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Abstract In this paper we treat an individual’s health as a continuous variable, in
contrast to the traditional literature on income insurance, where it is assumed that
the individual is either able or unable to work. A continuous treatment of an individ-
ual’s health sheds new light on the role of income insurance and makes it possible to
capture a number of real-world phenomena that are not easily captured in the tradi-
tional, dichotomous models. In particular, we show that moral hazard is not neces-
sarily outright fraud, but a gradual adjustment of the willingness to work, depending
on preferences and the conditions stated in the insurance contract. Further, the model
can easily encompass phenomena such as administrative rejection of claims, and it
clarifies the conditions for the desirability of insurance in the first place.

Keywords Moral hazard - Disability insurance - Sick pay - Work absence - Tax
wedge

JEL Classification G22 - H53 - 138 - J21

1 Introduction

The health state of an individual is most realistically regarded as a continuous phe-
nomenon. Nevertheless, the academic literature on sick-pay insurance is based on
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a dichotomous view of health. In particular, in the large literature that follows the
seminal paper by Diamond and Mirrlees (1978) it is simply assumed that health is
dichotomous: the individual is either able or unable to work.! Moral hazard then
occurs when perfectly healthy individuals pretend to be unable to work, hence mim-
icking individuals who are unable to work. In the real world, however, such fraud is
not the most important form of moral hazard. Rather, like health itself moral hazard is
basically a gradual phenomenon, reflecting the everyday observation that individuals
who feel more discomfort from work than usual, apply for and receive benefits with-
out actually being unable to work. Moreover, an individual’s decision to call in sick
does not depend only on his health, but also on his preferences for leisure, as well as
on other aspects of his private life. These variables are also continuous in nature.

For these reasons, important aspects of income insurance are lost in a dichotomous
approach. One such aspect is how individuals adjust their labor supply to gradual vari-
ations in their health status as well as to gradual changes in the rules of the insurance
contract. Another is the insight that some moral hazard is unavoidable in an opti-
mum insurance contract if the individual’s health is only imperfectly observable by
the insurer. To make the analysis of the consequences of income insurance realistic
we therefore treat the individual’s ability and willingness to work as a continuous
variable. However, our results do not depend on continuity per se. The results could
alternatively be derived by treating health as a discrete variable with a large number of
realizations for which the individual would, in principle, be able to work—although
the pain of doing so would vary between the states. However, a continuous treatment
of health is more analytically convenient.

Insurance contracts are quite simple in the real world. They are characterized by
four parameters: a premium (usually, a fixed proportion of income), a benefit (also a
fixed proportion of income), a criterion for eligibility, and an administrative proce-
dure for deciding whether an individual’s benefit claim should be accepted or not. In
theory, one could conceive of much more complex contracts, where both the insur-
ance premium and the benefits are non-linear (and possibly random) functions of an
observable variable such as age and/or income.” In this paper, we do not discuss such
hypothetical systems.

While the bulk of the literature has followed the dichotomous approach, there are
a few insurance models with a continuous representation of an individual’s health—
although these studies deal with specific policy issues. In particular, Diamond and
Sheshinski (1995) use a continuous approach when allowing a subgroup of retirees
to replace their normal old-age pension with a more generous disability pension.’

IFor expositions of the traditional dichotomous approach to insurance theory, see Rees (1989), Rees and
Wambach (2008) and Zweifel (2007). Whinston (1983) and Golosov and Tsyvinski (2006) have elaborated
on the Diamond-Mirrlees model in various ways.

2The general, non-linear income tax system of Mirrlees (1971) may be interpreted as an insurance sys-
tem, where the insurer has information about the individual’s income, but not about the realization of his
productivity.

3Diamond (2003, Chap. 6) also uses a continuous approach to analyze the design of optimal retirement
incentives. Moreover, Engstrom and Holmlund (2007) use a continuous representation of the individual’s
health when asking whether the benefit levels in unemployment and sick-pay insurance should differ or be
the same. Outside the insurance literature, there are several papers on absence from work using a utility
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We analyze a different set of questions: the consequences for aggregate labor supply
when insurance is introduced, the distinction between moral hazard and tax wedges,
and whether insurance is desirable for risk-averse individuals in the first place. We
express our results in the form of “propositions” only when our conclusions differ
from, or add to, results in the previous literature.

2 The basic model

Like Diamond and Sheshinski (1995) and Diamond (2003), we write the individual’s
utility in the simplest possible way:

u = u(cW) 46 when working €))

ut = u(cA) when absent from work, 2)

where u/(-) > 0 and u”(-) <0, and where 6 is a random variable with a distribution
function F'(6). We regard 6 as an expression for an individual’s willingness and abil-
ity to work (i.e., the disutility of work), which depends on factors such as his health,
work environment and available leisure activities.

It should be pointed out that all our results do not depend on continuity per se.
Formally, some of our results could be derived also in a situation with two health
states for which the individual would in principle be able to work, although the pain
of doing so might be considerable.* However, this does not hold for the effects on
labor supply which is necessarily affected in our continuous model, but which may
be unaffected in a dichotomous model. Since health in reality is continuous, a model
like ours highlights the individual’s adjustment to gradual variations in his health
status. In addition, it turns out that a continuous treatment of the individual’s health
is analytically convenient.

One purpose of our paper is to analyze the determinants of sickness absence—in
contrast to the traditional literature, where absence is exogenously given by the frac-
tion of the population that has experienced the least favorable of the two possible
health outcomes. However, we also discuss moral hazard and the desirability of in-
surance in the first place. We want to avoid complications that distract us from these
purposes. Therefore, we make a number of strategic simplifications. First, the analy-
sis is static, rather than dynamic. This means that we abstract from saving. Second,
we assume additive separability in the utility function, as specified by (1), although
we discuss the implications of dropping this assumption in some cases.> Third, while

function with a continuous index variable reflecting the individual’s health status; see the survey by Brown
and Sessions (1996).

4The traditional, dichotomous framework means that 6 can take only two values, one of which is so
negative (for instance, —oo) that the individual is completely unable to work.

SThere is a literature on how the marginal utility of consumption is influenced by the individual’s health;
see for instance Kremslehner and Muermann (2009) and Finkelstein et al. (2009). This literature often
asserts that the cross derivative u.g is positive. However, it could well be argued that the cross derivative
is negative. It is true that if you are sick, your marginal utility of many consumption goods (food, cars,
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the disutility of work is represented by the continuous variable 6, labor supply is for-
mally analyzed at the extensive margin, as usual in the literature on income insurance.
One rationale for this simplification is that the extensive margin is particularly rele-
vant when studying income insurance which mainly pays benefits to individuals who
do not work at all. However, it is straightforward (but tedious) to work out the model
for the case of part-time work and part-time income insurance. These simplifying
assumptions may be worth relaxing in future work.

