is closely related to the statistical learning literature (e.g.,
Hastie et al. 2009) as well as the literature on Bayesian shrinkage estimators (e.g., Gelman
et al., 2013; Canova, 2011). These lines of work have mainly focused on forecasters avoiding
“over-fitting” models with predictive variables by adding costs to the inclusion of additional
variables (such as L1 or L2 norms), or tight priors centered around zero. Yet the inclusion
of such costs or priors leads to optimal forecasts that attempt to exploit the same bias-
variance trade-off that we have explored above. Indeed, in the special case in which n = 1,
β̂⋆ in (3.7) is identical to that from a Ridge Regression (Tikhonov estimator), which penalizes
additional parameters with their L2 norm (Appendix B.4). The optimal estimator is also here
equivalent to that in Eldar (2008), which following Stein’s (1956) approach directly minimizes
trace{mse

(
β̂ | xt

)
}. Through this lens, our contribution is to employ the bias-variance trade-

off descriptively, to argue that caution provides a rational response to the uncertainty that
exists about the best use of limited information. We further show that the desire to exploit
this trade-off does not rest on the presence of any cost function.21

We now turn to confronting our results with survey data on expectations.

4 Survey Data on Expectations

Uncertainty about the use of information can help account for several puzzling observations in
survey data on expectations. In this section, we leverage our theoretical results to demonstrate
that uncertainty about the optimal weight on information can account for the co-existence of
biased-but-accurate expectations that over- and underreact to information. We end the section
with two tests of our framework that explore the comparative statics of survey expectations.

21In Stein’s (1956) analysis, which motivated the statistical learning literature, shrinkage towards any con-
stant decreases the sum of the mean-squared errors of p ≥ 3 estimates of the means of independent normally
distributed variables. At a general level, the difference to our case, in which shrinkage towards zero is optimal,
arises because the benefits of shrinkage towards some constant depend on the true parameters of the model.
If an optimal “shrinkage constant” also has to be estimated from the data one returns to our case, analyzed
above, in which all estimates are functions of the data, and where shrinkage towards zero is optimal.
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4.1 Accuracy of Expectations

We start by exploring the accuracy of survey respondents’ macroeconomic expectations, and its
decomposition into a bias and variance component. We let fityt+k denote individual forecasts
of yt+k from a sample of respondents i ∈ {1, 2, . . . , I} at time t. An individual’s forecast error is
yt+k−fityt+k. We focus on output growth forecasts for two reasons. First, because expectations
about future output play a central role in the economy as determinants of consumption,
inflation, and asset prices. Second, because data on output forecasts are available for a longer
time-span than forecasts of most other variables. Throughout, we rely on survey data on
US output expectations from the Survey of Professional Forecasters.22 Appendix C.1 studies
the associated data on inflation expectations. We use real-time data to measure current
realizations of output to capture the precise definition of the variable being forecasted.

A key implication of our framework (under the joint assumption that respondents observe
the history of output realizations) is that respondents’ expectations should be more accu-
rate than those from ARIMA models estimated with (unbiased) maximum likelihood.23 We
consider a simple test of this prediction. Panel a in Figure 2 illustrates the average root mean-
squared error (RRMSE) of one-quarter and four-quarter ahead output growth forecasts from
the SPF relative to four different time-series models, two of which have been optimally-selected
to best predict future output. A RRMSE ratio below one indicates that SPF forecasts are
more accurate. We rely on the full-sample of observations to estimate the different models.

Although survey forecasts are biased, all time-series models fall short of survey forecasts
at the one- and four-quarter horizon, with a pronounced difference at the one-quarter ahead
horizon. This evidence suggests that respondents do better than simple linear models at
forecasting output, consistent with Stark (2010), Faust and Wright (2013), and others.24

Crucially, these empirical findings are in line with our theoretical results, in which agents
down-weigh information to increase forecast accuracy. Indeed, Panel b in Figure 2 shows that
the reason that survey forecasts outperform is precisely because they have lower error variance
but are biased.25 Survey respondents appear to exploit the basic trade-off between bias and

22The SPF is the oldest quarterly survey of individual US macroeconomic forecasts, dating back to 1968
(Croushore, 1993). Currently, the Federal Reserve Bank of Philadelphia administers the SPF and in each
quarter surveys between 20-100 professional forecasters for their expectations over the next six-quarters.

23Because of the presence of lagged-dependent variables in ARIMA models the maximum likelihood estimator
βml is slightly biased and inefficient. However, for the number of observations in the SPF sample, these effects
are quantitatively very small, and one can in any case de-bias the maximum likelihood estimator to an arbitrary
degree of accuracy using the approach in, for example, Tanaka (1984) or the Kendall-estimator in Orcutt and
Winokur Jr (1969). The results in Figure 2 employ the former adjustment to de-bias the estimators.

24Updated values from Stark (2010) are available from the Federal Reserve Bank of Philadelphia’s website:
https://www.philadelphiafed.org/research-and-data/real-time-center/
survey-of-professional-forecasters/data-files/error-statistics.

25Depending on whether an agent forecasts yt+k or −yt+k, as well as whether an agent is more or less
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Figure 2: Forecaster Accuracy Relative to Time-series Models

Panel a: Relative Root Mean-squared Error Panel b: Bias-variance Decomposition
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Note: Panel a illustrates the average relative root mean-squared error of one-quarter and four-quarter ahead
forecasts of year-over-year output growth from the US Survey of Professional Forecasters (S) relative to four
time series models: AR1 denotes forecasts from an AR(1) model, NC forecasts from a (“no-change”) Random
Walk, SW forecasts from an optimally-chosen time-varying parameter ARIMA model, using the method from
Stock and Watson (2008), and BIC forecast from an ARIMA model chosen to minimize the BIC information
criteria associated with one-quarter ahead forecasts. The use of the AIC information criteria selects the same
model as BIC, which is why we exclude this alternative here. The sample period is 1970Q4:2020Q1. A
RRMSE ratio below one indicates that SPF forecasts are more accurate. Panel b shows the decomposition of
the model-implied root mean-squared errors of one-quarter ahead forecasts into a bias component (Bias) and
the standard deviation of forecast errors (Std.) [see 3.2], and compares them to the survey data (Survey).

variance that is caused by uncertainty about the use of information to generate more accurate
forecasts. Appendix C.1 shows similar patterns for respondents’ inflation forecasts.

The evidence in Figure 2 and Appendix C.1 provides an important soundness check, which
shows that our theory’s main mechanism is consistent with basic moments of the survey data
on professional forecasters. Our results further connect with the substantial body of evidence
that documents biases in survey expectations (e.g., Elliott et al., 2008). They are also in line
with a strand of work, dating back to Muth (1961), showing that survey expectations often
have limited variability. Our results above suggest a common explanation for these features:
agents’ responses to the uncertainty that exists about the optimal weight on information.

Finally, notice that any structural dynamic linear model (i.e., any linear DSGE or VAR

cautious to signals that, on average, decrease or increase her expectations, an agent’s forecasts can be either
positively or negatively biased (Appendix B.3). To avoid the resulting indeterminacy, we in this section focus
on the “bias component” of (3.2), the absolute value of the bias, instead of its raw level. As the squared-value
of the bias is all that enters our theoretical expressions (e.g., Proposition 3), this choice does not affect our
subsequent analysis that attempts to match empirical moments with model-implied ones.
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model) that is invertible has an ARIMA representation for output, and vice versa (Anderson
and Moore, 1979; Fernández-Villaverde et al., 2007). Such structural models condition output
forecasts on more variables than the history of output observations. However, what is crucial
for our purposes is that, because of their equivalent ARIMA representations, the forecasts
from such models do not necessarily outperform those from simple time-series models (Mitchell
et al., 2019). In this sense, the class of models that we search over when selecting the most
predictive models in Figure 2 is substantially richer than what may at first appear. This
explains why our results are also consistent with those that show that SPF forecasts often
outperform those from linear DSGE or VAR-based models (e.g., Bennett and Owyang, 2022;
Faust and Wright, 2013). We further note that the above estimates are also prima facie
inconsistent with models in which agents derive forecasts from misspecified ARIMA models
(e.g., Fuster et al., 2010), or adjust their use of information in a solely behavioral manner.

Combined, the results in Figure 2 demonstrate that uncertainty about the optimal weight
on information can qualitatively account for the bias-accuracy trade-off visible in survey data
on expectations. Figure 3 makes a first pass at a quantitative description.

The figure shows the model-implied root mean-squared error and bias component of four-
quarter ahead expectations of output growth, assuming that output growth follows an AR(1)
process with parameters equal to those estimated in Bordalo et al. (2020). The signals that
respondents use to forecast future output growth yt+k are thus equal to a constant and current
output, xt = [ 1 yt ]′. The figure further assumes that respondents base their forecasts on
T = 14 observations of output,26 consistent with the median tenure of respondents in the SPF
who have participated for at least two quarters.27 We will later use this parametrization to
also study respondents’ over- and underreactions to new information.

Figure 3 compares the average model-implied estimates to the survey data. Although
model parameters are not targeted to match the accuracy of survey forecasts, the model
captures well the root mean-squared error of forecasts in the survey data, consistent with the
mechanisms discussed in Section 3. The model also accurately matches the overall level of bias
in errors, although it entails somewhat too skewed forecasts. Overall, we thus find that the

26Because of the presence of lagged-dependent variables, the maximum likelihood/least-squares estimator
is slightly inefficient and biased with T = 14 observations. We use the Kendall-adjustment to de-bias the
estimator and increase its efficiency (Orcutt and Winokur Jr, 1969). This provides us with (an approximately)
unbiased minimum-variance transformation of the maximum likelihood estimator, which we use as the re-
placement for βls in Proposition 3. Tanaka (1984) shows that the Kendall-adjustment provides an accurate
adjustment for cases with T > 10 and moderate-to-high persistence. Appendix C.2 further describes a small
change in the timing convention from Section 2 necessary to deal with the AR(1) case.

27Because the SPF includes a larger number of forecasters that are only in the survey for one round, we only
consider forecasters that are in the survey for at least two consecutive quarters. The raw median, including
respondents who are only in the survey for one quarter, is T = 8. Furthermore, because caution choices m⋆

increase with time, we throughout adopt the conservative assumption that m⋆ is fixed at its maximal value,
which corresponds to the full sample of observations.
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Figure 3: Optimal Expectations based on an AR(1) Process
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Note: The left-two columns show the root mean-squared error and bias component (equation 3.2) of four-
quarter ahead forecasts of year-over-year output growth from the SPF (Survey). The sample period is
1970Q4:2020Q1. The middle-two columns (AR(1)) demonstrate the average model-implied root mean-squared
error and bias component of four-quarter ahead optimal expectations (Proposition 3), assuming that yt follows
an AR(1) with persistence ρ = 0.85, standard deviation of innovations ση = 0.85, and mean µ = 2.40. We
further assume that respondents base their forecasts on T = 14 observations of output, consistent with the
median tenure of respondents in the SPF who have participated for at least two quarters. The right-two
columns (AR(1)+BGMS) show the model-implied root mean-squared error and bias component, assuming
that respondents observe a noisy signal of output growth, xit = yt + ϵit, ϵit ∼ N

(
0, σ2

x2
)
, where σx2 = 1.20, in

each period instead of a noiseless signal. Subsection 4.2 describes the calibration of σx2.

model-implied errors have comparable quantitative properties to their empirical counterparts,
despite these not being part of the parametrization. We conclude, as a result, that our simple
framework can quantitively match the bias-accuracy trade-off in the survey data.

We next turn to two tests of our framework that explore respondents’ reactions to new
information, in addition to their bias and accuracy.

4.2 Over- and Underreactions of Expectations

We leverage our results on the predictability of forecast errors to demonstrate that uncer-
tainty about the optimal weight on information is also consistent with respondents’ over- and
underreactions to information (Coibion and Gorodnichenko, 2015, Bordalo et al., 2020).

A well-known implication of full-information and rational expectations (with mean-squared
error preferences) is that individual forecast errors should be unpredictable. Under rational
expectations with a known optimal use of information, no variable observable at time t should
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correlate with yt+k − fityt+k. The left-hand panel of Table I tests this prediction.
The table reports estimates from a regression of individual errors onto respondents’ aver-

age and individual revisions (I−1∑
i [fityt+k − fit−1yt+k] and fityt+k − fit−1yt+k), respectively.

Under full-information and rational expectations, respondents’ errors should be uncorrelated
with either, as both average and individual revisions are by assumption observable at the
time of the forecast. If respondents instead overreact to average and individual information
received between two periods, displaying overoptimism in response to positive news about
output, then future errors should, by contrast, be negatively correlated with both. The table
also includes our earlier measure of bias from a regression of errors onto a constant term.

Consistent with results in Coibion and Gorodnichenko (2015), Bordalo et al. (2020), and
Broer and Kohlhas (2022),28 columns (2) and (3) document simultaneous under- and overre-
actions. Expectations underreact to the average information observed between two periods,
consistent with a positive correlation between errors and average revisions. Yet, expectations
conversely overreact at the individual-level, as shown by a negative relationship between errors
and individual revisions. Taken together, the estimates in Table I provide strong evidence of
deviations from the full-information rational expectations benchmark. Indeed, at first pass,
the estimates seem to contradict the rational use of information. However, as we show below,
if agents are uncertain about the optimal weight on information, this pattern of over- and
underreactions can also arise as an optimal outcome.

To illustrate the conditions under which this occurs, we borrow the baseline setup from
Bordalo et al. (2020). A continuum of agents i ∈ [0, 1] forecast output yt+k, which evolves
in accordance with an AR(1) with mean µ and persistence ρ ∈ (0, 1). However, unlike in
the previous subsection, at the start of each period, each agent observes her own noisy signal
of current output xi2t = yt + ϵit, where ϵit ∼ N (0, σ2

x2), in addition to the conditional prior
expectation xi1t ≡ E

[
yt | xt−1

i2t ; β
]

with mean-squared error σ2
x1. The AR(1)-model from the

previous subsection can be seen as the special case in which σx2 → 0. Appendix C.2 shows
that the noisy-information setup also falls into our framework from Section 2. In particular,
we have xit =

[
1 xi1t xi2t

]′
with β1, β2 > 0 and σ2 that is a function of σ2

x1 and σ2
x2.

