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Abstract. We analyze investment decisions when information is costly,

with and without delegation to an agent. We use a rational-inattention model

and compare it with a canonical signal-extraction model. We identify three

"investment conditions". In "sour" conditions, no information is acquired and

no investment made. In "sweet" conditions, investment is made "blindly", i.e.

without acquiring costly information. In intermediate, "normal" conditions,

the decision-maker acquires information and conditions the investment decision

upon the information obtained. We investigate if the investor can benefit from

employing an agent when the agent’s effort and information is private. Not even

in the case of a risk neutral agent will the principal perfectly align the agent’s

incentives with her own at the moment of investment (had the principal known

the agent’s private information). Optimal contracts for risk neutral agents

not only reward good investments but also punishes bad investments. Such

contracts include three components: a fixed salary, stocks and options.
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1. Introduction

In standard principal-agent models, the task of the agent is to increase the success

probability for some agreed-upon project. However, an equally important task for

many agents, such as CEOs of large corporations and pension-fund managers, is to

make well-informed investment decisions. This is a theme we here focus on, following

up on pioneering work by Demski and Sappington (1987) and Lewis and Sappington

(1997).1 We take the agent to be someone who has a comparative advantage over

the principal in acquiring and evaluating pertinent information about investment

opportunities or projects. However, such information is costly for the agent to acquire.

It requires him to exert (non-contractible) effort, perhaps over many days or months,

and the information obtained is often private and difficult to communicate to the

principal. There are two obstacles to communication. First, the principal may not

be qualified, or have the time needed, to understand and assess the reliability and

relevance of the information that the agent has acquired. Second, it may be in the

agent’s self interest not to share all information–for instance, if he has negative

information about a project for which he would be well paid. The agent may, more

generally, opportunistically misreport or suppress information he has. An important

issue is thus how to motivate the agent to acquire relevant and reliable information

and then use it in line with the principal’s interests when making the investment

decision.

The topic being rich and complex, we abstract from many important real-life

factors and focus only on a few key elements. We assume that the agent is purely self-

interested and only cares about his own remuneration and work effort. We also assume

that neither the quality of his information nor its contents can be communicated to

the principal. Any contract between the two parties can thus only be conditioned

on whether investment is made, and if made, its return. In order to keep back the

agent’s potential eagerness to invest, because of his hope to earn a bonus, the agent

has to be paid also for not investing, and has to face some penalty after unsuccessful

investments. To have an agent who abstains from investment when prospects (about

which he has private information) are not good can be just as important for the

principal as to have an agent who invests when prospects are good. We will call the

"non-investment pay" the agent’s salary. To choose the agent’s salary is a delicate

matter. It needs to be balanced against potential bonuses and penalties associated

with investment. Moreover, under limited-liability, a low salary limits the size, and

hence effect, of penalties, since the maximal penalty then is to withdraw the salary.

This causes an asymmetry in contracts, even for risk neutral agents and investment

1The motivation behind those studies is similar to ours: "In many relevant settings, however, the

agent is not omniscient from the outset, and the principal deems it important to motivate the agent

to acquire valuable planning information before he acts" (Lewis and Sappington, 1997, pp. 796-7).
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projects that are ex ante symmetric in terms of upsides and downsides.

Canonical examples of what we have in mind is a CEO of a large corporation,

a division manager, or a manager of a pension fund. Such a manager chooses how

much effort to make to acquire access to pertinent information, and assess this, for

investment decisions. Because of the personal cost to the manager (say, in terms

of long hours at work), there is here a major moral hazard issue. Other examples

are given by the consulting industry, where firms and institutions decide whether

or not to delegate information acquisition and (in effect) decisions to consultants,

whose efforts and information cannot be monitored. The flexibility of the rational

inattention approach enables us to capture both the hidden effort and information

structure in such situations. Our model is intended to capture some key features of

agency relationships of the mentioned sorts.