In the absence of insurance, the individual’s utility may be written as u" = u(1) +
6 when working, with the wage rate normalized to unity, and u® = u(0) when absent
from work.® The cut-off point at which he is indifferent between work and non-work
is obtained by setting #" = u4 and yields

05 =u(0) —u(l) <0. 3)

Hence, in a world without insurance, the individual stays at home for all realizations
6 < 65 and goes to work otherwise.” Although our model formally deals with labor
supply at the extensive margin, we may interpret F(6;) as the frequency of absence
from work. Thus, the analysis also covers labor supply at the intensive margin. Intu-
itively speaking, while the individual during a specific day can only be wholly present
at, or wholly absent from, work, his total absence during a year can be expressed as
the continuous quantity F ().

Let us now introduce insurance into the model. At an abstract level, insurance can
be defined as a contract conditioning a payment ¥ on a random event s. For some
values of s, the individual pays money to the insurer (i.e., ¥ (s) is negative, called
a “premium”) while for other values, the insurer pays money to the individual (i.e.,
¥ (s) is positive, called a “benefit”). The individual’s utility is uV =u(+ v(s))+6
for values of ¥ (s) and 6 that induce the individual to work. The utility is u? =
u(y(s)) for all other values of ¥ (s) and 8. The optimal insurance system can be
found by maximizing expected utility with respect to 1 (s), subject to a zero-profit
constraint for the insurer.

We derive the optimal insurance system under alternative assumptions about the
information structure of the model. In one case, we assume that 0 is fully observable,
i.e., s = 6. In another case, we assume that 6 is completely unobservable for the
insurer. There is also the intermediate (and most realistic) case, where 6 is partly
observable, i.e., where the payment ¢ is conditioned on a noisy signal s =6 + ¢.
The paper is organized around these three cases.

We interpret our model as describing the behavior of a large number of ex ante
identical individuals, each with an i.i.d. stochastic taste parameter 8 drawn from a

vacation trips) is low. But on the other hand, your marginal utility of certain other consumption goods might
be very high. Obvious examples are nursing services, medical equipment, wheelchairs, etc. It should also
be noticed that in contrast to this literature, the stochastic variable € in our model enters the utility function
only when the individual works; when he chooses not to work, his utility function is u(c).

SHere, the “zero” does not necessarily mean that the individual is subject to starvation when not working.
He may have other resources than labor income to support himself; these are suppressed in the notation
u(-).

7Dropping additive separability, we have u(c, 6). Instead of (3), the cut-off is then given by u(l, 96‘ )=
u(0, 0). Provided that u(c, 8) is monotone in both arguments, the solution 96" < 0 is unique.
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distribution F(9). According to this interpretation, individuals differ ex post, i.e., after
the realization of the stochastic taste parameters. One can interpret our model either
as a model of a competitive insurance market where individuals freely can choose
to be insured, or as a model of social insurance, where a benevolent government
maximizes social welfare. As we assume an ex ante-homogeneous population, these
two interpretations are equivalent.

3 Insurance under full observability
3.1 Optimal insurance

Although basically unrealistic, the case of full observability yields some basic in-
sights about income insurance. Let W denote the set of realizations of 6 for which
the individual chooses to work, given the insurance system 1. We assume that the
insurance contract is conditioned on both the observable 6 and the individual’s (also
observable) work decision L = 0, 1. We thus have (6, L), and we will show that
under full observability, such a contract is equivalent to one conditioned on 6 only,
¥ (0). While W is the set of realizations of 6 for which the individual prefers working
to living on benefits, A is the set of realizations of 6 for which the individual prefers
to be absent from work (living on benefits):

W={0u(1+v©0, D) +6 >u(¥®,0)}
A={0u(1+vy©.1)+60 <u(y®,0)}.

Note that these sets depend on the insurance system; if ¢ (6, L) changes, then W and
A will in general also change. The optimal insurance system is found by maximizing
expected utility subject to the insurer’s budget constraint. The Lagrangian thus is

L=/ [u(1+1/f(9,1))+9]dF(0)+fu(w(e,O))dF(e)
w A

—A[/ w(G,l)dF(9)+/1#(9,0)dF(9)i|. 4)
w A

In the case of an interior solution ¥ (6, L) # 0, the first-order conditions are

W(1+y©O,1))=1 VoeW, S
)
W' (Y(0,0) =1, V6eA. (

Since these conditions imply 1 + ¥ (8, 1) = (0, 0), the optimal contract implies
full insurance—a well-known property of optimal insurance under full observability.
The first-order conditions also imply that the payments are independent of 6 both
when L = 1 and when L = 0. Hence, both ¥ (8, 1) and (0, 0) are constants which
we denote

v@, )=—p, VOeW; ¢(©0,00=b, V0cA.
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The optimal insurance contract, characterized by (5), is incentive-compatible by def-
inition, since it has been derived from the sets W and A. The reason is that these
sets define the values of 0 for which the individual chooses to work, and be absent
from work, respectively. As a result, we can drop the second argument in the v (6, L)
function and write the insurance system as 1 (6).

Under full observability, the optimal insurance system thus implies a constant pre-
mium p and a constant benefit b.8 There is also a value of 6, denoted by 0 , at and
below which the individual receives b, and above which he pays p: ¥ () = —p for
6 >0 and (@) =>bford < 6. The optimal insurance contract may thus be written as
atriplet (pr, br, 6r), where the subscript denotes full observability. O is the critical
value of 6 below which a benefit b is received, and above which a premium pr is
paid.

With this insight, the Lagrangian (4) may be written

=(1-F@©®) - [u( —p)+E(010 > 0)]+ F@) - ub)
A-[(1=F@)-p—F@) b (6)

The solution to the optimization is surprisingly simple:

pr=F@r), (7
bp=1— F@F), (®)
Op = —r=—u'(1 - F(0p)). 9)

The system (7)—(9) is recursive. Since the right-hand side of (9) is monotonically
decreasing in 6r, it has a unique solution. Inserting this solution into (7) and (8), we
obtain closed-form expressions for pr and br. From (9) we see that the number of
people not working under the optimal insurance system depends on preferences u(-)
and the distribution function F (-)—in contrast to the traditional, dichotomous model,
where the number of people not working is simply the number of people who have
experienced the less favorable of the two health states.

In the following, we emphasize two questions. One is whether insurance is desir-
able, and the other is how the individual’s labor supply is affected by insurance.

3.2 Is insurance desirable?

In the literature on income insurance, it is usually claimed that insurance is always
desirable (abstracting from administration costs) if the utility function is concave.
However, in our analytical framework, insurance may not be desirable even if the
representative individual is risk-averse. Whether or not insurance is desirable depends
on the utility function u(-) and on the distribution function F(-).