Because of uncertainty about the optimal weight on information, agents’ expectations are
generically biased (as in column (1) in Table I). Furthermore, because of the presence of noisy,
individual-specific information, agents’ expectations are also consistent with the documented
underreaction to average revisions (column (2) in Table I). The noisiness of individual infor-

28Coibion and Gorodnichenko (2015) estimate regressions of average forecast errors on average forecast revi-
sions. However, as pointed out by Kohlhas and Walther (2021), such regressions are asymptotically equivalent
to regressions of individual forecast errors on average forecast revisions. Furthermore, in finite samples, the
individual-level version has several statistical advantages, which is why we choose to adopt this specification.
See also the discussions in Kohlhas and Walther (2021) and Angeletos et al. (2021) about the influence of
outliers on the estimates presented in Table I.
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Table I: Over- and Underreactions of Optimal Expectations and Data

Data Moments Model Moments
(1) (2) (3) (1) (2) (3)

Constant 0.24∗∗∗ – – 0.19 – –
(0.03) (–)

Average Revision – 0.68∗∗∗ – – 0.68 –
(0.19) (–)

Individual Revision – – -0.19∗∗∗ – – -0.33
(0.06) (–)

Observations 7,104 7,065 5,469 . . .

Note: The left-hand panel (“Data Moments”) shows estimates of a regression of yt+k −fityt+k on respondents’
average- and individual forecast revisions (I−1∑

i [fityt+k − fit−1yt+k] and fityt+k − fit−1yt+k), respectively.
Columns (2) and (3) include individual (respondent) fixed effects and k = 4. Double-clustered robust stan-
dard errors in parentheses. Sample: 1970:Q4–2020:Q1. The right-hand panel shows average model-implied
moments. The accuracy of model forecasts and their bias can be seen in the right-two columns of Figure 3.

mation, all else equal, causes agents to underreact to the average information observed in the
population.29 However, what is surprising is that the caution choices associated with uncer-
tainty about the optimal weight on information can also help reconcile our model with the
documented overreaction to individual revisions (column (3) in Table I).

Proposition 7. Let β̂⋆ be fixed at its mean value
(
β̂⋆ = m⋆

[k]β
)

with m⋆
[k+1] ∈

(
m⋆

[k], ρ−2m⋆
[k]

)
,

where m⋆
[k] denotes the caution choice for the kth-horizon forecast, and consider the coefficient

γ from a regression of yt+k − fityt+k on fityt+k − fit−1yt+k.

1. Individual errors underreact to individual revisions (γ > 0) when the true weight on the
signal xi2t is large (β2 → ρk) relative to the prior xi1t (β1 → 0).
2. Individual errors overreact to individual revisions (γ < 0) when the true weight on the
signal xi2t is small (β2 → 0) relative to the prior xi1t

(
β1 → ρk

)
.

Proposition 7 shows that whether agents under- or overreact to individual revisions depends
on the relative weight on prior versus new information. On the one hand, caution to new
information β̂⋆

2 = m⋆
[k]β2 with m⋆

[k] ∈ (0, 1), all else equal, leads agents to underreact, as agents
29Consider the case with a known optimal use of xit, in which fityt+1 = E [yt+1 | xt

i2; β]. As shown by
Coibion and Gorodnichenko (2015), average errors and their individual counterparts are, in this case, positively
correlated with average revisions. Expectations rationally underreact to the average new information observed
in the population (equal to

∫ 1
0 xi2tdi = yt), due to the cancelling of noise in individual signals. This force,

all else equal, also leads to a positive correlation between individual errors and average revisions in our case,
where agents are uncertain about the optimal use of information.
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optimally down-weigh their responses to the noisy signal xi2t. This, all else equal, leads to a
positive correlation between individual errors and revisions, and amplifies any underreactions
to average revisions. On the other hand, however, caution to prior expectations β̂⋆

1 = m⋆
[k]β1

with m⋆
[k] ∈ (0, 1) leads agents’ expectations to overreact.

Intuitively, when agents exhibit caution towards prior expectations, their forecasts place
only a small weight on their moderating force. As a result, when new information xi2t is high
agents, on average, tend to revise up their expectations by more than an agent who knows the
optimal use of information. This leads to a seeming overreaction to new information, which
manifests itself in a negative correlation between future errors and current revisions. In this
sense, overeactions arise because an overreaction to new information can be interpreted as an
underreaction (i.e. an extra down-weighing) of prior expectations relative to new information.

Proposition 7 shows that the horizon profile of caution factors (m[k] vs. m[k+1]) combines
with the effects stemming from the relative weight on prior and new information to determine
whether agents under- or overreact to individual revisions. In particular, depending on the
relative weight on prior and new information, more or less shrinkage of current versus prior
expectations can advance over- or underreactions. More emphasis on prior expectations, all
else equal, furthers overreaction to individual revisions.

Lastly, we note that the insights from Proposition 7 are in line with recent work that
explores the comparative statics of individual-level overreactions. As in Kwon and Tang (2022),
overreactions here arise when new information is inaccurate and uncertainty is high, such as
after novel or extreme circumstances. Proposition 7, moreover, makes the new prediction that
overreactions are more likely when learning has been limited and caution factors differ more
from one another across horizons.

Although the model framework considered in this section is simple, the right-hand panel
of Table I explores the capacity of our framework to also quantitatively match the survey
evidence. To do so, we set the parameters that govern output growth yt equal to those in
Section 4.1. We calibrate the noise σx2 in xi2t to target the average correlation between
individual errors and average revisions. The noisiness of new information, all else equal, also
controls the relative weight on prior xi1t versus new xi2t information in agents’ expectations.

The right-hand panel of Table I shows that our model is able to capture all three moments
well. We estimate a smaller bias than without the presence of noise in the signal of current
output, closer to that in the survey data (Figure 3). We also estimate overreactions to indi-
vidual revisions that are somewhat larger than in the data. However, as discussed in Bordalo
et al. (2020) and Broer and Kohlhas (2022), among others, the uncertainty around these es-
timates is large. Finally, we note that our model, calibrated in this manner, still captures the
estimated accuracy of one-year ahead output growth forecasts (Figure 3). We conclude that
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our simple framework can simultaneously account for respondents’ over- and underreactions
at the same time as the accuracy and bias of expectations. Appendix C.1 shows that our
model can also capture similar salient features of respondents’ inflation forecasts.

In summary, our model is able to account for stylized facts about the accuracy, bias, and
responsiveness of survey expectations. This occurs when prior expectations are important
for individual beliefs, so that the down-weighing of prior expectations dominates that which
occurs towards new information. These results chime in with a large psychological literature
that has documented “prior or base-rate neglect” in experimental settings (e.g., Phillips and
Edwards, 1966 and Kahneman and Tversky, 1973). As in, for example, Benjamin (2019),
agents’ calibrated expectations in Table I systematically down-weigh prior expectations rel-
ative to new information, which generates overreactions similar to those in the survey data.
Finally, our results cast new light on previous explanations for individual-level overreactions,
in which respondents overreact for behavioral reasons (e.g., Bordalo et al., 2020). Our results
demonstrate that what is important for matching the survey data is not whether the weight
on new information is above or below the rational value assuming a known optimal weight on
information. But rather, what matters is what the relative weight is compared to that on prior
expectations. Overreactions can arise solely from the down-weighing of prior expectations.

4.3 Comparative Statics of Expectations

We close our analysis of the survey data by briefly exploring the comparative statics of the
accuracy and bias of survey expectations. To do so, we exploit the SPF survey to show that
respondents who are in the survey for longer, a proxy for the number of observations used
in their forecasts, make more accurate predictions with a smaller bias (Panel a in Figure
4). We also show that the larger the variance of shocks to output growth is, proxied by an
increase in the conditional variance of output growth from a GARCH(1,1) model, the worse
respondents forecasts become (Panel b in Figure 4). Crucially, this deterioration occurs at
a rate greater than one-for-one, consistent with an increase in the second term of (3.1) that
measures accuracy losses due to parameter uncertainty. Although these exercises push the
limits of what is feasible within the SPF survey, the overall picture nevertheless still conforms
with agents’ responses to uncertainty about the use of information: more observations lead to
more accurate (i.e. lower mean-squared error) and less biased forecasts, while the converse is
true for periods with a larger volatility of shocks. We interpret this supplementary evidence
as further validation of our framework, which implies that our theory is also consistent with
key dimensions of the comparative statics of survey expectations.
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Figure 4: Comparative Statics of Forecast Accuracy

Panel a: Accuracy and Time Observations Panel b: Accuracy and Shock Volatility
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Note: Panel a illustrates the root mean-squared error and bias component of four-quarter ahead forecasts of
year-over-year output growth from the US Survey of Professional Forecasters as a function of the number of
quarters an individual respondent has been in the survey: “1” (the bottom 25 percent of the distribution of
quarters); “2” (between the 25th and the 75th percentile); “3” (between the 75th and 95th percentile); “4”
(the top 5% percent of the distribution of quarters). The median number of quarters is T = 14. Panel b shows
the coefficient estimate from a linear regression of the h−quarter rolling mean-squared error of one-year ahead
forecasts on the estimated shock volatility from a GARCH (1,1) estimated on output growth. We set h = 15
and assume an AR(1) process for the mean of output growth. Estimates are shown with and without a linear
time-trend. Whisker-intervals correspond to 95 percent robust confidence bounds. Sample: 1970Q4-2020Q1.
Appendix Table C.1 provides further details on the estimation.

4.4 Summary and Discussion

In this section, we have documented that uncertainty about the optimal use of information
can help account for salient features of survey data on professional forecasters’ macroeconomic
expectations. In particular, we have demonstrated that uncertainty about the optimal weight
on information can simultaneously match the accuracy, bias, and over- and underreactions of
survey expectations. Our results contrast with several recent models of expectation forma-
tion, in which expectations either (i) over- and underreact, but are unbiased and less accurate
(e.g.; “diagnostic expectations”; Bordalo et al., 2020); or (ii) are biased, but do not simultane-
ously over- and underreact to information (e.g., “strategic models of forecasters”; Marinovic
et al., 2013).30 Although the list of models which combines elements from either class is not
exhaustive, we are unaware of a pre-existing model that can explain our results.

30See also Scharfstein and Stein (1990), Bordalo et al. (2017), Kohlhas and Walther (2021), Angeletos et al.
(2021), Farmer et al. (2022), Da Silveira et al. (2022), Gemmi and Valchev (2022), and Sung (2022) for both
behavioral or rational models of either type.
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Clearly, in any given application, the extent to which our framework’s expectations will
differ from those which assume a known optimal weight on information will depend on the
number of time-series observations and signals observed, the noisiness and structure of the
data, as well as the cross- and own information structure of signals (Section 3.4). As shown
above, several of these elements can be taken directly from the data.

One unexplored advantage of our framework is its capacity to scale, and to be applied to
more complex environments with many signals. Indeed, Proposition 3 to 5 can readily be ap-
plied to any linear-normal prediction problem with an arbitrary number of signals with little
effort. Appendix B.2 shows how the basic insights from Section 3 also extend to non-normal
and non-linear settings. This in principle allows our theory to match a broader set of survey
facts. All else equal, more complex environments with many different signals will increase
agents’ implied caution choice (m⋆ ↓) and lead to larger differences between agents’ expecta-
tions and those from standard benchmarks with a known optimal weight on information.

Finally, one limitation of the above applications is that they do not illustrate how cross-
information alters agents’ expectations, nor how we can straightforwardly allow caution choices
to vary across signals. Appendix B.3 and D.4 demonstrate this potential.

5 A Consumption-Saving Problem

In this section, we illustrate the consequences of uncertainty about the optimal use of in-
formation in a standard consumption-savings problem. We choose this application because
consumption and saving choices lie at the bedrock of workhorse macroeconomic models. We
analyze an environment in which an agent with quadratic preferences has to estimate the
best use of knowledge of her own productivity to predict future income. We show that the
agent’s problem maps into a special case of our framework. We document that, for standard
parameters, the agent optimally chooses an upward-sloping consumption profile and muted,
persistent responses to income shocks. Finally, we show that increased riskiness of future
income results in a sizable decline in current consumption, despite linear decision rules, and
map the decline into an as-if estimate of risk aversion. Appendix D.5 applies our ideas to a
model of monetary policy in the spirit of Maćkowiak and Wiederholt (2009).

5.1 Model Setup

We consider the behavior of a household in a multi-period consumption-savings problem with
stochastic income and time-separable, quadratic utility. In an initial period t = 0, the agent
chooses ex-ante how to best construct expectations ft[·] at later dates t > 0. In each subse-
quent period, t = 1, 2, . . . , T , the agent then chooses consumption {ct} to maximize her own
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expectation of the realized, discounted utility from consumption,

T∑
t=1

δt−1u (ct) , (5.1)

subject to the budget constraint

T∑
t=1

R−t (ct − yt) = a1, a1 ≥ 0, (5.2)

where δ ∈ (0, 1), u (·) is quadratic with u′ > 0 and u′′ < 0 over the relevant range for c ≥ 0,
and initial wealth a1 ≥ 0. We also, for simplicity, assume that δR = 1. The only uncertainty
the agent faces at time t is over future income yt+k, which depends upon her own current and
future productivity zt+k−1:

yt+k = β1zt+k−1 + ηt+k, ηt+k ∼ N
(
0, σ2

)
, (5.3)

where β1 > 0, E [ηt+kηs+k] = 0 for all s ̸= t, and

zt+k = λzt+k−1 + ut+k, ut+k ∼ N
(
0, σ2

u

)
, (5.4)

with λ ∈ (0, 1), E [ut+kus+k] = 0 for all s ̸= t, E [utηs] = 0 for all s, t, and z0 > 0. The agent’s
information set at t ≥ 1 is Ωt = {yt, zt; δ, R, λ, σe, σu}.31 The evolution of income in (5.3) and
(5.4) is a special case of our framework in (2.2) with n = 1 and x1t = zt: the agent uses current
realizations of productivity x1t to best predict next-period’s income yt+1. We note that the
agent does not know the mapping β1 between x1t and yt+1 in (5.3). Instead, the β1−coefficient
must once again be estimated from the history of observations.