The focus of our study is on costly information acquisition and subsequent decision-

making, both for an investor without agent and for an investor with agent. Although

the paper emphasizes the interaction between principal and agent, we begin by ana-

lyzing an investor in autarky, in order to set the stage and have a bench-mark. The

investor-cum-principal is assumed to be risk neutral, while the agent may be risk

neutral or risk averse. The investment decision is binary, such as whether or not to

undertake a risky project–say, purchase an asset, buy up another company. The

project’s return is random and unknown at the time of investment. The principal

and agent have the same prior beliefs about its probability distribution. The realized

return from the project, if undertaken, is verifiable. When there is an agent, the

principal delegates the investment decision to the agent, or the agent recommends

the principal what investment decision to take. Given the assumed difficulties for the

principal to obtain and evaluate the agent’s information, this distinction is immater-

ial. A contract between the two parties specifies a payment to the agent under every

possible outcome, including non-investment. We require contracts to meet the limited

liability constraint that the net pay from the principal to the agent be nonnegative.2

Having signed such a contract, the agent decides how much, if any, effort to make

and time to spend in order to acquire information about the project at hand. The

more effort he makes, the higher is the precision of his obtained information. The

agent’s effort and information are his private information. The terms of the contract

influence the agent in two distinct ways. First, it motivates the agent to acquire

information about the project at hand. Second, it guides the agent’s investment

decision, once his information has been obtained. As will be seen, there is, in general,

a tension between these two goals, a possibility pointed out already by Demski and

Sappington (1987). They provide sufficient conditions for when this tension, which

they call induced moral hazard, may arise (their Proposition 1), and illustrate this

2Or, more generally, does not fall below some specified bound.
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with a numerical example.3 It turns out that our rational-inattention formalization

provides analytical power that generates important new insights (summarized below).

As a starting point we take the rational-inattention approach, pioneered by Sims

(1998, 2003, 2006), in the form developed by Matějka and McKay (2015). A major

appeal of that approach is that it does not impose restrictive assumptions on what

form of information the decision-maker chooses to acquire.4 Rationally inattentive

decision-makers optimally acquire and process information that is relevant and useful

for the decision at hand and ignore information that is not worth the effort of acquiring

and processing. This approach turns out to be particularly analytically convenient for

analysis of delegation problems. In particular, it is easier to work with than a model

of explicit signal extraction. However, the latter model has the advantage of being

more transparent in specifying the form of information available. We therefore also

develop a canonical signal-extraction model (but only for the case of binary return

distributions) in order to check the robustness of the results with respect to choice of

model.

We have six main findings. The first is that the inherent moral hazard problem

is so substantial that it is not worthwhile for an investor to hire an agent unless the

agent has a strong comparative advantage in acquiring and assessing information.

The agent’s unit cost of information acquisition has to be substantially lower than

the principal’s.

Our second finding is that optimal contracts with risk neutral agents are monotonic

with respect to realized returns, and they contain bonuses as well as penalties (as com-

pared with the pay after non-investment), and, moreover, that they are non-linear.

Hence, contracts based on a flat salary and shares in the project are suboptimal, and

so are contracts based on a salary plus an option to buy future stocks at today’s price.

The first type of contract is suboptimal because it provides too weak incentives for

information acquisition, and the latter type of contract is suboptimal since it contains

no penalty in case of a failed investment. Under such contracts, the agent will always

invest. We also show that the limited-liability constraint on contracts is binding for

risk-neutral agents. More precisely, the agent’s pay after investment in the worst state

of nature is zero, that is, to withhold the agent’s salary.