We define the lower and upper support of the distribution as Oower = inf(0| f (6) >
0) and Oupper = sup(8| £ (8) > 0), and we have

8With a non-separable utility function u(1 + (0, 1), ) when working and u (v (6, 0), 0) when not work-
ing, the optimal benefit under full observability should still be independent of & while the optimal premium
should vary with 6.
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Proposition 1 Assuming a concave consumption utility function, and abstracting
from administrative costs, the equation system (7)—(9) has an interior solution pr >
0, br > 0 if and only if the two following conditions are satisfied:

() eupper > —u'(0)
(i) Olower < _M/(l).

In other words, insurance is desirable if and only if the distribution of 0 is such that
there is a positive mass between the points —u’ (0) and —u’(1).

Proof See Appendix A. O

Thus, concavity of the utility function is not sufficient for insurance to be desirable.
If conditions (i) and (ii) in the proposition are not satisfied, the individual will not
demand insurance in a competitive market, and there is no reason for a benevolent
planner who respects the individual’s preferences to introduce a compulsory social
insurance.’

The basic intuition behind the proposition is that the individual chooses to be in-
sured only if the pain relief (i.e., the possibility to avoid all realizations 6 < 6r) is
greater than the loss of consumption utility u’(1 — pr) when paying the contribution.
This happens only if the worst possible outcome is sufficiently bad to make it worth-
while to insure against it. Thus the pain of going to work (fjower) has to be greater
than loss of consumption utility, u’(1), when paying an arbitrarily small premium.
Similarly, insurance can be financed only if the best possible outcome (Bypper) is suf-
ficiently large, so that the individual will work at least some time with insurance. This
happens only if Gypper > —u’(0), when receiving an arbitrarily small benefit.

One might be tempted to argue that these conditions for insurance to be desirable
are trivial. For instance, one may think that an individual who never stays home from
work in the absence of insurance does not need insurance. However, this would be
an incorrect inference. The case for insurance does not depend on the individual’s
behavior in the absence of insurance, but on the new possibilities that arise if insur-
ance is introduced. An individual who never stays home in the absence of insurance
may nevertheless be interested in insurance. The reason is that he can then afford to
stay home in the case of relatively unfavorable health states (relatively low realiza-
tions of #). Proposition 1 says that it is not the cut-off point ; that is relevant for his
willingness to be insured, but the marginal utilities u’(1) and u’(0).

One might also be tempted to assume that Ooyer in reality is extremely low—
possibly, minus infinity. If that were the case, condition (ii) in Proposition 1 would
be trivially satisfied in reality, and the individual would always buy insurance. But

9There are some similar results concerning the desirability of insurance in other strands of the literature. In
the case of sick care insurance, assuming a dichotomous distribution of health, Stronmenger and Wambach
(2000) analyze whether there exists some probability of sickness for which such insurance is not desirable,
and show that an individual with concave consumption utility may abstain from buying insurance. More-
over, in the case of insurance of irreplaceable commodities (such as family heirloom, and the like) Cook
and Graham (1977) point out the possibility that an individual may choose not to buy insurance. That
result is driven by the assumption that money cannot compensate for irreplaceable losses (i.e., that there is
a cross derivative u.g > 0).
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this assumption is not necessarily true. The reason is that 6 does not reflect the in-
dividual’s health situation in general, but the extra discomfort from working rather
than staying home. Thus 6jyer could in reality take a wide range of different values
between zero and minus infinity. Therefore, condition (ii) is not trivially satisfied in
reality.

Proposition 1 may explain the empirical observation that individuals in poor coun-
tries often are not insured. To clarify this issue, let us for the moment drop the
simplification that the wage rate is identically equal to unity. With a general wage
rate w, condition (ii) in Proposition 1 should be written Gigwer < —u’(w). Assume
that there are two societies with identical health distributions and identical prefer-
ences, but with different wage rates w; and w;, where wi > wj. Assume also that
—u'(w2) < Blower < —u'(w1). By Proposition 1, the representative individual in soci-
ety 1 (the rich country) will find insurance desirable, while the representative individ-
ual in society 2 (the poor country) will not. Heuristically, the same argument explains
why poor groups of citizens in Western countries tend to be uninsured in the absence
of mandatory insurance, while middle- and high-income groups tend to be insured.
In our model, low-income earners will remain uninsured.

So far, we have abstracted from differences in risk across individuals. By contrast,
the traditional insurance literature has studied the consequences of such differences,
but have abstracted from differences in income.'? The prediction from that literature
is that high-risk individuals want buy insurance while low-risk individuals do not (ad-
verse selection). Let us now combine income and risk differences, and realistically
assume that low-income groups are more exposed to health risks than others. Then
there are two counteracting influences on the demand for insurance across socio-
economic groups. Since low-income earners have a higher marginal utility of con-
sumption, they tend to be uninsured (by Proposition 1). But since they are exposed
to higher risk, they are more interested than other groups in being insured. Which of
these counteracting effects that dominates is an empirical question. Since in reality
low-income earners are more often uninsured than high-income earners, it seems as
if differences in income (via the influence of the marginal utility of consumption)
dominate over differences in risk.

3.3 The effect of insurance on labor supply

One might think that the introduction of insurance makes the individual more picky,
so that he stays home also for moderately bad realizations of 6. However, this in-
tuition does not necessarily hold under full observability. Without insurance, the in-
dividual’s absence rate is F' (Gg), while with insurance, it is F (ép). If éF > 0(’)‘, the
introduction of insurance would make the individual work less on average, and if
0 r < 6%, he would work more. We have

Proposition 2 Under full observability, the effect on aggregate labor supply of intro-
ducing insurance is ambiguous.

10¢f. Rothschild and Stiglitz (1976).
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Proof By (3) and (9), Op > 6, if and only if —u'[1 — F(bp)] > u(0) — u(l), where
OF is the solution to (9). Since 0 < 1 — F(fF) < 1, the derivative —u/[1 — F(0p)]
might be either larger or smaller than the difference u(0) — u(1). Thus, we cannot
say whether labor supply increases or decreases if optimal insurance is introduced. [

The intuition why the introduction of insurance has an ambiguous effect is that un-
der full observability, the effect on labor supply is the result of an exogenous change
in the individual’s income. This change could be either positive (b) or negative (—p),
depending on the realization of 6 relative to the optimal cut-offs OF and 6. With
a positive income change, the individual would prefer more pain relief, hence re-
ducing labor supply. With a negative change, he would opt for less pain relief and
accordingly increase his labor supply. Which effect dominates depends on the utility
function and the distribution of 6. In Appendix B we clarify the conditions under
which the income change is positive or negative.

Thus, insurance causes a behavioral adjustment even in the case of full observabil-
ity of 8 although, as we have seen, the direction of the adjustment is undetermined.
Since no asymmetric information is involved, this behavioral adjustment cannot be
interpreted as moral hazard; it is the effect of lump-sum change in income.