5.2 Consumption and Expectation Choices

We start by characterizing the agent’s consumption choice at t ≥ 1, assuming her expectations
satisfy the Law of Iterated Expectations. Appendix D.1 and D.2 demonstrate that we can
solve the agent’s problem using standard steps. Assuming an interior solution shows that the
optimal consumption choice depends on the agent’s expectation of life-time resources:

ct = θt

(
Rat + yt +

T −t∑
k=1

R−kft [yt+k]
)

= θt

(
Rat + yt +

T −t∑
k=1

λk−1R−kft [yt+1]
)

, (5.5)

31We, furthermore, assume that the agent observes (x0, y1) and (x−1, y0) in the initial period, so that the
agent can construct an estimate of β1 in period t = 1.
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where θt ≡ 1−R−1

1−R−(T −t+1) and the second equality uses that ftyt+k = λk−1ftyt+1.32

We can use equation (5.5) to solve the agent’s expectation-formation problem at t = 0.
Let c⋆

t denote the perfect-foresight value of ct in (5.5). Appendix D.2 shows that the agent’s
consumption-savings problem in (5.1) and (5.2) can then equivalently be stated as choosing
consumption {ct} to maximize the agent’s expectation of ∑T

t=1 δt−1
[
−1

2 (ct − c⋆
t )
]
. Inserting

the condition for c⋆
t into this expression and expanding terms shows that the agent will choose

her expectation ftyt+1 at t ≥ 1 to maximize

−1
2E [yt+1 − ftyt+1]2 . (5.6)

We conclude the agent’s expectation-formation problem is nested within our framework. As
a result, ftyt+1 = f ⋆

t yt+1, where f ⋆
t yt+1in (3.7) abides by the Law of Iterated Expectations.

5.3 Consumption Implications

We leverage the solution to our consumption-saving problem to illustrate three wider impli-
cations of uncertainty about the optimal use of information. First, we show that uncertainty
about the optimal weight on information leads to upward-sloping consumption profiles and
predictable consumption changes. Second, we show that decreased predictability of future
income results in a sizable decline in current consumption, despite a linear decision rule, and
map the decline into an as-if estimate of risk aversion. Both findings contrast with the case
in which the agent knows the optimal weight on information. Finally, we demonstrate that
uncertainty about the best use of information leads to dampened, persistent responses to in-
come shocks, and relate our findings to the evidence on the effects of stimulus checks during
the Great Recession.

5.3.1 Consumption Levels and Changes

We compare the average level of consumption across time in our model with that which arises
in a model in which the agent knows the optimal weight on information but is unsure of the
breakdown of income into a persistent and transitory component. In particular, in this noisy
information case, the agent knows β1 in (5.3) but must instead infer movements in productivity
x1t from observations of income yt.33 The rest of the model is unchanged.

Corollary 1 summarizes our results, using our earlier findings in Proposition 3 and 5 com-
bined with equation (5.5). Figure 5 illustrates the average life-cycle consumption profile for

32The agent’s assets at time t ≥ 2 are equal to at = Rat−1 + yt−1 − ct−1.
33Furthermore, in this noisy information case, we assume that the agent receives an additional signal ỹ0 at

the start of time that initializes her beliefs at the steady state of the Kalman filter recursion associated with
her signal extraction problem. This is in line with the related literature (see, e.g., Maćkowiak et al., 2021).
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Figure 5: Average Life-Cycle Consumption Profiles
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Note: The figure depicts the average life-cycle consumption profile from (5.5) (Optimal Expectations Profile)
and compares it with the noisy information counterpart described in the main text (Noisy Information Profile).
The figure considers an agent who has observed income and her own productivity for 13 periods (t = 13) and
will live for another 20 periods (T = 33). The income process yt is calibrated to match the variance and
autocorrelation estimated for output in Section 4 (β = 0.65, λ = 0.96, σe = σu = 1/2), we set R = 1, and we
throughout fix x1t = 1.

an agent, using the calibrated process for output from Section 3.6.

Corollary 1. Suppose productivity is held fixed x1t = x > 0. The agent then optimally chooses
an upward-sloping consumption profile, on average. This is despite income being constant, on
average, and contrasts with the constant choice in the noisy-information case. Furthermore,
consumption choices in (5.5) exhibit myopia and changes are predictable based on income.

There are two forces that push the agent to choose an upward-sloping consumption profile
in Corollary 1, both of which are caused by the agent’s caution choice m⋆ ∈ (0, 1). First, at
the start of the agent’s life, where t is relatively small and the agent has few observations of
her income, the agent optimally chooses to shrink future income expectation relatively more.
The implied caution choice m⋆ is increasing in t (Proposition 5). This, all else equal, causes
the agent to choose lower consumption at the start of her life and save more, which can be
viewed as a type of precautionary savings that is distinct from that caused by any prudence
of the utility specification (Kimball, 1990). Second, because the agent chooses to save more
initially, she also has higher consumption later on in life.34

34Suppose we were to introduce a probability of death β̃2 ∈ (0, 1) in each period, unknown to the agent,

34



Combined, these two properties ensure that consumption choices are on average increasing
(Figure 5), consistent with the empirical evidence (e.g., Gourinchas and Parker, 2002). Notice
that we do not require income to be related to experience, financial frictions, or any other
feature for consumption to increase with age. By contrast, in the noisy-information case, where
the agent is unsure of the breakdown of income into a persistent and transitory component, her
optimal (conditional) expectation ft [yt+k] = E [yt+k | yt; β1] averages to mean income E [yt+k],
and the agent, on average, chooses the same consumption profile as under full-information
and rational expectations (FIRE).

Turning to consumption changes rather than levels, another noticeable feature of (5.5)
is that consumption changes are predictable. The agent’s consumption choices satisfy the
Euler equation ft [ct+1] − ct = 0 (Appendix D.2). But since the agent’s expectations differ
from the conditional expectation assuming knowledge of β1, consumption changes are not
martingales. Instead, in line with the evidence on violations of the “Hall (1978) martingale
conjecture”, consumption changes are predictable based on current income (Section 3.6). This
again contrasts with the noisy and full-information cases.

Finally, we note that the consumption choices described in Corollary 1 entail a form of
myopia, which resembles that in Gabaix (2017) and Angeletos and Huo (2021). Expectations
about the future matter for consumption in (5.5) through the term ∑T −t

k=1 R−kft [yt+k]. The
FIRE value of this expression is ȳt,F IRE ≡ ∑T −t

k=1 λk−1R−kβ1xt, which is strictly greater than
the expected value of the agent’s optimal expectation E

[∑T −t
t=1 R−kft [yt+k] | xt

1

]
= m⋆ȳt,F IRE

as m⋆ ∈ (0, 1). In this sense, consumption choices exhibit myopia: expectations about future
income matter, on average, less for today’s consumption than in the FIRE case. We next turn
to the implications of our framework for the economy’s responses to shocks.

5.3.2 Consumption Responses to Shocks

Recall from Proposition 3 and 5 that (i) uncertainty about the optimal weight on informa-
tion causes a dampened response to signal realizations, and that (ii) the magnitude of this
decrease depends on the realized volatility of signals. Corollary 2 and Figure 6 illustrate the
consequences of these mechanisms for our economy’s response to a productivity shock.

Corollary 2. The consumption response ct+k to a productivity shock ut is initially smaller,
on average, than under knowledge about the optimal weight on productivity x1t, and is more
persistent. Furthermore, consumption responses are larger after large movements in x1t.

instead of a fixed terminal end-date T . As with the productivity parameter β1, the agent would optimally
choose to shrink this coefficient when forecasting future realizations. We conjecture that this, in turn, would
imply that the agent would, on average, die with strictly positive wealth.
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Figure 6: Consumption Responses to Income Shocks

Panel a: Average Consumption Panel b: History-dependent Consumption
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Note: The figure illustrates the impulse response of consumption in (5.5) to increases in productivity. Panel
a shows the average impulse response to a one standard deviation increase when the agent’s expectations
follows (3.7) and compares it to the FIRE and least-squares/ML case. Panel b depicts the 17th and 83rd
percentile of realizations of the impulse response function across different simulations for productivity and
income. Finally, Panel c illustrates the relative impulse response of consumption: we compare the average
response of an economy for τ ≥ t that experiences a one and two standard deviation increase in the transitory
component ηt of income in period t, respectively, and fix x1t = 1 throughout. A negative value shows a larger
response in the two-standard deviation case. All parameters are equal to those in Figure 5.

36



That consumption responses are initially muted is a consequence of the decreased weight
the agent, on average, places on productivity x1t in her expectation of future income ftyt+k.
After a positive productivity shock, the resulting smaller increase in income expectations
causes the agent to increase consumption by less—this is relative to an agent who is certain
of β1. What is interesting is that the consumption response is also more persistent. This is
because an agent who is uncertain of β1 accumulates more savings after the shock occurs. As
a result, productivity shocks have more protracted effects on consumption (Figure 6 Panel a).

The results in Corollary 2 and Panel a in Figure 6 closely resemble those in the noisy-
information case, where the agent uses realizations of income yt to estimate underlying pro-
ductivity x1t, the latent factor. Similar to this framework, consumption responses are muted
and more persistent because the agent does not fully update her expectations about future
income in response to shocks. However, Corollary 2 and Figure 6 also demonstrate important
differences to models in which noisy information is the underlying friction.

First, unlike in, for example, Sims (2003), the consumption effects of productivity shocks
are history-dependent. The precise realization of xt

1 matters for the agent’s optimal weight
β̂⋆

1 , and hence for how the agent chooses to down-weigh her responses (Proposition 3). Panel
b in Figure 6 illustrates the range of outcomes that can arise after a one-standard deviation
increase in productivity. Notice that the range of outcomes is substantial, depending on the
precise realization of past productivity shocks. All else equal, economies that have experienced
more volatile fundamentals xt

1 will show larger, less persistent increases in consumption. This
is because agents in these economies are, on average, more responsive to information, and
hence adjust their consumption by more.

Second, this history-dependence can also help explain facets of the data that seem at odds
with simple noisy information models. For example, Johnson et al. (2006) and Parker et al.
(2013) document that the economic stimulus payments in 2008 had a smaller “per-dollar”
impact on U.S. non-durable consumption than the smaller 2001 stimulus package. This is
inconsistent with the outlined noisy-information framework, where the “scaled” effects of a
transitory shock ηt are constant in size. Due to the history-dependent use of information, our
model can, however, speak to this evidence.

Panel c in Figure 6 shows the average relative impulse response of consumption to a one and
two standard deviation increase in the transitory component ηt of income, keeping productivity
fixed. We have scaled the results in each case to make them comparable. Consistent with the
empirical evidence, we find that the consumption response is relatively smaller in the economy
that experiences the larger, transitory increase in income. This is due to the larger increase
in the “noise-component” ηt triggering a relative increase in the agent’s caution choice m⋆

t ↓,
which, in turn, drives home a relative decrease in expected life-time income.
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5.3.3 Pre-cautionary Consumption Choices

We return to the idea that uncertainty about the use of information causes a novel, pre-
cautionary motive for consumption. Suppose the agent fixes the weight on productivity β̂1

in her expectation of future income yt+k. Because of the linearity of the consumption rule in
(5.5), changes in the volatility of income then do not affect current consumption; certainty-
equivalence holds. However, despite the linearity of (5.5), once we account for the optimal
weight on information β̂⋆

1 uncertainty once more matters for current consumption.
Corollary 3 and Figure 7 summarize the changes that an increase in the standard deviation

of transitory income σ has on consumption, using Proposition 3 and 5.

Corollary 3. Increases in the standard deviation of transitory income σ cause a decline in
current consumption ct, on average. This is despite the consumption rule in (5.5) being linear.

The intuition behind Corollary 3 is simple, and similar to that discussed for Panel c in
Figure 6: all else equal, increases in the volatility of transitory income make it more difficult to
predict future income based on current productivity. The signal-to-noise ratio of observations
is lower. This causes the agent to optimally choose a more cautionary response to information
(m⋆ ↓; Proposition 5). As a result, the agent’s expectation of life-time income {ftyt+k}k

decreases, on average, which drives down current consumption.
Notice that the agent decreases consumption because of the consequences that noisier

income has on her optimal use of information. This contrasts with the case in which the
marginal utility of consumption is convex (Kimball, 1990), where agents decrease consumption
due to an inherent “dislike” of additional risk. Furthermore, notice that within our framework
increases in the volatility of transitory income, such as that which occur during recessions, are
always accompanied by decreases in income expectations. By contrast, with knowledge of the
optimal weight on information, no such relationship necessarily exists.

Notwithstanding the simplicity of our model, Figure 7 shows that size of this pre-cautionary
response can be sizable. Under our benchmark parametrization of income, which matches the
time-series properties of economy-wide output (see also Figure 5), a 50 percent increase in the
standard deviation of the transitory component of income, on average, causes an 8 percent
drop in consumption. This is further assuming that R = 1. A 50 percent increase in volatility
of the transitory component is roughly in line with the evidence in Storesletten et al. (2004)
on increases in income risk during recessions. Assuming a CRRA-specification for the utility
function instead of the quadratic preferences in (5.1), and knowledge of β1, the 8 percent fall
in consumption, all else equal, translates into a coefficient of risk aversion of around 7 to 8,
assuming initial assets equal to zero, a1 = 0.

The results in this subsection have highlighted two implications of uncertainty about the
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Figure 7: Pre-cautionary Consumption Choices
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Note: The figure illustrates average consumption choices for an agent who has observed income and her own
productivity for 13 periods (t = 13) and will work for another 20 periods (T = 33). The figure shows the
relative consumption choice as a function of the relative standard deviation of transitory income shocks σ.
Baseline parameters are identical to those in Figure 5 and initial assets a1 = 0.

optimal use of information. First, uncertainty about the use of information not only affects
the properties of expectations, but also heightens the persistence of consumption fluctuations
and makes them history-dependent. Second, the lack of knowledge of how to best predict
income creates a novel, pre-cautionary motive for savings. Because of uncertainty about the
optimal weight on information, agents choose to consume less at the start of their life, as
well as when faced with larger transitory income shocks. The latter can help account for the
size-dependent effects of stimulus checks observed in the data.