Our third finding is that it is typically optimal for the principal to not fully align

3In addition, they show that induced moral hazard cannot arise when there are only two possible

outcomes (their Proposition 2). That condition is not met in our model, since there are at least

three outcomes in the present model (non-investment, a bad and a good return).
4See de Palma and Fosgerau (2016) for a generalized version of the rational-inattention model that

allows for exogenous "information filters" that represent that, in practice, some types of information

are more easily available than others. See also Fosgerau, Melo, and Shum (2017) for results on

the equivalence between generalized rational inattention and discrete choice under additive random

utility.
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the agent’s incentives at the moment of the investment decision (after information has

been acquired and those costs sunk) with those of the principal (had the principal had

the agent’s private information), not even when the agent is risk neutral. The reason

is the limited-liability constraint; in order to deter the agent from risky investments,

which may be very costly for the principal but less costly to the agent because of

the mentioned constraint, it may be optimal to tilt the contract slightly in favor

of bonuses and away from penalties. A way to obtain this in practice is to let the

contract consist of a flat salary, some stocks, and some options.

Our fourth finding is that it may be optimal for the principal to offer the agent a

contract with expected utility above the agent’s reservation utility. In other words, the

agent’s participation constraint may well be slack in an optimal contract. The reason

is, again, incentives, since by cutting the pay in all states of the world (including

non-investment), the agent’s investment incentives are unchanged but the agent may

then become insufficiently motivated to acquire information. Hence, while we do not

deny the potential importance of real-life agents’ potential bargaining power over the

terms of their own contracts, in some situations, lavish contract may in fact be in the

best interest of the principal.

Our fifth finding is that investment conditions may be such that a rationally

inattentive decision-maker, be it the investor herself or the agent, rationally decides

to invest without acquiring any information. We call such investment conditions

"sweet". This form of "individually rational exuberance" may be part of the ex-

planation of times of apparently uncritical investment. In such situations changes

in market conditions are experienced only with considerable delay, after investments

have been made. The opposite case is also possible, namely, that a rationally inatten-

tive decision-maker decides to completely ignore a project, that is, not acquire any

information and not invest. We call such investment conditions "sour". By contrast,

under "normal" investment conditions, which fall between these two extremes, the

decision-maker acquires some information and then makes the investment decision

conditional upon the information received. The identification of "sour" investment

conditions is in line with observations in Matějka and McKay (2015) and, in par-

ticular, Caplin, Dean, and Leahy (2016). Indeed the latter provide necessary and

sufficient conditions for discrete-choice alternatives to be at all considered by ra-

tionally inattentive decision-makers (their Proposition 1), thereby giving a precise

characterization of what is called a consumer’s consideration set in the marketing

literature.5

Our sixth and final finding is that the rational-inattention approach is much easier

to work with than an explicit signal-extraction model, and yet the two approaches

seem to yield qualitatively very similar results, at least in simple examples. This

5For a game-theoretic definition of consideration sets, see Myerson and Weibull (2015).
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finding speaks in favor of the rational-inattention model, which also more readily

lends itself to generalization. For instance, while we here only consider one investment

opportunity, multiple alternative investment opportunities can easily be handled in

the rational-inattention model, as can general outcome distributions.6

To the best of our knowledge, we are among the first to use the rational-inattention

approach for principal-agent analysis. The only such study we know of is Yang and

Zeng (2017). They analyze optimal contracts between an investor with money and

an entrepreneur with ideas but no money. The investor trades off resources spent

on collecting costly information about the entrepreneur’s project against resources

spent on financing the project. More specifically, they analyze the optimal mix of

debt financing and equity financing. Both the investor’s information acquisition and

subsequent financing decisions are endogenous. In Yang’s and Zeng’s (2017) model,

the principal takes the financing decision, a choice between debt and equity, and the

entrepreneur, who is the agent, takes production decisions.

Apart from the above-mentioned paper, and the pioneering paper Demski and

Sappington (1987), the closest seems to be Lewis and Sappington (1997), who an-

alyze situations in which the agent, at a cost, can choose to be perfectly informed

about the state of nature. In a related paper, Levitt and Snyder (1997) analyze how

interventions by the principal may undermine the incentives for the agent.7 Method-

ologically, the present study differs starkly from these papers. Our approach also

differ from that in Crémer and Khalil (1992) and Crémer, Khalil and Rochet (1998a).