Thus, already in the case of full observability, several properties of income in-
surance stand out that deviate from the traditional, dichotomous approach. First, al-
though there is no moral hazard and no tax wedge, labor supply will change when
optimal insurance is introduced. Second, it is possible to derive intuitively plausible
conditions (in addition to concavity) for insurance to be desirable.

4 Insurance under non-observability
4.1 A baseline case

Let us now turn to the other polar case, namely when the realization 6 cannot be
observed at all by the insurer—a case that dominates the literature. While under full
observability, it is possible to tie the payments ¢ to the realization of 6, this cannot
be done when 6 is unobservable. Assuming that the individual’s absence from work
is observable, it is natural to tie benefits to that observation. We consider an insurance
system where the individual pays a constant premium p when working and receives
a constant benefit » when not working. In principle, the values of p and b could be
stochastic, i.e., determined by a lottery. Indeed, as emphasized in the literature on
mechanism design, the individual’s behavioral response to such a lottery could reveal
information about the unobserved 0; we return to this issue in Sect. 4.2. However,
since we want to analyze real-world insurance systems we do not consider complex
lotteries of this type. The only lottery we consider (in Sects. 4.2 and 5) is one where
the claims of some applicants are rejected. Indeed, such rejections of claims are an
essential part of real-world insurance systems.

With constant p and b, the individual has a subjective cut-off 6* = u(b) —u(1 — p)
such that he will prefer to live on benefits for all realizations 6 < 6* and will prefer to
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work if 6 > 6*. Under non-observability, the contract must be incentive-compatible.
This means that the insurer’s cut-off & must be equal to the individual’s cut-off 6*:

0 =6*=u(b) —u(l — p). (10)

Equation (10) corresponds to the “moral hazard constraint” in the Diamond and Mir-
rlees (1978) dichotomous model.

Maximizing the Lagrangian (6) subject to (10) and to the non-negativity con-
straints py > 0, by > 0 yields the first-order conditions

(A=’ —=pn)) (1= F@N) < f@n) - (py +by)-u' (01— py) -2, (11)
(' (bn) — X)FOn) < fON) - (pn +DN) -/ (by) - A, (12)

where Oy = u(by) — u(l — py). Assuming an interior solution, (11) and (12) are
satisfied as equalities. The solution may be written as the triplet (py, by, ). It
follows that u’(1 — py) < A < u’(by) which means less than full insurance. The
social value of resources (1) deviates from the marginal utility of consumption both
when working and when not working. The optimum under non-observability is thus
a second-best optimum.

What, then, are the conditions for insurance to be desirable? We have

Proposition 3 Assuming a concave consumption utility function, and abstracting
from administrative costs,

(1) a necessary condition for an interior solution (py > 0, by > 0) is that Oypper >
u(0) —u(l) =65,
(i) given (i), a sufficient condition is that Oiower < u(0) — u(1) =6;.

Thus, in the case of non-observability, insurance is desirable if the distribution of 0
is such that there is a positive mass around the point 65 = u(0) — u(1).

Proof Condition (i) is necessary since if Oypper < u(0) —u(l) = 9(’)" <u(by)—u(l—
DPN) = éN, then no one will work, and no insurance can be financed. Thus, Gypper > 96"
is necessary for insurance to be feasible. When proving that condition (ii) is sufficient,
given (i), we note that sufficiency means that Ojower < #(0) —u(1) = p,b > 0. We
show by contradiction that this implication holds. Assume Ojgyer < u(0) — u(1) and
p = b =0. The absence rate would then be F(6;). Since Oiower < 05 < Oupper, WE
have 0 < F () < 1. Thus (11) and (12) imply u'(1) — A > 0 and A — u/(0) > 0.
These two inequalities imply that u’(1) > u(0), which is impossible with a strictly
concave utility function.!! Thus, p = b = 0 cannot be optimal if Ojower < 6y - O

As in the case of full observability (Proposition 1) risk-averse individuals will
abstain from insurance if the sacrifice in terms of consumption utility is large relative

'with a non-separable utility function, the inequality corresponding to u’(1) > u’(0) becomes u] (0, 0) <
E(ui(1,0)|6 > 98‘)‘ Whether this inequality is consistent with a concave utility function depends not only
on the distribution of €, as in the case of a separable utility function, but also on the cross derivative u1o
(which may be positive or negative).
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948 A. Lindbeck, M. Persson

to the value of pain relief.!? (Observe that pain relief is the difference in pain between
non-work and work.) Hence, also in the case of non-observability, individuals in low-
income countries may abstain from buying insurance.

The effect on labor supply can be summarized as

Proposition 4 The introduction of insurance under non-observability leads to lower
aggregate labor supply.

Proof Labor supply is lower if Oy > 6. This inequality follows trivially from the
fact that éN =ulby) —u(l —py)>u) —u(l) = 96" forall p>0,b > 0. Il

Thus insurance will make an individual stay home for less severe outcomes of 6
than he would without insurance, and labor supply (and thus aggregate production)
will therefore be lower. It turns out that this also holds if the utility function is non-
separable.!?

We have found that the effect of insurance on labor supply differs between the full-
information and no-information case. As we noted earlier, the change in labor supply
under full information is due to the effect of a lump-sum change in income (for a
given 6). By contrast, under non-observability there is only a substitution effect:

Proposition 5 Under non-observability, the labor supply is distorted by a tax wedge
(pn + bn) in the optimal insurance contract.

Proof The income increase for an individual going from non-work to work is (1 —
pN) —bn =1—(pn + by), where (py + by) is the tax wedge. O

The results in Propositions 4 and 5 stand in contrast to the Diamond-Mirrlees
model. In that model, an optimal insurance contract implies that labor supply is con-
stant and equal to the number of people who are objectively able to work. Such mod-
els can therefore not contribute to our understanding of high sickness absence in
European countries with generous insurance systems. The tax wedge (p + b) in our
model is quantitatively important since it should be added to the usual tax wedge, ¢,
when assessing real-world incentives to work: the total tax wedge on labor earnings is
thus (1 4+ p + b). For many European countries, realistic figures are of the magnitude
t =0.25, p =0.10, and b = 0.5, which add up to 0.85. This is the relevant tax wedge
when individuals choose whether to work or live on benefits.

We may say that income insurance has two rationales: income smoothing and pain
relief (in the sense that insurance makes it affordable for the individual to stay home

12Condition (ii) in Proposition 3 is not necessary, but only sufficient. Even individuals who always work
in the absence of insurance (i.e., individuals with 8}gyer > 96‘) may be willing to buy insurance to be able
to stay home for relatively unfavorable realizations of 6.