6 Final Remarks

In this paper, we have presented a tractable and parsimonious theory of cautious expectations
based on the observation that the optimal use of information is often unknown. Our framework
formalizes the idea that, to form expectations, agents first need to decide how much weight to
attach to the various signals observed about a forecasted variable. The agent-econometrician
assumption, in which agents estimate the optimal weight on their own information from the
history of past observations, provides a natural departure point to model this idea.

The broad principle emerging from our analysis is that uncertainty about the optimal
use of information leads to a cautionary response to prior and new information that exploits
a fundamental trade-off between the bias and variance of expectations. The observed bias
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in survey expectations of professional forecasters combined with their accuracy, as well as
the documented co-existence of under- and overreactions to new information, can be viewed
as specific manifestations of this mechanism. The structure of caution choices, furthermore,
yields new predictions about the time- and state-dependence of expectations.

To illustrate our results, we embedded our framework into a standard consumption-savings
problem that lies at the bedrock of modern macroeconomic models. For standard parameters,
we have showed that uncertainty about the optimal weight on information in predicting future
income leads to an upward-sloping consumption profile and muted, persistent responses to
income shocks. In addition, we have demonstrated that increased uncertainty about the best
use of information results in a sizable decline in current consumption, even with linear decision
rules. We have further discussed how our results can help match evidence on the responsiveness
of consumption to the 2001 and 2008 stimulus package, respectively.

In spirit, our analysis has been close those in the rational and behavioral inattention
literatures (Maćkowiak et al., 2021; Gabaix, 2017). The central difference is that our model
focuses on agents’ optimal responses to uncertainty about the use of information. The rational
and behavioral inattention literatures, by contrast, center on what information agents choose
to observe. In this sense, our theory provides a complement rather than a substitute to those
based on limited attention. Each focuses on a different “stage” of the expectation formation
process. Models, such as that analyzed in Section 4, are interesting in this respect because
they merge a model of noisy information, due to, for instance, limited attention, with the
cautious responses that arise due to uncertainty about the optimal use of information.

One appealing feature of our framework is that it arrives at predictions that are indepen-
dent of any cost function on beliefs. This is important because, although several tractable
models of, for example, attention costs exist, neither accurately matches the mixed evidence
on costs faced by households and firms (e.g., Carlsson and Skans, 2012; Caplin and Dean,
2015; Dewan and Neligh, 2020). By contrast, the implied caution choices in our model are
derived solely from the economic incentives and technologies that agents face, and are as such
not confounded by potential misspecifications in cost functions.

Beyond the analysis in this paper, future work may use our results to shed light on several
issues. One natural candidate is the documented history- and state-dependence of expecta-
tions, which has been shown to influence economic decisions by households and firms (e.g.,
Malmendier and Wachter, 2021). These studies often rely on semi-structural or ad-hoc rules
about the dependence of individual expectations on the history of observations. This contrasts
with the optimal-derived, history-dependent expectations studied above. Cautious expecta-
tions may also prove useful for thinking about the excessive risk-premium on risky assets, which
have been documented since Mehra and Prescott’s (1985) influential contribution. Compte
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and Postlewaite (2019) discuss how risk premia can arise from a market in which traders learn
about a structural parameter related to risk. More can be done to connect a cautious use
of information to the preference for safe assets in financial portfolios.35 Finally, benchmark
models of information choice abstract from any uncertainty about the use of signals. By con-
trast, in reality, it seems signals are often selected based on agents’ knowledge about their
optimal use. Incorporating uncertainty about the optimal use of information into a standard
framework for information choice seems like a natural next step.

35Haworth and Gai (2023) show how the framework developed in this paper can also be used to cast light
on the trade-offs involved in macroprudential policy.

41



References

Afrouzi, H., Kwon, S. Y., Landier, A., Ma, Y. and Thesmar, D. (2021). Overreaction
and working memory. National Bureau of Economic Research.

Anderson, B. D. and Moore, J. B. (1979). Optimal filtering. Englewood Cliffs, 21, 22–95.
Angeletos, G.-M. and Huo, Z. (2021). Myopia and anchoring. American Economic Review,

111 (4), 1166–1200.
—, — and Sastry, K. A. (2021). Imperfect macroeconomic expectations: Evidence and

theory. NBER Macroeconomics Annual, 35 (1), 1–86.
— and Lian, C. (2016). Incomplete information in macroeconomics: Accommodating fric-

tions in coordination. Handbook of Macroeconomics, 2, 1065–1240.
— and Pavan, A. (2007). Efficient Use of Information and Social Value of Information.

Econometrica, 75 (4), 1103–1142.
Aras, E., Lee, K.-Y., Pananjady, A. and Courtade, T. A. (2019). A family of bayesian

cramér-rao bounds, and consequences for log-concave priors. In 2019 IEEE International
Symposium on Information Theory (ISIT), IEEE, pp. 2699–2703.

Barberis, N., Greenwood, R., Jin, L. and Shleifer, A. (2018). Extrapolation and
bubbles. Journal of Financial Economics, 129 (2), 203–227.

Benjamin, D. J. (2019). Errors in probabilistic reasoning and judgment biases. Handbook of
Behavioral Economics: Applications and Foundations 1, 2, 69–186.

Bennett, J. and Owyang, M. (2022). On the relative performance of inflation forecasts.
Federal Reserve Bank of St. Louis Review.

Bordalo, P., Gennaioli, N., Ma, Y. and Shleifer, A. (2020). Overreaction in macroe-
conomic expectations. American Economic Review, 110 (9), 2748–82.

—, — and Shleifer, A. (2017). Memory, attention, and choice. The Quarterly journal of
economics.

—, — and — (2018). Diagnostic expectations and credit cycles. The Journal of Finance,
73 (1), 199–227.

Brainard, W. C. (1967). Uncertainty and the effectiveness of policy. The American Eco-
nomic Review, 57 (2), 411–425.

Broer, T. and Kohlhas, A. N. (2022). Forecaster (mis-)behavior. The Review of Economics
and Statistics (forthcoming).

Cagan, P. (1956). The monetary dynamics of hyperinflation. Studies in the Quantity Theory
if Money.

Canova, F. (2011). Methods for applied macroeconomic research. Princeton university press.
Caplin, A. and Dean, M. (2015). Revealed preference, rational inattention, and costly

42



information acquisition. American Economic Review, 105 (7), 2183–2203.
Carlsson, M. and Skans, O. N. (2012). Evaluating microfoundations for aggregate price

rigidities: evidence from matched firm-level data on product prices and unit labor cost.
American Economic Review, 102 (4), 1571–95.

Coibion, O. and Gorodnichenko, Y. (2012). What can survey forecasts tell us about
information rigidities? Journal of Political Economy, 120 (1), 116–159.

— and — (2015). Information rigidity and the expectations formation process: A simple
framework and new facts. American Economic Review, 105 (8), 2644–78.

—, — and Kumar, S. (2018). How do firms form their expectations? new survey evidence.
American Economic Review, 108 (9), 2671–2713.

Compte, O. and Postlewaite, A. (2019). Ignorance and uncertainty. 61, Cambridge Uni-
versity Press.

Cramér, H. (1946). A contribution to the theory of statistical estimation. Scandinavian
Actuarial Journal, 1946 (1), 85–94.

Croushore, D. D. (1993). Introducing: the survey of professional forecasters. Business
Review-Federal Reserve Bank of Philadelphia, 6, 3.

Cutler, D. M., Poterba, J. M. and Summers, L. H. (1990). Speculative dynamics and
the role of feedback traders. American Economic Review, 80 (2), 63–68.

Da Silveira, R. A., Sung, Y. and Woodford, M. (2022). Optimally imprecise memory
and biased forecasts.

De Long, J. B., Shleifer, A., Summers, L. H. and Waldmann, R. J. (1990). Noise
trader risk in financial markets. Journal of Political Economy, 98 (4), 703–738.

Dewan, A. and Neligh, N. (2020). Estimating information cost functions in models of
rational inattention. Journal of Economic Theory, p. 105011.

Eldar, Y. C. (2008). Rethinking biased estimation: Improving maximum likelihood and the
cramér–rao bound. Foundations and Trends in Signal Processing, 1 (4), 305–449.

Elliott, G., Komunjer, I. and Timmermann, A. (2008). Biases in macroeconomic fore-
casts: irrationality or asymmetric loss? Journal of the European Economic Association,
6 (1), 122–157.

Evans, G. W. and Honkapohja, S. (2012). Learning and expectations in macroeconomics.
Princeton University Press.

Farmer, L., Nakamura, E. and Steinsson, J. (2022). Learning about the long run.
Faust, J. and Wright, J. H. (2013). Forecasting inflation. In Handbook of economic fore-

casting, vol. 2, Elsevier, pp. 2–56.
Fernández-Villaverde, J., Rubio-Ramírez, J. F., Sargent, T. J. and Watson,

M. W. (2007). Abcs (and ds) of understanding vars. American economic review, 97 (3),

43



1021–1026.
Flynn, J. P. and Sastry, K. (2021). Attention cycles. MIT mimeo.
Fréchet, M. (1943). Sur l’extension de certaines évaluations statistiques au cas de petits

échantillons. Revue de l’Institut International de Statistique, pp. 182–205.
Fuhrer, J. (2018). Intrinsic expectations persistence: Evidence from professional and house-

hold survey expectations. Boston Fed mimeo.
Fuster, A., Laibson, D. and Mendel, B. (2010). Natural expectations and macroeco-

nomic fluctuations. Journal of Economic Perspectives, 24 (4), 67–84.
Gabaix, X. (2014). A sparsity-based model of bounded rationality. The Quarterly Journal

of Economics, 129 (4), 1661–1710.
— (2017). Behavioral inattention. Handbook of Behavioral Economics.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. and Rubin,

D. B. (2013). Bayesian Data Analysis. CRC press.
Gemmi, L. and Valchev, R. (2022). Public information and survey expectations.
Golan, A., Judge, G. and Miller, D. (1997). Maximum entropy econometrics: Robust

estimation with limited data. John Wiley and Sons.
Gourinchas, P.-O. and Parker, J. A. (2002). Consumption over the life cycle. Econo-

metrica, 70 (1), 47–89.
Hall, R. E. (1978). Stochastic implications of the life cycle-permanent income hypothesis:

theory and evidence. Journal of Political Economy, 86 (6), 971–987.
Hansen, L. P. and Sargent, T. J. (2008). Robustness. Princeton University Press.
Harvey, A. C. (1990). The econometric analysis of time series. MIT Press.
Hastie, T., Tibshirani, R. and Friedman, J. (2009). The elements of statistical learning:

data mining, inference, and prediction. Springer Science & Business Media.
Haworth, C. and Gai, P. (2023). Macroprudential policymakers with cautious expectations.
Ilut, C. L. and Valchev, R. (2022). Economic agents as imperfect problem solvers. Quar-

terly Journal of Economics.
Johnson, D. S., Parker, J. A. and Souleles, N. S. (2006). Household expenditure and

the income tax rebates of 2001. American Economic Review, 96 (5), 1589–1610.
Kahneman, D. and Tversky, A. (1973). On the psychology of prediction. Psychological

review, 80 (4), 237.
Kimball, M. S. (1990). Precautionary saving in the small and in the large. Econometrica,

58 (1), 53–73.
Kohlhas, A. N. and Walther, A. (2021). American Economic Review, 111 (9), 2879–2925.
Kőszegi, B. and Matějka, F. (2020). Choice simplification: A theory of mental budgeting

and naive diversification. The Quarterly Journal of Economics, 135 (2), 1153–1207.

44



Kozlowski, J., Veldkamp, L. and Venkateswaran, V. (2020). The tail that wags the
economy: Beliefs and persistent stagnation. Journal of Political Economy, 128 (8), 2839–
2879.

Kwon, S. Y. and Tang, J. (2022). Extreme events and overreaction to news.
Lucas, R. E. J. (1972). Expectations and the neutrality of money. Journal of Economic

Theory, 4 (2), 103–124.
Maćkowiak, B., Matějka, F. and Wiederholt, M. (2021). Rational inattention: A

review.
— and Wiederholt, M. (2009). Optimal sticky prices under rational inattention. The Amer-

ican Economic Review, 99 (3), 769–803.
Malmendier, U. and Wachter, J. A. (2021). Memory of past experiences and economic

decisions. Available at SSRN 4013583.
Mankiw, N. G. and Reis, R. (2002). Sticky information versus sticky prices: a proposal to

replace the nesw keynesian phillips curve. The Quarterly Journal of Economics, 117 (4),
1295–1328.

Marinovic, I., Ottaviani, M. and Sorensen, P. (2013). Forecasters objectives and strate-
gies. Handbook of economic forecasting, 2, 690–720.

Matějka, F. (2016). Rationally inattentive seller: Sales and discrete pricing. The Review of
Economic Studies, 83 (3), 1125–1155.

Mitchell, J., Robertson, D. and Wright, S. (2019). R2 bounds for predictive models:
what univariate properties tell us about multivariate predictability. Journal of Business &
Economic Statistics, 37 (4), 681–695.

Morris, S. and Shin, H. S. (2002). Social value of public information. American Economic
Review, 92 (5), 1521–1534.

Muth, J. F. (1961). Rational expectations and the theory of price movements. Econometrica,
pp. 315–335.

Nimark, K. (2008). Dynamic pricing and imperfect common knowledge. Journal of Monetary
Economics, 55 (2), 365–382.

Onatski, A. and Stock, J. H. (2000). Robust monetary policy under model uncertainty in
a small model of the us economy. Macroeconomic Dynamics.

Orcutt, G. H. and Winokur Jr, H. S. (1969). First order autoregression: inference,
estimation, and prediction. Econometrica: Journal of the Econometric Society, pp. 1–14.

Parker, J. A., Souleles, N. S., Johnson, D. S. and McClelland, R. (2013). Con-
sumer spending and the economic stimulus payments of 2008. American Economic Review,
103 (6), 2530–53.