These papers analyze situations in which the agent can, at a cost, acquire informa-

tion about the state of nature before signing a contract, while we here assume that

the agent can acquire information only after the contract has been signed. The latter

assumption is also made in Crémer, Khalil and Rochet (1998b), but in that model the

agent has to choose to either be completely uninformed, or, at a fixed cost, obtain full

information (while in our model the agent chooses from a continuum scale of degrees

of information, excluding the possibility of full information).

In recent decades, the high reward to top-managers of large corporations has been

a central issue in the policy debate (for a survey of the debate, see Murphy, 2012).

Much of that literature either emphasizes the role of stiff competition for scarce talents

in the market or the role of top-officers’ strong bargaining power within organizations.

These factors appear also in this study, in terms of the outside option of managers

and both parties’ indifference curves in contract space. However, in this paper we

give a richer (higher-dimensional) view on optimal contracts to top-managers — in the

context of a non-standard principal-agent model.

6See also Steiner, Stewart and Matějka (2017) for an extension of the rational inattention model

to dynamic decision problems.
7See also Friebel and Raith (2004).
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The presentation of the material is organized as follows. Our model of a rationally

inattentive investor is detailed in Section 2. In Section 3 the investor considers the

possibility of delegating information acquisition and the investment decision to an

agent. Section 4 studies the robustness of the rational-inattention model by develop-

ing a model of explicit signal-extraction with additive normal noise and endogenous

signal precision.8 Section 5 concludes. Mathematical proofs are provided in Appen-

dix A for the rational inattention model, and in Appendix B for the signal-extraction

model.

2. A rationally inattentive investor

We begin by studying a risk-neutral and rational investor who considers an indivisible

investment opportunity, or project. The project requires a lump-sum investment,

  0, and gives a random return,  . The project’s net return is thus  −  and its

net return rate is the random variable

 =  − 1 (1)

The probability distribution of  is known by the investor. Its finite support is

 = {1 2  }, with 1  2     for some   1, and the probability

for each such potential realization  is positive and denoted  () or  The vector

 = (1  ) is the investor’s prior. This prior may be based on public information

or knowledge about the economy at large, the industry in question, and on easily

available information about the project at hand, such as credit ratings and earnings

records of the people involved etc. The key assumption is that this information is

available to the investor for free. Given her prior, the investor first decides how much

time and effort, if any, to spend on further information acquisition about the project

before she decides whether or not to invest in the project. The investment decision

is thus binary.

If the investor chooses not to invest, she obtains a risk free net-return rate .

Hence,  is the her opportunity cost for investing. Alternatively,  can be thought

of as the risk free interest rate in a credit market to which the investor has access.

If she decides not to try to acquire further information about the project, then she

will invest in the project if and only if its net return rate is non-negative, E [] ≥ .

If she instead decides to acquire information, which is costly for her (in terms of

time and effort), she may subsequently change her beliefs about the project’s future

return. This posterior belief will be based upon the information she obtains. She then

chooses to invest if and only if the conditionally expected net return from investing,

given all her information, exceeds the risk-free rate .

8This section builds upon an earlier working paper, see Lindbeck and Weibull (2015).



Investment, rational inattention, and delegation 8

We will analyze this scenario, with and without agent, by applying the rational-

inattention model of Matějka and McKay (2015), a model which, in turn, builds upon

pioneering work by Sims (1998, 2003, 2006). Accordingly, we will treat information

acquisition as a choice of a joint probability distribution over signals and states of

nature, under the constraint that the marginal distribution over states must equal

the decision-maker’s prior belief, and with information costs represented in terms of

entropy reduction.9 This will lead to investment probabilities that are conditional on

the true state of nature. These conditional investment probabilities will depend on the

investor’s choice of how well-informed she wants to be when making her investment

decision. By spending more time and effort on information acquisition she can reduce

the risk of investing in bad states of nature and enhance the chances for investing in

good states.