13Wwith utility u(c, ), the cut-off in the absence of insurance is given by u(0,0) = u(1, 96*). Condition

(10) then is u(by,0) =u(l — py, éN). Since the left-hand side of the latter equation is larger than the
left-hand side of the former, and since 1 — py < 1, it must hold that 6y > 96*. Hence, the introduction of
insurance leads to a fall in labor supply also with non-separable utility.
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Fig. 1 Equilibrium for the case b
of non-observability

Zero profit

constraint

Full insurance

line: b=1-p

when working is particularly painful). The cost of insurance is a fall in labor supply
and a corresponding loss in production (and hence consumption). The optimal con-
tract thus implies a trade-off between income smoothing, pain relief, and consump-
tion. In the traditional dichotomous model, there is no such trade-off, since optimal
insurance in that model implies that individuals with the most favorable of the two
health outcomes will work. !4

A geometrical representation of the optimum insurance contract under non-
observability may be useful. In Fig. 1 we have depicted a set of indifference curves in
the (p, b) plane. 15 The insurer’s zero-profit constraint in the (p, b) plane looks like
a Laffer curve, as depicted in the figure.'® The optimal contract is then represented
by the point N. Since optimal insurance is less than full under non-observability, that
point is located below the straight line representing full insurance, b =1 — p.

4.2 Administrative rejection of claims

The optimal contract is second-best since the individual has a higher marginal utility
of income when living on benefits than when working: u'(1 — py) < A < u/(by).
It may therefore be tempting to redistribute income between the two states—for in-
stance, by raising by and finance it by a higher py. However, this would increase

1411 the Diamond and Mirrlees (1978) model, the disutility of work is infinite for a sick individual. In this
sense, the tax wedge p + b does not bite in that model. In other dichotomous models, disutility of work
may be finite. In both cases, aggregate labor supply will be a step function.

Brtis easy to prove that the indifference curves are upward-sloping, as shown in the figure. This also holds
for non-separable utility functions. Although we have depicted the curves as convex, they may contain both
concave and convex segments. Such an ambiguity concerning the curvature of indifference curves is found
also in other strands of the insurance literature; cf. Stiglitz (1983) and Arnott (1992).

161t can be shown that a sufficient condition for the zero-profit constraint to look like a well-behaved
Laffer curve, with a unique maximum, is that F(9*)/(1 — F(9*)) is an increasing, convex function of 6*.
This property characterizes many distribution functions, although there are some exceptions (for instance,
a Student’s ¢ distribution with less than one “degree of freedom”, i.e., with thick tails and an infinite mean).
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sickness absenteeism in a non-optimal fashion. Is it possible instead to raise benefits
for some individuals, by rejecting the claims of others? Since 6 is non-observable,
such rejection has to be completely random.

At first sight, one might think that exposing risk-averse individuals to additional
randomness could never increase expected utility. However, we know from the gen-
eral theory of economic policy that introducing an additional policy instrument—in
this case a random rejection rate—may improve welfare. Indeed, the literature on
mechanism design tells us that in a situation with asymmetric information, introduc-
ing a lottery may increase welfare. Random rejection of claims may function as such
a lottery. However, the lotteries studied in the mechanism design literature are nor-
mally much more complicated than simple rejection of claims, and therefore often
difficult (or even impossible) to implement in reality. This holds, for instance, for
an insurance contract proposed by Prescott and Townsend (1984) which includes a
lottery on how much an individual should consume and work. In our paper, we do
not deal with insurance involving lotteries on work assignments, because we do not
consider such lotteries enforceable.!” We therefore confine our analysis to the effects
of simple administrative rejection of insurance claims, as found in the real-world in-
surance.'®

It turns out that the welfare consequences of introducing the possibility of rejection
into insurance contracts depends crucially on whether an individual whose claim has
been rejected can return to work or not. It can be shown that expected utility will
always fall if a rejected individual cannot return to work. The intuition is simply
that the individual in such a case will be exposed to a higher income risk without
any compensating gain. Let us therefore concentrate on the case where an individual
whose claim has been rejected is able to go back to work after the rejection. To
analyze this case, first note that total absence now consists of two groups: those whose
claims have been accepted and those who chose to stay at home after their claims have
been rejected:

Total absence = (1 — q) - F(0*) +q - F(6™), (13)

where ¢ is the probability of being rejected, and where 6** is the cut-off at which
the individual is indifferent between staying at home with no benefits and working:
0** =u(0) — u(1 — p). Expected utility is

9*

EU, E/ [u(1 —p)+9]dF(9)+/ (1—¢q)-u(b)dF )
o* 00

9** 9*
+[ q~u(0)dF(6)+f q-(u(l—p)+06)dF®). (14)

—0 G

"More specifically, the Prescott and Townsend (1984) lottery implies that with probability 71, you should
work /11 hours, and with probability 77, you should work /5 hours, regardless of your health status. If e.g.
hy is very large, that outcome of the lottery may be impossible to implement in a society with no slave
labor.

18By definition, all lotteries violate the principle of horizontal equity. Nevertheless, the world is full of
lotteries, in many cases sponsored by the government. We return to the issue of rejection of claims in a
more realistic framework in Sect. 5.
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Fig. 2 The region in (o, y) v
space where the optimal 6 -
rejection rate ¢ > 0
54
4 q>0
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24 q=0
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We maximize EU, with respect to p, b and g (with 6 = 6* to achieve incentive
compatibility) subject to the non-negativity constraints p > 0, b > 0 and to the budget
constraint

o0 o* 00
P U dF(9)+q/ dF(e)} —b-(l—q)/ dF©®) =0. (15)

We denote the solution to this problem (pg, by, éq = 9;‘, q). It follows from the first-
order conditions that u’(1 — p,) <A < u’(by), illustrating the second-best character
of the contract with less-than-full insurance. By contrast to the case without rejection,
we now have two different tax wedges: p, + b, for individuals who choose between
working and applying for benefits, and p, for individuals who, after having been
rejected, choose between working and staying at home without benefits.

We cannot analytically determine whether ¢ should be zero or positive in general.
Therefore, we simulate the model numerically. For this purpose, we assume a utility
function with constant relative risk aversion, i.e., u(x) = xl_V/ (1 — y). For u(0)
to be finite, we introduce an exogenous non-wage income, k. Consumption utility
is now u(l1 — p 4+ k) when working, u(b 4+ k) when absent from work and living
on benefits, and u(k) when absent without benefits. The results of the simulations
are reported in Fig. 2 for a normal distribution 8 ~ N (m, o) of the taste parameter.
The figure is based on the parameter values k = 0.25 and m = 0, but the results are
qualitatively similar for a large set of values.!” Combinations of sigma and gamma
for which g > 0 are located outside the convex set in the figure.

Thus, our simulations prove that it is possible to find plausible parameter configu-
rations for which a positive rejection rate is optimal.’’ The curve in the figure shows
that for a given degree of risk aversion, the individual prefers a positive rejection rate
for low values of the variance of 6. Intuitively speaking, the individual is willing to

19For instance, we have studied the consequences of variations in k > 0. It turns out that with our param-
eterization, ¢ is a decreasing function of k.