Phillips, L. D. and Edwards, W. (1966). Conservatism in a simple probability inference

45



task. Journal of experimental psychology, 72 (3), 346.
Rao, C. R. (1945). Information and the accuracy attainable in the estimation of statistical

parameters. Bulletin of the Calcutta Mathematical Society, 37, 81–91.
Sargent, T. J. (1987). Dynamic macroeconomic theory. Harvard University Press.
— (1993). Bounded rationality in macroeconomics: The arne ryde memorial lectures. OUP

Catalogue.
Scharfstein, D. S. and Stein, J. C. (1990). Herd behavior and investment. The American

Economic Review, pp. 465–479.
Sims, C. A. (2003). Implications of rational inattention. Journal of Monetary Economics,

50 (3), 665–690.
— (2006). Rational inattention: Beyond the linear-quadratic case. American Economic Re-

view, 96 (2), 158–163.
Stark, T. (2010). Realistic evaluation of real-time forecasts in the survey of professional

forecasters. Federal Reserve Bank of Philadelphia Special Report, 1.
Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal

distribution. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and
Probability.

Stock, J. H. and Watson, M. W. (2008). Phillips curve inflation forecasts.
Storesletten, K., Telmer, C. I. and Yaron, A. (2004). Cyclical dynamics in idiosyn-

cratic labor market risk. Journal of political Economy, 112 (3), 695–717.
Tanaka, K. (1984). An asymptotic expansion associated with the maximum likelihood esti-

mators in arma models. Journal of the Royal Statistical Society: Series B (Methodological),
46 (1), 58–67.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58 (1), 267–288.

Tikhonov, A. N. and Arsenin, V. Y. (1977). Solutions of ill-posed problems. American
Mathematical Society, 1 (30), 487.

Van Trees, H. L. and Bell, K. L. (1968). Detection estimation and modulation theory.
Wiley.

Varian, H. R. (1975). A bayesian approach to real estate assessment. Studies in Bayesian
econometric and statistics in Honor of Leonard J. Savage, pp. 195–208.

Woodford, M. (2002). Imperfect Common Knowledge and the Effects of Monetary Policy.
Nber working papers, Department of Economics, Columbia University.

Zarnowitz, V. (1985). Rational expectations and macroeconomic forecasts. Journal of Busi-
ness & Economic Statistics, 3 (4), 293–311.

46



Appendix to

“Cautious Expectations”

Alexandre N. Kohlhas and Donald Robertson

University of Oxford and University of Cambridge

February, 2024

Contents of Appendix:

This Appendix details extensions and proofs of the models analyzed in the paper.

Appendix A: Proofs and Derivations

Appendix A.1: Optimal Expectations

Proof of Proposition 1

Proof of Proposition 2

Proof of Proposition 3

Appendix A.2: A Partial Equivalence Result

Proof of Proposition 4

Appendix A.3: Comparative Statics

Proof of Proposition 5

Proof of Proposition 6

Appendix B: Extensions and Further Results

Appendix B.1: Iterative and Robust Estimation

Proposition B.1: Iterative Estimation

Proposition B.2: Robust Estimation

Appendix B.2: A Non-linear and a Non-Gaussian Example

Appendix B.3: Component-based Expectations and Bias

Appendix B.4: The Law of Iterated Expectations

Proposition B.3: Iterated Expectations

Appendix C: Empirics

Appendix C.1: Inflation Forecasts and Comparative Statics

Figure C.1: Inflation Forecast Accuracy Relative to Time-series Models

Figure C.2: Optimal Expectations based on an AR(1) Process for Inflation

Table C.1: Over- and Underreactions of Optimal Expectations and Inflation Data

1



Appendix C.2: Details of Time-series Models

Appendix C.3: Over- and Underreactions

Proof of Proposition 7

Appendix D: Applications

Appendix D.1: Properties of Optimal Expectations

Appendix D.2: Consumption and Expectation Choices

Appendix D.3: Consumption Implications

Proof of Corollary 1

Proof of Corollary 2

Proof of Corollary 3

Appendix D.4: Other Models of Income Expectations

Appendix D.5: Optimal Sticky Prices and Monetary Policy

2



A Proofs and Derivations

A.1 Optimal Expectations

Proof of Proposition 1: The proof follows van Tries (1968) but extends the result to the

vector case. For ease of notation, we suppress that all moments are conditional on xt. Thus, we

for example write E [V ] instead of E
[
V | xt

]
for any random vector V .

Let z be given by z =
(
xt, yt

)
. By the definition of the bias function, we have that

β + b(β) = E
[
β̂
]
=

∫
β̂ (z) f (z;β) dz. (A1)

Let ∇f(z;β) denote the partial derivate of the joint probability density function with respect to

β. Differentiating both sides of (A1) provides us with

In +D (β) =

∫
β̂ (z)∇f(z;β)′dz

=

∫
β̂ (z)∇f(z;β)′

f(z;β)

f(z;β)
dz.

Notice that ∇f(z;β)/f(z;β) is equal to the partial derivate of the log-likelihood function L (z;β) ≡
log f (z;β) with respect to β. Thus,

In +D (β) = E
[
β̂(z)∇L(z;β)′

]
. (A2)

Now, take the fact that

1 =

∫
f (z;β) dz

and differentiate both sides to arrive at

0 =

∫
∇f(z;β)′dz =

∫
∇f(z;β)′

f(z;β)

f(z;β)
dz = E

[
∇L(z;β)′

]
.

Pre-multiplying this expression with E
[
β̂(z)

]
yields

0 = E
[
β̂(z)

]
E
[
∇L(z;β)′

]
. (A3)

Deducting (A2) from (A3) now provides us with

In +D (β) = E
[(

β̂(z)− E
[
β̂(z)

])
∇L(z;β)′

]
. (A4)
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The vector case of the Schwarz inequality shows that1

V
[
β̂ (z)

]
⪰ E

[(
β̂(z)− E

[
β̂(z)

])
∇L(z;β)′

]
(A5)

× E
[
∇L(z;β)∇L(z;β)′

]−1

× E
[(

β̂(z)− E
[
β̂(z)

])
∇L(z;β)′

]′
.

Inserting (A4) into (A5) then completes the proof. □

Proof of Proposition 2: Let β̂ = Mβ̂ls ≡ (In +K) β̂ls be an estimator of β, with bias function

b(β) = E
[
β̂ | xt

]
− β = Kβ. Then V

[
β̂ | xt

]
is bounded below by the FCR lower-bound:

V
[
β̂ | xt

]
⪰ [In +K] (X ′X)−1σ2 [In +K]′ ,

where D (β) = db (β) /dβ = K , and we have used that

J = σ−2
(
X ′X

)
, X ≡

[
x1 x2 . . . xn

]
.

Now notice that, because β̂ls attains the unbiased FCR lower-bound, we have that

V
[
β̂ls | xt

]
= (X ′X)−1σ2.

Thus,

V
[
β̂ | xt

]
= [In +K] (X ′X)−1σ2 [In +K]′ .

xxx □

Proof of Proposition 3: We consider estimators β̂ = Mβ̂ls, where M ∈ Rn×n.

Inserting such a scaled estimator into (3.1) and (3.2) shows that

U = −1

2

(
V [ηt+k] + Exx

′
t

[
MJ−1M ′ + (In −M)ββ′(In −M)′

]
xt
)
.

The agent’s optimization problem for all xt thus becomes

max
M∈Rn×n

−1

2
Exx

′
t

[
MJ−1M ′ + (In −M)ββ′(In −M)′

]
xt. (A6)

The sufficient first-order condition is

∂U/∂M = 0 : Ex

{[(
J−1 + ββ′)M⋆′ − ββ′]xtx′t} = 0, (A7)

Thus, if (A7) has to hold for all xt,

M⋆ = ββ′ (J−1 + ββ′) = In − J−1
(
J−1 + ββ′)−1

, (A8)

1We use the notation that, for two matrices A and B, A ⪰ B means that A−B is positive (semi-)definite.
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where the final equality follows from an application of the Woodbury Identity.

The Woodbury Identity further allows us to write the previous expression as

M⋆ =
1

1 + β′Jβ
ββ′J. (A9)

It now follows from (A9) and β̂⋆ = M⋆β̂ls, where E
[
β̂ls | xt

]
= β, that

E
[
β̂⋆ | xt

]
=

1

1 + β′Jβ
ββ′JE

[
β̂ls | xt

]
= m⋆β,

where m⋆ ≡ (1 + β′Jβ)−1 β′Jβ ∈ [0, 1) since J is positive semi-definite.

A few tedious but simple matrix derivations then show that

E
[
β̂⋆
j | xt

]
= m⋆βj , m⋆ =

∑
i

∑
k βiβk

(
x′
ixk

σ2

)
1 +

∑
i

∑
k βiβk

(
x′
ixk

σ2

) ∈ [0, 1). (A10)

Finally, notice that m⋆ in (A10) can alternatively be written as

m⋆ =
1
σ2 (Xβ)′ (Xβ)

1 + 1
σ2 (Xβ)′ (Xβ)

=

1
σ2 ŷ

′
[t]ŷ[t]

1 + 1
σ2 ŷ

′
[t]ŷ[t]

,

where ŷ[t] denotes the true vector of fitted values based on period time t information. □

A.2 A Partial Equivalence Result

Proof of Proposition 4: The proof proceeds in four steps. First, we derive the rational

expectation when the agent observes xt and knows the true value of β. Then, we turn to the

noisy-information case, in which the agent instead observes the noisy signal zit, before detailing

the corresponding optimal expectation f⋆
t yt+k. The fourth and final steps shows that a noise

choice q exist such that we can equate the average value of the former with the expected value

of the latter for each value of xt.

Step 1: The informed expectation, assuming knowledge of β, is

yt+k|t = E [yt+k | xt;β]

= β1x1t + β2x2t + ...+ βnxnt,

Thus, for a certain value of σ, we can write

yt+k = x′tβ + ηt+k, ηt+k ∼ N
(
0, σ2

)
.

Step 2: The noisy rational expectation is

E [yt+k | zit; m̂] = m̂zit,

5



where

m̂ ≡ q−2

q−2 + Var [x′tβ]
. (A11)

The average noisy rational expectation is therefore:∫ 1

0
E [yt+k | zit] di = m̂E [yt+k | xt;β] = m̂x′tβ.

Step 3: The optimal expectation is, in contrast, equal to

f⋆
t yt+k = β̂⋆

1x1t + β̂⋆
2x2t + ...+ β̂⋆

nxnt,

where

E
[
β̂⋆
j | xt

]
= m⋆βj .

Thus,

E [f⋆
t yt+k | xt] = m⋆x′tβ.

Step 4: We will show there ∃q ∈ R+ :
∫ 1
0 E [yt+k | zit] di = E [f⋆

t yt+k | xt] for all xt. This,

however, follows from (A11) since m̂ can admit all values in the range between zero and one. □

A.3 Comparative Statics

Proof of Proposition 5: The proof has two parts.

Part (i): The partial derivative of m⋆ with respect to
∑l=t

l=1

(xjl

σ

)2 is

∂m⋆

∂
∑l=t

l=1

(xjl

σ

)2 = β2
j ×

1[
1 +

∑
i

∑
k βiβk

(
x′
ixk

σ2

)]2 ≥ 0.

Part (ii): The partial derivative of m⋆ with respect to
∑l=t

l=1

(xitxjt

σ

)2 is

∂m⋆

∂
∑l=t

l=1

(xitxjt

σ

)2 = 2× βiβj[
1 +

∑
i

∑
k βiβk

(
x′
ixk

σ2

)]2 .
This completes the proof. □

Proof of Proposition 6: The comparative statics can be shown as follows:

Part (i): If
∑

t xitxjt = 0 for all i ̸= j, then m⋆ in (A10) becomes

m⋆ =

∑i=n
i=1 β

2
i

∑l=t
l=1

(
xil
σ

)2
1 +

∑i=n
i=1 β

2
i

∑l=t
l=1

(
xil
σ

)2 .
Because both β2

i ≥ 0 and
∑l=t

l=1

(
xil
σ

)2 ≥ 0, this shows that m⋆ increases in n.

Part (ii): Consider the equation for m⋆ in (A10). The contribution of the nth signal to the

6



numerator and denominator of this expression is

an ≡ β2
n

∑
t

x2nt/σ
2 + βn

∑
i ̸=n

2βi
∑
t

xntxjt.

Consequently, if an < 0, m⋆ decreases with the addition of the nth signal.

Part (iii): Finally, notice that m⋆ in (A10) based upon the first t observations equals

m⋆
[t] =

1
σ2 (Xβ)′ (Xβ)

1 + 1
σ2 (Xβ)′ (Xβ)

=

1
σ2 ŷ

′
[t]ŷ[t]

1 + 1
σ2 ŷ

′
[t]ŷ[t]

,

where ŷ[t] denotes the vector of fitted values based on period time t information.

But this shows that m⋆
[t+1] is equal to

m⋆
[t+1] =

1
σ2 ŷ

′
[t]ŷ[t] +

1
σ2 (ŷt+1)

2

1 + 1
σ2 ŷ

′
[t]ŷ[t] +

1
σ2 (ŷt+1)

2 ≥ m⋆
[t].

The □
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B Extensions and Further Results

B.1 Iterative and Robust Estimation

Proposition B.1. (An Iterative Estimator) Consider the estimator β̂⋆ in (3.7), and let

β̂⋆
[k] =

[
IN − J−1

(
J−1 + β̂⋆

[k−1]β̂
⋆
[k−1]

)−1
]
β̂⋆
[k−1], (A12)

where β̂⋆
[0] = β̂ls. Then, the fixed-point of (A12) dominates β̂ls in terms of agents’ payoffs for all

value of β ∈ Rn if the effective dimension d ≥ 4, where d ≡ tr (Q) /λmax (Q) and Q ≡ (X ′X)−1.2

Proof of Proposition B.1: The proof follows the steps for Theorem 2 in Eldar (2008).