By using Theorem 1 and Lemma 2 in Matejka andMcKay (2015), one immediately

obtains that the investor’s optimal information-cum-investment strategy induces the

following conditional investment probabilities:

̂|= =
̂

̂ + (1− ̂) 
∀ ∈ (2)

where

̂ ∈ arg max
∈[01]

X
∈

 () · ln £ + (1− ) 
¤
 (3)

and   0 is the investor’s unit cost of information, see below. The maximand in (3)

is continuous and strictly concave in , and the constraint set is convex and compact,

so the maximizer ̂ is uniquely determined. If ̂ lies strictly between zero and one,

then it necessarily satisfies the associated first-order condition, which, as shown in

Corollary 2 in Matejka and McKay (2015) can be written in the form (for a proof,

see Appendix A):

 () = 1 (4)

where  : [0 1]→ R is defined by

 () =
X
∈

 () · 
 + (1− ) 

 (5)

9The information-theoretic interpretation of entropy is due to Shannon (1948), and further de-

veloped by Shannon and Weaver (1949), Jaynes (1957), Kullback (1959) and Hobson (1969). For

diverse applications to economics and the social sciences, see Snickars and Weibull (1977), Mattsson

and Weibull (2002), Gossner, Hernandez and Neyman (2006), and Yang (2015). Cabrales, Gossner

and Serrano (2013) analyze orderings of information structures in terms of their informativeness for

choice of an investment project from a finite set of alternatives, with emphasis on orderings based

on entropy.
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It follows from (2) and (5) that the product ̂ (̂) equals the ex ante investment

probability, E
£
̂|
¤
. From this we conclude that ̂ = E

£
̂|
¤
if 0  ̂  1 (since

then  (̂) = 1).10 In fact, it is easily verified that ̂ = E
£
̂|
¤
also when ̂ = 0 and

̂ = 1. In sum: ̂ is the ex ante investment probability (before information has been

acquired): ̂ = E
£
̂|
¤
.

The investor’s conditionally expected profit, given that the investment’s true net

return rate is  ∈  , equals the net return  from investing, times the conditional

investment probability in that state of nature, plus the net return from not investing,

times the conditional probability for not investing in that state, minus the investor’s

information costs. This conditionally expected profit can be written in the following

form

Π̂ ( ) =
(− ) ̂

̂ + (1− ̂) 
+  −  · £ (̂)−

¡
̂|=

¢¤ ∀ ∈ (6)

Here   0 is the investor’s unit cost of information, mentioned above, and  is

the entropy function for a binary probability distribution, that is,  : [0 1] → R is
defined by

 () = −  ln − (1− ) ln (1− ) (7)

(with the convention 0 ln 0 = 0).

Entropy represents the uncertainty embodied in a probability distribution. It

is minimal and takes the value zero when there is no uncertainty (when  = 0 or

 = 1), and it is maximal when all outcomes are equally likely ( = 12 in the binary

case). In his seminal paper, Shannon (1948), characterizes axiomatically entropy as

a quantitative measure of the uncertainty inherent in probability distributions with

finite support. More precisely, his Theorem 1 establishes that entropy is the unique

measure (up to scaling) that satisfies three desirable qualitative properties. First, the

measure should be continuous in the probabilities. Second, if all outcomes have the

same probability, then the measure should be larger the more outcomes there are.

Third, suppose that the random mechanism generating the outcomes consists of two

steps, where first a random draw is made of a subset (or "cell") from a partitioning of

the set of outcomes, and then a random draw is made from within the selected subset

(or cell). Then the uncertainty measure should be the probabilistically weighted sum

of the uncertainty measures of the random draws within each subset.