20By “plausible” we mean values that are of an order of magnitude similar to those observed in the real
world. In the simulations reported in Fig. 2, the absence rate, as given by (13), varies between 0.2 and 0.25.
This is a realistic figure for many European countries if both sick-pay insurance and disability pensions
are included.
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take the risk of having his claim rejected when the probability of very negative out-
comes of 6 is small. As the variance increases, the individual will sooner or later be
better off without a rejection rate.

Hence, the simulations provide a numerical proof of the following proposition.

Proposition 6 If a rejected individual can return to work, a positive rejection rate
q will increase the expected utility for some parameter constellations—in particular,
when the variance of 0 is small.

The economic intuition for why an additional policy instrument in the form of
a random rejection rate may be welfare-enhancing is that the rejection rate opens
the possibility of better income smoothing for those whose claims are accepted. Of
course, this is achieved at the price of less income smoothing for those whose claims
are rejected. However, this cost is mitigated by the possibility for them to go back to
work—an option that is chosen by those with relatively favorable realizations of 6
(i.e., relatively low disutility of work). There is thus a self-selection back into work
among those whose claims have been rejected.?! This self-selection is conducive to
allocative efficiency and is facilitated by the fact that the tax wedge for those who are
rejected is only p,, while the tax wedge in an insurance system without a rejection
rate is py + by for everybody.

We also have the following two results.

Proposition 7 The conditions for insurance with a rejection rate to be desirable are
the same as those for insurance without a rejection rate (Proposition 3).

Proof The proof is parallel to that of Proposition 3. When proving Proposition 3,
we showed that assuming a corner solution with p = b = 0 leads to a contradiction.
The same holds in this case. Setting p = b = 0 in the first-order conditions to the
maximization of (14) subject to (15) and the incentive compatibility constraint yields
A <u’(1) and A > u'(0) which cannot hold for a strictly concave utility function.
Thus the conditions for insurance with a rejection rate to be desirable are the same as
for insurance without a rejection rate. g

Proposition 8 The introduction of insurance with a rejection rate g > 0 has the same
qualitative effect on absence as the introduction of insurance without a rejection rate,
i.e., aggregate labor supply will fall.

Proof Everyone with a realization 6 < éq = 9; =u(by) —u(l — py) will apply for
benefits. If all these claims were accepted, the fall in labor supply (as compared to the

. . 0, .
case with no insurance) would have been f 9;1 dF(0). However, a fraction ¢ of these
0

21Thus, in our lottery, we do not eliminate the individual’s freedom of choice: after the lottery has been
executed, the individual is free to decide whether he should work or not. This contrasts to the work-
assignment lottery in the paper by Prescott and Townsend (1984) mentioned in footnote 17 above; in that
lottery, the individual is obliged to perform the number of hours of work specified by the outcome of the
lottery.
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claims are rejected, and rejected individuals with realizations 0 > 6** = u(0) —u(1 —
Pg) will go back to work, rather than staying home without benefits. Thus, the net

fall in labor supply is only [ dF(6) — g [;% dF(6). Since 0 < g < 1 and 6 < 6™,
0

the first term in this expression is larger than the second term. Hence labor supply

and production will fall. 0

Finally, we note that since the contract is incentive-compatible, there are no Type [
errors: no one will receive benefits without being qualified. In this sense, moral haz-
ard (= Type I errors) is ruled out in optimum. By contrast, a rejection rate g > 0
necessarily causes Type II errors: some individuals who qualify for benefits will not
receive them. Such a rejection rate may nevertheless increase expected utility due
to more generous insurance for those whose claims were accepted, and due to self-
selection back to work among those whose claims were rejected.”

5 Partial observability

We now turn to the case where 6 is partially observable. Clearly, this may be regarded
as an intermediate case between full observability and non-observability. Moreover,
it is the most realistic case. It turns out that several features of the optimal contracts
under the two unrealistic assumptions concerning observability also appear, under
various guises, in the more realistic case.

We assume that the insurer can observe a noisy signal s = 6 + ¢, where the noise
¢ has a cumulative distribution function G (¢) with 0 < var(¢) < 00.>> As in the case
of non-observability, we limit the study to insurance contracts that are represented by
a triplet (p, b, 6).2* In the following, we discuss two versions of this contract. In the
first version, which is the most common type of income insurance in the real world,
the individual receives the benefit » if two conditions are satisfied: the signal s is
smaller than or equal to 6, and the individual does not go to work. Symmetrically,
the individual pays the premium p if s is greater than 6 and he goes to work. In the
second type of contract, the benefit is conditioned only on the signal: the individual
receives b if s <6, regardless of whether he goes to work or not, and he pays p if
s>0.

Consider a particular individual, with health status 6. Like in the previous section,
we let g denote the probability that an applicant who sends a signal s to the insurer
will not be granted the benefit . But under partial observability, g is not exogenous;
it is instead given by

g=Pr(s>0)=Pr(c>0—-0)=1-G@O —0)=q( —0). (16)

2211 the standard dichotomous model, a rejection rate can never increase expected utility. The reason is
that there is no heterogeneity among those who apply for benefits in the case of an optimum contract; they
are all unable to work.

23 This general formulation nests the informational setups in Sects. 3 and 4. Under full observability, we
would have var(e) = 0, while in the case of non-observability, we would have var(e) = co.

2 An interesting topic for future study is a contract where the size of the benefit may vary with the signal
s = 6 + ¢ (the contribution cannot vary with the signal, since the premium has to be paid in advance).
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Since distribution functions are always non-decreasing it follows that q’(é —-60)<0
and hence ¢ is a non-decreasing function of the true 0: dg/d6 > 0. This prop-
erty has an intuitive appeal; an individual with severe health problems (i.e., a
very low 0) is less likely to be denied benefits than an individual who is health-
ier.

5.1 Benefits conditioned on the signal and on non-work

Let us start with the type of contract where payments are conditioned on both the
signal and the individual’s work decision. Diamond and Sheshinski (1995) studied a
similar contract when asking whether an existing insurance (social security) should
be supplemented by an additional insurance (disability pension) in the case of par-
ticularly bad outcomes. They concluded that such a supplement is warranted under
certain conditions.? In this paper, we ask under what conditions (in addition to con-
cavity) insurance is desirable in the first place, and we study the consequences for
aggregate labor supply of introducing insurance.