Proposition B.2. (A Robust Min-Max Estimator) Let βj ∈
[
β
j
, β̄j

]
and consider the

optimal estimator β̂⋆ and the associated caution choice m⋆. The estimator that replaces βj in

the expressions for β̂⋆ and m⋆ with either β
j

or β̄j , depending on which yields the lowest utility,

strictly dominates the least-squares (no-caution) alternative for all values of β.

Proof of Proposition B.2: For any estimator that satisfies Proposition 2, we have that3

mse
(
β̂
)
= MJ−1M ′ + (In −M)ββ′ (In −M ′) , (A13)

where J denotes the information matrix. We want to minimize the quadratic form x′tmse
(
β̂
)
xt,

because it is what determines utility losses in (3.1). The problem is that the optimal value M⋆

depends on unknown parameters. A robust min-max approach to this problem for all xt is

M robust = argmin
M

max
βj∈

(
β
j
,β̄j

)x′tmse
(
β̂
)
xt. (A14)

Because of the quadratic nature of (A13), we know that a solution to (A14) dominates the

least-squares outcome M = In. Moreover, a solution to this problem can always be found.

Notice that (A14) can also be written as

M robust = argmin
M

xtMJ−1M ′x′t + max
βj∈

(
β
j
,β̄j

)x′t (In −M)ββ′ (In −M ′)xt
 .

where the term inside the max-operator clearly either always has a positive (or negative) gradient.

So the solution to this problem must line on the edges of the constraint. The worst-case βj has

to be either β
j

or β̄j . Inserting the worst-case β into (3.7) and (3.8) completes the proof.

Finally, notice that a natural constraint βj ∈ (0, 1) for all j arises, for example, in the tracking

problems studied in Section 4.2. □

2λmax(Q) here denotes the maximum eigenvalue of Q. Furthermore, we note that X once more equals X ≡[
x1 x2 . . . xn

]
, consistent with the use of X in the paper and Appendix A.

3Without loss of generality, we here treat the signal vector xt as fixed.
8



B.2 A Non-linear and a Non-Gaussian Example

This appendix shows how our main results extend beyond the linear-Gaussian case.

A Non-linear Example: Consider the setup from Section 2, but suppose that yt+k is indepen-

dent over time and uniformly distributed on [0, β], where β is an unknown positive parameter.

The probability density function is

f(y) =


1
β 0 ≤ y ≤ β

0 elsewhere.

Agents observe t realizations of yt, so that their information set is Ωt = {yτ}τ=t
τ=1 .

It follows that

E [yt] =
β

2
, V[y] =

β2

12
.

The minimum variance unbiased estimator for the uniform case is

β̂mvu = (1 + 1/T ) ymax, ymax = max
τ

yτ . (A15)

We note that the estimator in (A15) is non-linear in the observations of yt.

To derive an estimator that produces more accurate forecasts, consider the alternative esti-

mator:

β̂ = mβ̂mvu, m ∈ R. (A16)

As in the main test, the estimator in (A16) is a linear function of β̂mvu, and hence has a linear

bias. It follows from these two features (as in Proposition 2) that (A16) attains the lower-bound

on the variance of any biased estimator. Following the same steps as in Section 3 shows that

β̂⋆ =
t+ 2

t+ 1
ymax, ymax = max

τ
xτ (A17)

has a smaller mean-squared-error than any other estimator of β. We conclude that f⋆
t yt+1 =

1
2 β̂

⋆

produces the most accurate forecast.

Finally, notice that m⋆ is independent of the realizations of the signal in Ωt. The estimator

in (A17) thus provides an example of an estimator that is directly implementable.

We close this example with two implications of the optimal adjustment in (A17) that mirror

those in Section 4 of the main text. First, the optimal estimator results in biased forecasts:

E [yt+1 − f⋆
t yt+1] =

1

2

(
β − Eβ̂⋆

)
=

1

2

1

(1 + t)2
θ > 0.

Second, the optimal estimator results in errors that can be predicted based on observed signals:

P [yt+1 − f⋆
t yt+1 | yt] = yt+1 − P

[
1

2

t+ 2

t+ 1
ymax | yt

]
=

(
1− t(t+ 2)

(1 + t)2

)
yt =

1

(1 + t)2
yt,

9



where P [zt | yt] denotes the linear projection of zt onto yt and (1 + t)−2 > 0.

A Non-Gaussian Example: Consider once more the setup from Section 2, but suppose that

yt+k is iid across time and Bernoulli distributed with probability of success β ∈
(
0, 12
]
.4

We can write this example in a linear framework:

yt+k = β + ηt+k,

where

ηt+k =

1− β with prob. β

−β with prob. 1− β

so that E [ηt+k] = 0. An agent’s information set is Ωt = {yτ}τ=t
τ=1

The maximum likelihood estimator of β, which here attains the unbiased FCR bound is:

β̂ml = ȳt, ȳt ≡
1

t

τ=t∑
τ=1

yt.

Trivially, E
[
β̂ml

]
= β and V

[
β̂ml

]
= β(1− β)1t .

Now, consider instead the alternative estimator:

β̂ = mβ̂ml, m ∈ R. (A18)

Notice that this alternative estimator is a linear function of its maximum likelihood counterpart,

and hence has a linear bias. Once more, because of these two features (as in Proposition 2), the

estimator in (A18) attains the biased FCR lower-bound. Furthermore, we have that

b
(
β̂
)
= (m− 1)β, V

[
β̂
]
= m2β(1− β)

1

t

Thus, the mean-squared error of β̂ straightforwardly becomes

mse
(
β̂
)
= m2β(1− β)

1

t
+ (m− 1)2 β2.

We conclude that m⋆ = β
β+(1−β)t−1 ∈ (0, 1).

As in the linear-normal case studied in the body of this paper, down-weighing the maximum

likelihood estimator is optimal. It once more allows agents to increase the accuracy of their

forecasts by trading-off, on the one hand, having a lower variance of their forecasts versus, on

the other hand, having a larger bias. Finally, we note that because ∂mse
(
β̂|m=m⋆

)
/∂β > 0, the

feasible estimator that replaces β with the “worst-case” outcome β = 1
2 in our expression for m⋆

improves upon the maximum likelihood estimator over the entire range for the true parameter

β. In this case, m⋆
feasible =

t
1+t .

4Notice that we only need to consider the β ≤ 1
2

case since with symmetric preferences we are free to re-define
success and failure.
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B.3 Component-based Expectations and Bias

Expectations and Shrinkage: Suppose yt+k adopts the component-based structure,

yt+k = z1t+k + z2t+k (A19)

z1t+k = β1x1t + η1t+k, z2t+k = β2x1t + β3x2t + η2t+k, (A20)

where ηjt+k ∼ N
(
0, σ2

j

)
with E [η1t+kη2t+k] = 0.

An agent’s optimal (component-based) expectation of yt+k is

f⋆,comp
t yt+k = f⋆,comp

t z1t+k + f⋆,comp
t z2t+k,

where, using our results from Section 3 (Proposition 3), we find that

E
[
β̂⋆
1 | X

]
= m⋆

1β1, E
[
β̂⋆
j | X

]
= m⋆

2βj , j = 2, 3. (A21)

This, in turn, shows that

E [f comp
t yt+k | X] = m⋆

1β1x1t +m⋆
2 (β2x1t + β3x2t)

= (m⋆
1β1 +m⋆

2β2)x1t +m⋆
2β3x2t.

Now, let δj denote the weight on xjt in the reduced-form for yt+k:

yt+k = (β1 + β2)x1t + β3x2t + η1t+k + η2t+k (A22)

≡ δ1x1t + δ2x2t + ϵt+k, ϵt+k ≡ η1t+k + η2t+k.

Combined, (A21) and (A22) show that

E
[
f⋆,comp
t yt+k | X

]
= m̃⋆

1δ1x1t + m̃⋆
2δ2x2t, (A23)

where

m̃⋆
1 ≡

m1β1 +m2β2
β1 + β2

, m̃⋆
2 ≡ m2,

and we conclude that the optimal caution choice on x1t and x2t is generically different.

Bias of Expectations in the General Case: Consider an agent’s error at t,

et = yt+k − f⋆,comp
t yt+k.

The expected value of the error is

E [et] = Ex [E [et | X]] = Ex

∑
j

(
1− m̃⋆

j

)
δjxjt. (A24)

11



We note that in the baseline case, where m̃⋆
j = m⋆ for all j, this expression simplifies to

E [et] = Ex

∑
j

(1−m⋆) δjxjt. (A25)

Equation (A24) shows that an agent’s expectations can be consistent with both over- and

under-optimism, depending on whether the sufficient statistic Ex
∑

j

(
1− m̃⋆

j

)
δjxjt is negative

or positive. In the special case in which xjt is independently and identically distributed across

time for all j, this statistic collapses to
∑

j

(
1− Exm̃

⋆
j

)
δjExxjt ≶ 0. This condition is clearly

negative when agents exhibit relatively more caution towards signals that decrease their expecta-

tions, on average. When agents exhibit caution towards signals that, on average, decrease their

expectations, agents forecasts mechanically become higher. In effect, by being cautious towards

such signals, agents place a smaller weight on the dampening effect that comes from their ob-

servation. As a result, agents tend to be more optimistic than a corresponding econometrician

about the future. Equation (A24) formalizes this intuition for the general case in which agents

shrink signals differentially. These results further straightforwardly extend to the n > 2-case.

Finally, notice that the results in this subsection depend crucially on how yt+k is “signed”.

Consider the baseline case, where m̃⋆
j = m⋆ for all j, and suppose m⋆ is held fixed and E [yt+k] > 0.

It then follows that

E
[
yt+k − f⋆,comp

t yt+k

]
= E [yt+k]−m⋆E [E (yt+k | X)] = (1−m⋆)E [yt+k] > 0. (A26)

But now suppose that instead of forecasting yt+k, the agent forecasts qt+k = −yt+k.

The resulting bias in forecasts is

E
[
qt+k − f⋆,comp

t qt+k

]
= E [qt+k]−m⋆E [E (qt+k | X)] = (1−m⋆)E [qt+k] < 0, (A27)

where m⋆ ∈ (0, 1) is identical to that in (A26) and E [qt+k] < 0.

B.4 The Law of Iterated Expectations

Proposition B.3. The agent’s optimal expectations f⋆
t yt+k satisfy a “Law of Iterated Expecta-

tions”: f⋆
t f

⋆
t+1yt+k = f⋆

t yt+k, where k ≥ 1.

Proof of Proposition B.3: The proof follows most directly from the equivalence of an agent’s

optimal expectations when n = 1 to those of conditional expectations based upon a Gaussian

prior, f⋆
t yt+k = E

[
yt+k | xt, yt, pβ

]
, where β ∼ N

(
0, c2

)
= pβ . Below, we outline a more

constructive proof. We structure the proof in two steps. The first step provides the proof for

n = 1. The second step shows that we can generalize this case to n ∈ Z+.

Step 1: The n = 1 case.

12



Consider the single variable case

yt+k = β1[k]x1t + ηt+k.

where we make it explicit that β1[k] pertains to the k−horizon forecast. Proposition 3 shows:

β̂⋆
1[k] =

∑
τ x

2
1τ(

β1[k]/σ[k]
)−2

+
∑

τ x
2
1τ

βls
1[k] =

(∑
τ

x21τ +
(
β1[k]/σ[k]

)−2

)−1(∑
τ

x1τyτ

)
, (A28)

which is part of the Tikhonov class of estimators. As a result, it solves the penalized L2 -problem:

β̂⋆
1[k] = argmin

β1[k]

(Y[k] −X[k]β1[k])
′(Y[k] −X[k]β1[k]) +

(
β1[k]/σ[k]

)−2
β2
1[k],

where

X[k] =
[
x11 x12 . . . x1t−k

]′
, Y[k] =

[
yk+1 yk+2 . . . yt

]′
.

We will show that we can also write this problem as the solution to a standard least-squares

problem. Hence, we will show that optimal expectations when n = 1 correspond to a type of

linear projection. To start, define

X⋆
[k] ≡

[ (
β1[k]/σ[k]

)−2

X[k]

]
, Y ⋆

[k] ≡

[
0

Y[k]

]
.

Then, β̂⋆
1[k] also solves the least-squares problem

β̂⋆
1[k] = argmin

β1[k]

(Y ⋆
[k] −X⋆

[k]β1[k])
′(Y ⋆

[k] −X⋆
[k]β1[k]).

But this means we can write the optimal expectation of the fundamental yt+k at time t as the

first out-of-sample prediction of the linear projection P of Y ⋆
[k] onto X⋆

[k], f
⋆
t yt+k = PX⋆

[k]
y⋆t+k. It

now follows from the Law of Iterated Projections (Brockwell and Davis, 1991) that

f⋆
t f

⋆
t+1yt+k = PX⋆

1:t[k]
PX⋆

1:t+1[k−1]
y⋆t+k = PX⋆

1:t[k]
y⋆t+k = f⋆

t yt+k,

where we use subscripts to also keep a track of the observations that forecasts are based on.

Step 2: The n ≥ 1 case.

The n = 1 case suffices to show the result for any n ∈ Z+. The reason is as follows.

To start, let zt be defined by the relationship

1× zt ≡ x′tβ[k]

so that we can re-state equation (2.2) as

yt+k = δ[k] × zt + ηt+k, δ[k] = 1. (A29)

13



We will now show that expectations based on (A29) are identical to those based on (2.2).

Consider the vector of fitted values X[k]β̂
⋆
[k] based upon equation (2.2) and information until

period-t, where X[k] =
[
x1 x2 . . . xn

]
. A few simple matrix derivations shows that

X[k]β̂
⋆
[k] = X[k]β[k]

(
m⋆

[k] +
β′
[k]X

′
[k]η

σ2
[k] + β′

[k]X
′
[k]X[k]β[k]

)
, (A30)

where we have used our results in Proposition 3. However, the expression in (A30) is identical

to the vector of fitted values Z[k]δ̂
⋆
[k], where Z[k] =

[
z1 z2 . . . zt−k

]′
:

Z[k]δ̂
⋆
[k] = X[k]β[k] × δ̂⋆[k] = X[k]β[k]

(
m⋆

[k] +
β′
[k]X

′
[k]η

σ2
[k] + β′

[k]X
′
[k]X[k]β[k]

)
= X[k]β̂

⋆
[k].