With such a contract, the individual observes his realization € and decides to apply
for a benefit if 6 < 6* = u(b) — u(1 — p). The expected utility is

oo 0*
EUp = / [u(1 = p)+0]dF(©®) +/ (1—q@ —6)ub)dF©®)
0* —00
9** R 9* R
+/ q(e—e)u(O)dF(9)+/ q@—0)- (u(l—p)+06)dF®),
—00 Q*r*

a7)

where 6** = u(0) — u(1 — p), i.e., the value of 6 for which a rejected individual is
indifferent between working and staying home without benefits. The insurer’s budget
constraint is

9] o* 9*
p-|:/ dF(@)—i—/ q(é—e)dF(e)]—b-/ (1-q@—0)dF@®)=0. (18)
9* 9**

—00

Since the insurer’s decision to grant benefits is based on an observable signal s =
0 + ¢, the insurance contract does not have to be incentive-compatible: the insurer’s
cut-off  does not have to be equal to the individual’s cut-off 6*. The first-order
conditions imply u’(bp) > A > u’(1 — pp) which means that the optimal solution
(pp,bp, ép) is second-best, just as in the case of non-observability. However, there
will be a more efficient allocation between work and non-work among claimants than
in the case of non-observability. In the latter case, the only mechanism for improving
the allocation is self-selection among those whose claims have been rejected. Under
partial observability, there are two selection mechanisms. One is self-selection, like
in the non-observability case. The other is selection by the insurer, since the rejection

25The conditions are similar to the condition for a moral-hazard problem to emerge in the dichotomous
model under non-observability of Diamond and Mirrlees (1978).
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rate now is endogenous rather than constant: individuals with very low realizations
of 0 are now less likely than others to be rejected.

As in the preceding sections, we ask under what conditions insurance is desirable,
and we also ask how the introduction of insurance affects labor supply. The answers
are straightforward. First, the conditions for desirability are the same as in the case of
non-observability, and thus concavity is not sufficient for insurance to be desirable.?
Second, aggregate labor supply will fall if insurance is introduced.?’” These two re-
sults may seem surprising. One might have expected that partial observability would
combine properties of full observability and non-observability, but this turns out not
to be the case; this type of optimal contract under partial observability is more like
the contract under non-observability.

While there is no moral hazard (in the sense of Type I errors) in the case of an
optimal contract under non-observability, moral hazard may arise under partial ob-
servability: some (lucky) individuals will receive benefits even though their actual
health status 8 would not make them qualified for benefits. This holds for individuals
whose signals are smaller than the insurer’s cut-off (i.e., s < é) at the same time as
their actual 0 is larger than 6. Such individuals appear sick in the eyes of the in-
surer, although in reality they are quite healthy. There will also be Type II errors; for
some realizations of the disturbance, the individual looks healthy in the eyes of the
insurer—although he is in fact sick. Thus, under partial observability, there will be
both Type I and Type II errors.

5.2 Payments tied to the signal only

An alternative type of income insurance is when payments are tied to the (distorted)
signal s = 6 + ¢ of the individual’s health, regardless of whether he works or not.
If s < 6, the individual receives a benefit b from the insurer, and if s > 6, he pays
a premium p. Thus, according to (16), the probability that the individual has to pay
p to the insurer is q(é — 0). Similarly, the probability that he will receive b from
the insurer is 1 — q(é — 0). Since payments between the insurer and the insured are
not contingent on work decisions, all individuals in the population participate in the
“lottery” defined by the probability ¢g. After the payments have been determined, the
individual decides whether or not to go to work.

This type of contract, which to the best of our knowledge has not been discussed
in the insurance literature, may be relevant if the variance of ¢ is very small. An ex-
ample is accident insurance, including workers’ compensation for work injuries. In
this case, payments are often tied to the signal of the injury, independently of whether
the individual chooses to work or not. Other examples where the signal is quite pre-
cise, and where such contracts could be implemented, are easily detected diseases
such heart failure, cancer and diabetes. An advantage of not tying the benefits to an
individual’s work decision is that a tax wedge is thereby avoided. A disadvantage

26 A in the case of Proposition 7, we use proof by contradiction. Let p and b go to zero in the first-order
conditions for the maximization of (17) subject to (18). Provided that 0 < g < 1, these inequalities yield
u'(1) > A and u’(0) < A, which is inconsistent with a strictly concave utility function.

21 The proof is parallel to that of Proposition 8 above and is therefore not reported here.
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is that there is not much income smoothing; some people might receive both wage
income and benefits, 1 + b, while others may have to pay a contribution p although
they feel such a strong discomfort from work that they stay home. The range for
the income distribution is [—p, 1 4+ b]. With this type of contract, expected utility
is

EU = / [1—g@—0)] - [u(1 +b) +0]dF©)
6

0
+/ [1—q@—6)] ub)dF@®)

0

+f9: q(é—@)-[u(l—p)+e]dF(e)+f g —0)-u(—p)dF(®),

where 6 = u(b) — u(1 + b) is the cut-off between non-work and work for individuals
with good luck in the lottery, and 6 = u(—p) — u(l — p) is the cut-off for indi-

viduals with bad luck. It follows from concavity that & < 6. The budget constraint
is

o0 o
b/ [1-q@-6)]dF®)= pf q@ —0)dF(®).
—0oQ —0o0
As in Sects. 4 and 5.1, the optimal contract in this section implies less than full in-
surance (for a proof, see Appendix A). This may seem surprising, since there is no
tax wedge, and the situation in this sense is similar to that of full observability. The
reason why full insurance is not optimal is that insurance under partial observability
is plagued by Type I and Type II errors.

As with the other assumptions about the information structure, concavity is not
sufficient for insurance to be desirable. The conditions are, however, more involved
than in the previous sections (see Appendix A). Moreover, the effect on labor supply
of introducing insurance is ambiguous, as in the case of full observability (for proof,
see Appendix A).

Could this type of contract be preferable to the type of contract discussed in
Sect. 5.1, where the payment is conditioned on both the signal and the work deci-
sion? Intuitively, we may expect that it is preferable if the variance of the disturbance
term ¢ is small, since then the advantage of avoiding the tax wedge may dominate
over the disadvantage of making Type I and Type II errors. To illustrate the relative
merits of the contracts of Sects. 5.1 and 5.2, we have carried out simulations of the
two models. For simplicity, we assume that the stochastic variables 6 and ¢ are in-
dependently distributed. Figure 3 shows combinations of o and o, for which one
contract dominates the other. The parameterization is the same as the one underlying
Fig. 2. We have assumed that 8 ~ N(0,0),& ~ N(0,0,),k = 0.25 and y = 2. For
all combinations of o and o, below the curve, the contract that is based only on the
signal yields the highest expected utility. For all combination above the curve, the
contract that is based on both the signal and the work decision (Sect. 5.1) yields the
highest utility.
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Fig. 3 The region in (o, o¢) o,
space where the contract of 1.2 4
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Thus our hypothesis is confirmed: a contract based on the signal only is preferable
to the contract of Sect. 5.1 if the variance of the disturbance ¢ is small. In such a case,
the advantage of avoiding the tax wedge dominates over the disadvantage of a poor
income smoothing caused by Type I and Type II errors.

6 Concluding remarks

In this paper, we have developed a model of income insurance to highlight several
real-world features that are not well dealt with in the traditional, dichotomous model.
In particular, our treatment of the individual’s health as a continuous variable high-
lights the complex trade-offs between income smoothing, pain relief, and aggregate
labor supply. These trade-offs, although often referred to in the general policy discus-
sion, are not well reflected in the academic literature on income insurance, where the
individual is assumed to be either able or unable to work.

The model can be extended in various ways. One possibility could be to modify the
model in order to include part-time work and part-time benefits. Such an extension is
straightforward, although tedious. Another extension is to incorporate social norms
into the analysis. Indeed, social norms in the form of a stigmatization connected with
living on benefits is an alternative to low benefits and a strict rejection rate as a means
for reducing moral hazard. Finally, the model could be modified to address problems
related to ex ante moral hazard, i.e., behavioral adjustment by the individual before
a random health shock has been realized (for instance, when the insured individual
chooses a less prudent lifestyle). In our framework, ex ante moral hazard can be
analyzed as a situation where the introduction of insurance affects the probability
distribution of the health shock.
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Appendix A: Proofs

Proof of Proposition 1

Condition (i) in the proposition is necessary since if Oypper < ép =—u'(l —
F (ép)), no one will ever work in the presence of insurance and thus, F (éF) =1.
In this case, the inequality can be written Oupper < —u'(0) and no insurance can
be financed. Thus, Oypper > —u’(0) is a necessary condition for insurance to be
feasible. Condition (ii) in the proposition is also necessary since if Gjower > éF =
—-u'(l1-F (ép)), everyone will always work in the presence of insurance and thus
insurance will not be utilized. In that case, F' (ép) =0 and as a result the inequality
can be written Gower > —u'(1). Thus, Glower < —u’(1) is necessary for insurance to
be desirable.

To prove sufficiency, we note that, by definition, an interior solution ép satisfies
Blower < 6 F < Bupper- To prove that a utility function « and a distribution function F
satisfying (i) and (ii) must also satisfy this inequality, we define the function ¢(0) =
0 + u'(1 — F(0)). We have ¢(Biower) = Olower + u' (1) which, by (ii), is negative.
We also have ¢(Qupper) = Oupper + #'(0) which, by (i), is positive. The continuous
and monotone function ¢(6) must therefore take the value of zero for one (unique)
value of 6 somewhere in the open interval (Biower, Qupper)- By (9), the ¢(0) is zero for

0= ép; thus ép is located in the interval (Giower, Gupper)- O

Proofs of some properties of optimal insurance in Sect. 5.2

(i) An optimal contract implies less than full insurance

The first-order conditions of the maximization of EU subject to the budget con-
straint, with respect to p and b, can be written

a-u'(d=p)+1—a) u'(=p)=> A, B-u'(1+b)+(1—pB) u'b) <,
where
J5a@—6)dF©)
Joa@—0)dF@®)

S5 —q0 —0)1dF(®)
[ 01 —q@ —6)1dF@®)

B

o

With an interior solution, these conditions are satisfied as equalities, implying that the
weighted average of u’(1 — p) and u’(— p) should be equal to the weighted average
of u’(1 4+ b) and u’(b). Since u'(—p) > u’(1 + b), the two weighted averages can be
equal only if u’(b) > u’(1 — p),ie.,onlyif 1 — p > b. O

(ii) The effects on labor supply are ambiguous

The introduction of insurance will induce some individuals with a lucky outcome
to choose to stay home from work even though they would have gone to work in the
absence of a lottery. These individuals will reduce their labor supply. The number of

such individuals is f 90* dF (0). Similarly, a number of individuals with a bad outcome
0

in 6 and bad luck in the lottery will choose to work, even though they would have
stayed home in the absence of insurance; such individuals contribute to an increase in
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the labor supply. The number of these individuals is f;o d F(9). Without adding more
structure to the model, it is not possible to determine whether f;" dF(0) is smaller

or larger than f(% dF ). O
(iii) Desirability of insurance
A necessary condition for i insurance, based only on the signal s, to be des1rable

is that there is some mass between 9 and 0, where 6 = u(b) — u(1 + b) and 9 =
u(—p) —u(1 — p). This condition is satisfied if there is some mass around 6’5.

To prove this, we first note that § < 95‘ < 6. Assume that all mass of the distribu-

tion is to the right of 6. Then everyone will always work, regardless of the outcome
of the lottery. The lottery would thus only cause variability in income, and would
therefore be undesirable to a risk-averse individual. Thus Ojower < 0 is a necessary
condition for the lottery to be desirable. Assume now that all mass of the distribution

is to the left of . Then no one would ever work. In such a case, the lottery would

only cause income variability, which is undesirable. Hence Oupper > 6 is also a neces-
sary condition for the lottery to be desirable. These two conditions combined imply

that some mass between 6 and 6 is necessary for the lottery to be desirable. Since

0 < 96“ <6 , some mass around 96‘ is sufficient for this to occur. O

Appendix B: Effects on labor supply of insurance under full observability

Under what conditions does the introduction of insurance result in a positive (b) or
a negative (—p) income change, and hence a fall or an increase in labor supply’? It
depends on whether 65 = u(0) — u(1) is larger than, or smaller than OF = —u "a -

F(éF)), which in turn depends on the u(-) and F'(-) functions.

Assume first that 8* < ép. The individual would earn O if not working, and 1 if
working, in the absence of insurance. With insurance, and with a realization 0* <
6 < O, he would earn b if not working, and 1 + b if working (since the benefit is
not conditioned on his labor supply decision, but only on the realization 6). Thus, the
introduction of insurance provides a positive income increase b regardless of whether
the individual works or not. As a result, the individual will demand more pain relief,
hence reducing his labor supply.

This reasoning applies for a realization 6* < 6 < 6. For a realization outside that
interval, the introduction of insurance will not have any effect on labor supply; an
individual who does not work in the absence of insurance has even stronger reasons
not to work when he gets an income transfer b. Correspondingly, an individual who
works in the absence of insurance will have even stronger reasons to work when he
is exposed to a lump-sum income reduction —p. The configuration 6* < 6p therefore
implies that the introduction of insurance will reduce aggregate labor supply.

Assume instead that ép < 6*. As always, the individual would earn 0 if not work-
ing, and 1 if working, in the absence of insurance. With insurance, and with a realiza-
tion ép < 0 < 6*, he would earn —p if not working, and 1 — p if working. Thus, the
introduction of insurance provides a negative income change, regardless of whether
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the individual works or not. As a result, he will settle for less pain relief, hence in-
creasing his labor supply.

This reasoning applies for a realization 6* < 6 < 6. With the same argument as
above for realizations outside the interval, we conclude that the configuration 0 < 0*
implies that the introduction of insurance will increase aggregate labor supply.

The analysis shows that under full observability, the effect of insurance on labor
supply is driven only by exogenous lump-sum changes in income, and not by any
price distortions. These lump-sum changes are positive or negative, depending on the
u(-) and F'(-) functions.
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