Because the entire vector of fitted values is the same, so too is the first out-of-sample predic-

tion, f⋆
t yt+k. We conclude that f⋆

t yt+k using (2.2) with n ∈ Z+ is identical to f⋆
t yt+k based upon

(A29) with n = 1 . The law of iterated expectations for n ∈ Z+ now follows from Step 1. □

14



C Empirics

C.1 Inflation Forecasts and Comparative Statics

Figure C.1: Inflation Forecast Accuracy Relative to Time Series Models

Panel a: Relative Root Mean-squared Error Panel b: Bias-variance Decomposition
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Note: Panel a illustrates the average relative root mean-squared error of one-quarter and four-quarter ahead
forecasts of year-over-year CPI inflation from the US Survey of Professional Forecasters (S) relative to four time
series models: AR1 denotes forecasts from an AR(1) model, NC forecasts from a (“no-change”) Random Walk,
SW forecasts from an optimally-chosen time-varying parameter ARIMA model, using the criteria from Stock
and Watson (2008), and BIC forecast from an ARIMA model chosen to minimize the BIC information criteria
associated with one-quarter ahead forecasts. The sample period is 1982Q3:2020Q1. A RRMSE ratio below one
indicates that SPF forecasts are more accurate. Panel b shows the decomposition of the model-implied root
mean-squared errors of four-quarter ahead forecasts into the bias component (Bias) and the standard deviation
of forecast errors (Std.) [see 2.3], and compares them to the survey data (Survey).
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Table C.1: Over- and Underreactions of Optimal Expectations and Inflation Data

Data Moments Model Moments
(1) (2) (3) (1) (2) (3)

Constant 0.24∗∗∗ – – 0.08 – –
(0.09) (–)

Average Revision – 1.04∗∗∗ – – 1.04 –
(0.22) (–)

Individual Revision – – -0.20∗∗ – – -0.36
(0.07) (–)

Observations 150 5,470 5,480 . . .

Note: The left-hand panel shows estimates from a regression of yt+k − fityt+k on respondents’ average- and
individual forecast revisions (I−1 ∑

i [fityt+k − fit−1yt+k] and fityt+k−fit−1yt+k), respectively. Columns (2) and
(3) include individual (respondent) fixed effects and we set k = 4. Double-clustered robust standard errors in
parentheses. Sample: 1982:Q3–2020:Q1. The right-hand panel shows model-implied moments. The estimates in
column (2) and (3) are identical to those in Kohlhas and Walther (2021) Table C.7 and Broer and Kohlhas (2022)
Table I. The accuracy of the model-implied forecasts and their bias can be seen from the right-two columns in
Figure C.2. ∗ p<.1, ∗∗ p<.05, ∗∗∗ p<.01.

Figure C.2: Optimal Expectations based on an AR(1) Process for Inflation

Survey AR(1) AR(1) + BGMS
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Note: The left-two columns show the root mean-squared error and bias component of four-quarter ahead forecasts
of year-over-year CPI inflation from the US Survey of Professional Forecasters (Survey). The sample period is
1982Q3:2020Q1. The middle-two columns (AR(1)) demonstrate the model-implied root mean-squared error and
bias component of four-quarter ahead optimal expectations of output growth, assuming that yt follows an AR(1)
with persistence ρ = 0.90, standard deviation of innovations ση = 0.60, and mean µ = 2.0. We further assume that
respondents base their forecasts on T = 14 observations of inflation. The parameters for the AR(1) process for
inflation are taken from Bordalo et al. (2020). The right-two columns (AR(1)+BGMS) show the model-implied
root mean-squared error and bias component of optimal expectations, assuming that respondents observe a noisy
signal of output growth, xit = yt+ ϵit, ϵit ∼ N

(
0, σ2

)
, where σx = 1.37, in each period instead of a perfect signal.

We calibrate σx using the same approach as in Section 4.2.
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Table C.2: Comparative Statics for Output Growth

Panel a: GARCH(1,1) for Output Shocks

Estimated Process
Past Error Past Vol.

GARCH(1,1) 0.48∗∗∗ 0.53∗∗∗

(0.15) (0.12)
Observations 188.0
LogLikelihood -242.8

Panel b: Accuracy and Shock Volatility

Rolling Mean-squared Error
(1) (2)

Garch(1,1) Volatility 1.83∗∗∗ 1.76∗∗∗

(0.12) (0.13)
Time control X ✓
Observations 188 188
F 465.5 234.1
R2 0.72 0.72

Note: Panel a estimates a GARCH (1,1) process for year-over-year output growth, assuming that the mean of
output growth follows an AR(1). Panel b shows the estimates from a linear regression of the h−quarter rolling
mean-squared error of one-year ahead SPF forecasts of output growth on the estimated GARCH(1,1)-volatility.
We set h = 15. The sample is: 1970:Q4-2020:Q1. The second column in Panel b controls for a linear time-trend.
Robust standard errors in parentheses. ∗ p<.1, ∗∗ p<.05, ∗∗∗ p<.01.

C.2 Details of Time-series Models

Time-series Models: The time-series models used in Figure 2 and Figure C.1 are as follows:

• Output : BIC selects an ARMA(1,3), SW is an ARMA(1,1) with time-varying parameters

as in Stock and Watson (2008), and NC corresponds to a Random Walk model. All models

are estimated on the full sample of observations.

• Inflation: BIC selects an ARMA(1,3), SW is an ARMA(1,1) with time-varying parameters

as in Stock and Watson (2008), and NC corresponds to a Random Walk model. All models

are estimated on the full sample of observations.

Note also that we in Figure 2, because of the serial dependence of yt, require a small change

in timing for (3.3) and (3.4) to be applicable to the AR(1) case. Specifically, we in this case

assume that the agent forms an estimate at time t based on yt. The agent then observes yt+k,

where k is large, and forms the forecast ft+kyt+1+k = β̂
(
yt
)
yt+k. This “behind the veil of

ignorance” assumption ensures that U = −1
2σ

2 − 1
2mse

[
β̂
(
yt
)]

σ2

1−β2 , so that the minimization

of the mean-squared error of β̂ is once more equivalent to the minimization of the mse. of ftyt+k.
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Noisy Information AR(1) Model: Agent i ∈ [0, 1] has the prior belief about yt,

yt ∼ N (Eit−1 [yt] , p) ,

where Eit−1 [yt] ≡ E
[
yt | xt−1

i2 , ω
]

evolves across time. At time t, the agent also observes

xi2t = yt + ϵit, ϵit ∼ WN
(
0, σ2

x2

)
,

where E [ϵitϵjs] = 0 for all j ̸= i and s ̸= t. We note that ω = {p, σx2, ρ}.
The time t expectation of yt conditional on agent i’s information satisfies the relationship:

Eit [yt] = γ1Eit−1 [yt] + γ2xi2t, γ1 = 1− γ2 =
p−2

p−2 + σ−2
x2

.

It follows that the time t expectation of yt+k equals

Eit [yt+k] = β0 + β1xi1t + β2xi2t = E [yt+k | xt, β] ,

where β0 =
∑k−1

j=0 ρ
j , β1 = ρkγ1, and β2 = ρkγ2. We therefore find that

yt+k = Eit [yt+k] + (yt+k − Eit [yt+k])

= β0 + β1xi1t + β2xi2t + ηit+k, ηit+k ∼ N
(
0, σ2

)
, (A31)

where σ2 can be written as a function of σ2
x1 ≡ ρ2kp+

∑k−1
j=1 ρ

2jσ2
η and σ2

x2.

C.3 Over- and Underreactions

Proof of Proposition 7: Because of the fixed shrinkage, we have that

f⋆
ityt+k = m⋆

[k]Eityt+k.

As a result, we have that individual errors and revisions equal

eit ≡ yt+k − f⋆
ityt+k =

(
1−m⋆

[k]

)
Eityt+k + (yt+k − Eityt+k) (A32)

rit ≡ f⋆
ityt+k − f⋆

it−1yt+k = m⋆
[k]Eityt+k −m⋆

[k+1]Eit−1yt+k. (A33)

Case i): σ−2
x2 → ∞. We have that β1 → 0 and β2 → ρk, and hence that f⋆

t yt+k = m⋆
[k]Etyt+k =

m⋆
[k]

(
β0 + ρkyt

)
. Using (A32) and (A33), we therefore find that

Cov (eit, rit) = (1−m⋆
[k])m

⋆
[k]ρ

2k

(
1−

m⋆
[k+1]

m⋆
[k]

ρ2

)
V [yt] ,
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which is positive if m⋆
[k+1] ∈

(
m⋆

[k], 1/ρ
2m⋆

[k]

)
.

Case ii): σ−2
x2 → 0. We have that β1 → ρk and β2 → 0, and hence that f⋆

t yt+k = m⋆
[k]Etyt+k =

m⋆
[k]

(
β0 + ρkxi1t

)
. Using (A32) and (A33), we therefore find

Cov (eit, rit) = (1−m⋆
[k])
(
m⋆

[k] −m⋆
[k+1]

)
V [Eit−1yt+k] ,

where Eit−1yt+k = β0 + ρkxi1t. We note that Cov (eit, rit) is negative if m⋆
[k+1] > m⋆

[k].

The proof is then completed by the fact that the slope coefficient in the regression studied in the

proposition is the (cross-sectional) average of the slope coefficients in the individual regressions

of eit on rit. The signs of the latter coefficients, in turn, depend only on sign {Cov (eit, rit)}. □
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D Applications

D.1 Properties of Optimal Expectations

Lemma D.1. Suppose an agent wishes to minimize her expectation f⋆
t [·] of

U = Q (ct, yt+k) , (A34)

where the function Q : R × Rp → R is a quadratic polynomial whose coefficients are in Ωt, ct

represents the agent’s choice variable, and yt+k ∈ Rp is a vector of (potentially random) variables.

Then,
∂

∂ct
f⋆
t [Q (ct, yt+k)] = f⋆

t

[
∂

∂ct
Q (ct, yt+k)

]
.

Proof of Lemma D.1: We have that

∂

∂ct
f⋆
t [Q (ct, yt+k)] = lim

h→0

1

h
{f⋆

t [Q (ct + h, yt+k)]− f⋆
t [Q (ct, yt+k)]}

= lim
h→0

f⋆
t

{
Q (ct + h, yt+k)−Q (ct, yt+k)

h

}
= lim

h→0
f⋆
t

{
∂

∂ct
Q (c̄(h), yt+k)

}
,

where c̄(h) ∈ (ct, ct + h) exists by the mean value theorem. The second line follows from the

linearity of the expectation operator. Furthermore, because Q is a quadratic polynomial:

lim
h→0

f⋆
t

{
∂

∂ct
Q (c̄(h), yt+k)

}
= lim

h→0
f⋆
t

{
α0 + α1c̄(h) + α′

2yt+k

}
,

where α0, α1, α2 ∈ Ωt and c̄(h) ∈ Ωt. Thus,

lim
h→0

f⋆
t

{
∂

∂ct
Q (c̄(h), yt+k)

}
= α0 + α1 lim

h→0
c̄(h) + α′

2f
⋆
t yt+k

= α0 + α1ct + α′
2f

⋆
t yt+k = f⋆

t

[
∂

∂ct
Q (ct, yt+k)

]
.

This completes the proof. □

D.2 Consumption and Expectation Choices

Stage 2: We start by solving the agent’s consumption-choice problem at t ≥ 1, assuming her

optimal expectations satisfy the Law of Iterated Expectations. The agent’s problem is

max
{ct+k}k

ft

[
T−t∑
k=0

δk−1u (ct+k)

]
s.t.

T−t∑
k=0

R−k (ct+k − yt+k) = at, (A35)

where a1 ≥ 0. Lemma 1 implies that we can use standard steps to show that

ct = ftct+1. (A36)
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Consider now the budget constraint
∑T−t

k=0 R
−k (ct+k − yt+k) = at. Recursively taking expecta-

tions fT−1 [·], fT−2 [·],..., ft [·] of this expression, using the LIE and (A36), shows that

ct

T−t∑
k=0

R−k = at + yt +

T−t∑
k=1

R−kftyt+k,

Hence, we conclude that

ct = θt

(
Rat + yt +

T−t∑
k=1

R−kftyt+k

)
= θt

(
Rat + yt +

T−t∑
k=1

λk−1R−kftyt+1

)
, (A37)

where θt ≡ 1−R−1

1−R−(T−t+1) and the second equality uses that ftyt+k = λk−1ftyt+1.

The agent’s assets are t ≥ 2 equal at = Rat−1 + yt−1 − ct−1.

Stage 1: We next turn to the agent’s expectation-formation problem. We start with a convenient

re-statement of the agent’s consumption-choice problem in the second stage. Let L(c) denote the

Lagrangian associated with (A35) in the initial period, and denote the corresponding perfect-

foresight version with L⋆ (c). Thus, L(c) = f1L⋆ (c) . Finally, let c⋆ denote the solution to the

perfect-foresight problem.

Notice that because the utility function u(·) is assumed quadratic, we have that

L⋆ (c) = L⋆ (c⋆) +
∂L⋆

∂c

′

|c=c⋆
(c− c⋆) +

1

2
(c− c⋆)′

∂2L⋆

∂c2 |c=c⋆
(c− c⋆)

= L⋆ (c⋆) +
1

2
(c− c⋆)′

∂2L⋆

∂c2 |c=c⋆
(c− c⋆)

= L⋆ (c⋆) +
1

2
u′′
∑
t

δt−1 (ct − c⋆t )
2 , (A38)

where u′′ < 0 and constant. We can therefore re-cast the agent’s consumption problem in the

initial period as choosing {ct} to minimize the agent’s expected value of
∑

t δ
t−1 (ct − c⋆t )

2.

We can now use this re-cast consumption-problem to solve for the agent’s optimal expecta-

tions. It follows from (A37) and (A38) that the agent will choose {ft [·]} to minimize

E
∑
t

δt−1 (ct − c⋆t )
2 = E

∑
t

δt−1η2t

[
T−t∑
k=1

R−k (ftyt+k − yt+k)

]2

= E
∑
t

δt−1η2t

[
T−t∑
k=1

R−kλk−1 (ftyt+1 − yt+1) + shockst+1:T

]2
,

where shockst+1:T denote terms related to shocks from t+1 onwards, uncorrelated with period-t

information. Thus, the agent will choose ft [·] to minimize
∑

t δ
t−1η2t

(∑T−t
k=1 R

−kλk−1
)2

E
[
(ftyt+1 − yt+1)

2
]
.

That is, the agent will choose ft [·] to minimize the one-period ahead mse of her income forecast,

E
[
(yt+1 − ftyt+1)

2
]
.
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We conclude that {ftyt+1} = {f⋆
t yt+1}, and that the agent’s expectations satisfy the LIE.

D.3 Consumption Implications

Proof of Corollary 1: The myopia of consumption choices and the predictability of consump-

tion changes follow from discussions in the main text. The average level of consumption for

t = 1, 2, .., τ, ...T conditional on x1t = µx > 0 and a1 ≥ 0 is, using (A37) and the equation of

motion for at:5

t = 1 :

µc,1 ≡ E
[
c1 | x11 = µx

]
= θ1

(
Ra1 + β1µx +

T−1∑
k=1

R−k ×m⋆
1β1µx

)

=
1−R−1

1−R−T

[
Ra1 +

(
1 +

R−1 −R−T

1−R−1
m⋆

1

)
β1µx

]
(A39)

µa,2 ≡ E
[
a2 | x11 = µx

]
= Ra1 + β1µx − µc,1 (A40)

t = 2 :

µc,2 =
1−R−1

1−R−(T−1)

[
Rµa,2 +

(
1 +

R−1 −R−(T−1)

1−R−1
m⋆

2

)
β1µx

]
(A41)

µa,3 = Rµa,2 + β1µx − µc,2 (A42)

...

t = τ :

µc,τ =
1−R−1

1−R−(T−t+1)

[
Rµa,τ +

(
1 +

R−1 −R−(T−τ+1)

1−R−1
m⋆

τ

)
β1µx

]
(A43)

µa,τ+1 = Rµa,τ + β1µx − µc,τ . (A44)

Notice that if m⋆
t = 1, as in the fully-informed case, then µc,t in (A39) to (A43) is constant

across time. By contrast, because of the uncertainty about the best use of information, in our

case, m⋆
t ∈ (0, 1) and increasing in t (Section 3.4). This makes µt,c in (A43) smaller than its

informed value for low t and increasing with time. The latter in part also due to assets in (A44)

initially being higher than in the informed case. Finally, notice that the average expectation

in the noisy-information case, E
{
E [yt+1 | Ωt] | xt1 = µx

}
, where Ωt =

{
yt, β1

}
, is equal to the

fully-informed value β1µx. This follows from the LIE. □

Proof of Corollary 2: Consider the consumption response to a productivity shock at date t,

and imagine that we increase x1t by ϵ > 0. All other shocks are kept at their mean values, and
5Recall that we assume that the household observes (x0, y1) and (x−1, y0) in the initial period, so that the

household can construct an estimate of β1 in period t = 1.
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we fix β̂⋆
1 = m⋆

tβ1. From equation (A37), we have for τ ≥ t :

cτ = θτ
(
Raτ + β1 × λτ−tϵ+ γτ × β1m

⋆
tλ

τ−t+1ϵ
)

aτ+1 = Raτ + β1 × λτ−tϵ− cτ ,

where γτ ≡
∑T−τ

k=1 λk−1R−k and at = a1 ≥ 0. Notice that the consumption response is initially

smaller than under full-information, where m⋆
t = 1. It is also more persistent, due to the larger

initial accumulation of assets aτ+1 with R ≥ 1, which feed into future consumption cτ+k. The

final result in the statement follows from the increase of m⋆
t in x21t in (3.8). □

Proof of Corollary 3: Consider the expected value of ct in (A37) when xt−1 = xt = µx > 0,

at = a1 ≥ 0, and we fix β̂⋆
1 = m⋆

tβ1. The result then follows from the decrease of m⋆
t in σ in

(3.8). □

D.4 Other Models of Income Expectations

Suppose household income at time t+ k follows:

yt+k = β1x1t + β2x2t + ηt+k, ηt+k ∼ N (0, 1) , (A45)

where x1t ∼ N
(
0, σ2

1

)
and x2t = σ12x1t + u2t with u2t ∼ N

(
0, σ2

2

)
independent of x1t.

Figure D.1 shows the effects of expected own- and cross-information on a household’s caution

choice m⋆ and marginal propensity to consume out of permanent income.

Figure D.1: Comparative Statics of Own- and Cross-information Effects
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Note: The figure illustrates the effects of expected own- and cross- information on a household’s caution choice
and marginal propensity to consume (MPC) out of permanent income (Section 5.2). Throughout, we set T = 20,
t = 13 σ = σ2 = 1, β1 = β2 = 0.50, and let R = 1. The left-hand panel varies σ1 to attain the desired
own-information term, letting σ12 = 0. The right-hand panel, by contrast, varies σ12 to achieve the desired
cross-information term, letting σ1 = σ2.
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D.5 Optimal Sticky Prices and Monetary Policy

We proceed with a model of monetary policy in the spirit of Maćkowiak and Wiederholt (2009).

The economy is comprised of a continuum of measure one of firms, indexed by i ∈ [0, 1]. At the

start of every period t = 1, 2, . . . each firm sets the price of its own good Pit, so as to maximize

its optimal expectation of the discounted sum of profits

∞∑
τ=t

δτ−tπ (Piτ , Pτ , Qτ , Zτ ) , (A46)

where δ ∈ (0, 1), Pt ≡ exp
∫ 1
0 logPitdi denotes the economy-wide price index, Qt aggregate

output, and Zt firm productivity. We assume that the profit function π is twice continuously

differentiable and homogenous of degree zero in its first two arguments. We further assume that

π is single-peaked in Pit. These assumptions are, for example, satisfied by the standard model of

monopolistic competition. Firm productivity evolves in accordance with log (Zt) ∼ N
(
µz, σ

2
z

)
and is known to firms at the start of each period. Turning to the demand side of the economy,

the central bank sets nominal demand Mt = PtQt so that

log (Mt) = β1 log (Mt−1) + ηt, ηt ∼ N
(
0, σ2

)
, (A47)

where β1 ∈ (0, 1), E [ηtηs] = 0 for all t ̸= s, and E [ηt logZs] = 0 for all t and s. Nominal

demand is determined after firms set prices for the period. Firms’ information set at time t is

therefore Ωt =
{
logMt−1, logZt;π(·), σ

}
. We note that firms do not know the true value of

β1. Finally, to close the model, we assume that firms choose how to form expectations ex ante,

before the realization of any shocks, consistent with (1). Firms then in each period form optimal

expectations and set prices based on the information that realizes.

A few simple derivations show that this economy is nested within our framework. Let vt

denote the log-deviation of the random variable Vt from its non-stochastic value. Identical steps

to those in Maćkowiak and Wiederholt (2009) then show that a second-order approximation of a

firm’s profit function allows one to re-state a firm’s pricing problem as maximizing −1
2f

⋆
t (pit−p⋆t )

2

with respect to pit (see the proof of Corollary D.1), where p⋆t = p⋆it denotes the flexible FIRE

price:

p⋆t = µt +
π14
π13

zt, µt ≡ log (Mt) . (A48)

A firm’s optimal price pit therefore equals its optimal expectation of p⋆t :

pit = f⋆
t [p

⋆
t ] = f⋆

t

[
µt | µt−1

]
+

π14
π13

zt = β̂⋆
1µt−1 +

π14
π13

zt ∀i, (A49)

where β̂⋆
1 is given by Proposition 3.6 Lastly, because second-order profits depend only on the

squared distance between a firm’s price and its FIRE value, we can write a firm’s ex ante
6Notice that we deal with the AR(1) structure of (A47) in the same manner as in Section 4.
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Figure D.2: Impulse Response Functions to a Monetary Policy Shock
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The figure depicts the median impulse response of output qt (left panel) and the price level pt (right panel) in
response to a one standard deviation increase in nominal demand µt. The yellow lines indicate responses for
an economy in which firms form optimal expectations; the blue lines an economy in which firms form FIRE
expectations; and lastly the red lines an economy in which firms use (adj.) least-squares to construct their
expectations. Because the latter is unbiased, the red and blue lines are (close to) identical. To parameterize the
economy, we set π14

|π13
= −0.15, β = 0.60, σ = 1, and T = 10. The parameters that determine the curvature of firms’

profit function are taken from Maćkowiak and Wiederholt (2009). The number of observations T corresponds to
double the average age of a firm in the latest round of the BDS survey.

expectation problem as maximizing −1
2E(p

⋆
t − ftp

⋆
t )

2 = −1
2E(µt − ftµt)

2 with respect to ftµt.

We conclude that a firm’s problem is nested within our framework with yt+k = µt and x1t = µt−1.

The following is then a consequence of Proposition 3 and 5:

Corollary D.1. In response to a monetary policy shock ηt, the price level pt+k, on average,

adjusts by less than one-for-one, and monetary policy has real effects on output qt+k for k ≥ 0.

Furthermore, monetary policy has smaller effects after large movements in µt.

That monetary policy has real effects at time t is just a consequence of the assumption of

one-period ahead preset prices. What is interesting is that the real effects of monetary policy

persist for future periods t + k. This is because firms optimally down-weigh their responses to

new information about nominal demand µt. Prices, on average, do not fully adjust in response

to changes in nominal demand even after firms are allowed to reset their prices. Monetary policy

as a consequence has protracted real effects (Figure D.2).

The results in Corollary D.1 closely resemble those in Lucas (1972), Woodford (2002), Nimark

(2008), Maćkowiak and Wiederholt (2009), and Angeletos et al. (2016), among others, where

monetary policy has protracted real effects because firms observe noisy information. Similar to

such models, monetary policy has real effects because firms do not fully update their expectations

and hence prices. However, Corollary D.1 and (A49) also demonstrate important differences from

models in which noisy information is the underlying cause of price stickiness.

First, unlike in, for example, Woodford (2002), the real effects of monetary policy are history-
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Figure D.3: History-dependent Responses to a Monetary Policy Shock
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The figure depicts the median impulse response of output qt (left panel) in response to a one standard deviation
increase in nominal demand µt when firms form optimal expectations in accordance with (A49). We depict this
impulse response in two cases: (i) in which the economy only experiences average (“normal”) realizations of µt;
and (ii) in which the economy always experiences a one standard deviation decline in µt in the final two periods
before the increase in nominal demand (“recession”). The right panel depicts the 1 and 99 percentile realizations
of the impulse response function in the “normal” case across different simulations of the history of observations
before the monetary impulse. All parameters are set to the same values as those in Figure D.2.

dependent. The precise realization of the fundamental µt matters for firms’ implied caution

choices, and hence for how much firms choose to down-weigh their responses on average (Propo-

sition 3; equation A49). Figure D.3 depicts the range of outcomes that can arise after an increase

in nominal demand for a simple calibration of the model. Notice that, while monetary policy

has positive real effects on average, the range of outcomes is sizable. Further, similar to the

empirical results in Lucas (1973), monetary policy has smaller real effects in economies that

have experienced more volatile fundamentals. This is because firms’ prices in these economies

are more flexible; firms are on average more responsive to new information, and hence adjust

their prices by more in reaction to shocks. Indeed, through the lens of our equivalence result in

Proposition 6, it as as-if firms pay “more attention” after large shocks.

Second, this history-dependence can also help explain facets of the data that seem at odds

with simple noisy information models of price stickiness. For example, Vavra (2014) and Tenreyro

and Thwaites (2016) document that monetary policy has had smaller effects in recessions over

the past 50 years than expansions, because prices are here more flexible. This is inconsistent

with simple noisy information models of price stickiness, where monetary policy has identical

effects in normal and recession times. Combined with the skew in output growth that has existed

over the past 50 years (most large changes in output have occurred during recessions; Veldkamp,

2005), the above model can however be consistent with this evidence.

Figure D.3 shows the impulse response of output to a one standard deviation increase in

nominal demand when firms have lived for ten years (c. double the average age of a firm in the

US BDS firm census). We contrast an economy which has only experienced median realizations

of µt with one that in the final two periods before the increase in nominal demand experiences a
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one standard deviation fall in µt and hence output. Consistent with the findings of Vavra (2014)

and Tenreyro and Thwaites (2016), we find that monetary policy, on average, has smaller effects

on the economy that experiences the recession.

Proof of Corollary D.1: Let π̃ denote the second-order approximation of a firm’s profit

function around the origin,

π̃ (pit, pt, qt, zt) = π1pit +
π11
2

p2it + π12pitpt + π13pityt + π14pitzt + t.u.p., (A50)

where t.u.p. denotes terms unrelated to pit.

It follows that a firm’s full information (FIRE) flex-price choice satisfies

p⋆it = p⋆t +
π13

| π11 |
qt +

π14
| π11 |

zt =

(
1− π13

| π11 |

)
p⋆t +

π13
| π11 |

µt +
π14

| π11 |
zt,

so that in a symmetric equilibrium

p⋆t = µt +
π14
π13

zt. (A51)

We can furthermore use (A50) to derive an approximation of the difference between a firm’s

valuation of its profits πit and those that would have arisen under full information and flexible

prices π⋆
it :

π̃it − π̃⋆
it =

π11
2

p2it −
π11
2

(p⋆it)
2 + (π12pt + π13yt + π14zt)|⋆ (pit − p⋆t )

=
π11
2

p2it −
π11
2

(p⋆it)
2 − (π11p

⋆
t ) (pit − p⋆t ) =

π11
2

(pit − p⋆t )
2 , (A52)

where the second equality exploits the first-order condition to the firm’s profit maximization

problem in (A50) under full information and flexible prices. Finally, it follows from (A52) that

a firm’s optimal price equals

pit = pt = f⋆
t [p

⋆
t ] , (A53)

where (A52) allows us to characterize a firm’s second-stage problem minpit f
⋆
t (pit − p⋆t )

2. The

statement now follows from an application of Proposition 3 and 5 to (A53) and (A51). □
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