In (6),  (̂) is the entropy of the ex ante investment probability and 
¡
̂|=

¢
the entropy of the conditional investment probability when  ∈  . The difference

 (̂)−
¡
̂|=

¢
thus represents the entropy reduction when moving from the aver-

age investment probability ̂ to the adapted investment probability ̂|= in the state

10By definition of the function  it is clear that (4) always has a trivial corner solution, namely

 = 1, which, however, is "out of bounds" since the equation is required to hold only when ̂ ∈ (0 1).
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of nature . Maximal entropy reduction would be obtained if the investor would

almost surely invest precisely in those states where the net return rate  exceeds the

interest rate . However, to obtain such precise information is prohibitively costly and

hence not optimal (or, in practice, feasible). The investor has to trade off information

costs against information benefits for her subsequent investment decision.

Taking expectations, according to the investor’s prior  (·), we obtain the following
expression for the investor’s ex ante expected profit:

Π̂ ( ) =  ·
"
(1− ̂)  +

X
∈

̂ ()

̂ + (1− ̂) (−)

#
− ·£ (̂)− E ¡ ¡̂|¢¢¤  (8)

where E
£

¡
̂|
¢¤
is the ex ante expected entropy of the conditional investment

probability,

E
£

¡
̂|
¢¤
=
X
∈

 () · ¡̂|=¢  (9)

The difference  (̂) − E £ ¡̂|¢¤ in (8) thus represents the expected reduction in
entropy when moving from ̂ to ̂| .
Going back to how ̂ is determined in (4), one sees that ̂ = 1 if all net returns

   (since then  ()  1 for all   1). Likewise, ̂ = 0 if    (since then

 ()  1 for all   1). In the first case, the investor (almost) always invests, ̂| = 1
(a.s.), while in the second case she (almost) never invests, ̂| = 0 (a.s.). In both

cases, she wastes no resources on information acquisition: E
£

¡
̂|
¢¤
=  (̂) = 0.

In other words, she then makes her investment decision "blindly". The phenomenon

of "blind" decisions, to decide without acquiring information, occurs also in less stark

situations. We will say that investment conditions are sweet when it is optimal to

invest blindly, ̂ = 1, and that investment conditions are sour when it is optimal to

blindly not invest, ̂ = 0. In all other cases, 0  ̂  1, investment conditions will be

called normal. The following result, which agrees with Lemma 2 in Woodford (2008)

and Proposition 1 in Yang (2015), characterizes the three investment conditions in

our simple model:

Proposition 1. The ex-ante investment probability ̂ = E
£
̂|
¤
is uniquely deter-

mined by (2), (3) and (4). Investment conditions are normal if

− lnE £−
¤
    lnE

£


¤
 (10)

sour if

 ≥  lnE
£


¤
 (11)

and sweet if

 ≤ − lnE £−
¤
 (12)
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The sourness condition (11) says that for high enough interest rates it is not worth-

while for a rational investor to even consider the project. The sweetness condition

(12) says that if the interest rate is low enough, then it is rational to invest without

bothering to acquire further information about the project (beyond the information

represented by the prior). The normality condition (10) identifies the intermediate

range of interest rates at which it is worthwhile for the investor to acquire some in-

formation about the project and, if this information is favorable enough, to invest.

Moreover:

Corollary 1. For every project  and any unit information cost   0 there exists a

nonempty interval of interest rates  under which investment conditions are normal.

In sum, the investor’s expected profit, when using her optimal information-cum-

investment strategy, is given by

Π̂ ( ) =

⎧⎨⎩  ·  if (11)

 ·  () if (10)

 · E [] if (12)

 (13)

where, for any   0,

 () =

"
(1− ̂)  +

X
∈

̂ ()

̂ + (1− ̂) (−)

#
·  (14)

−  (̂) +
X
∈

 ()

µ
̂

̂ + (1− ̂) (−)

¶


and, under normal investment conditions, ̂ ∈ (0 1) satisfiesX
∈

 ()

̂ + (1− ̂) (−)
= 1 (15)

The last equation implies that ̂ → Pr [  ] as  → +∞.11 In other words, if the
investment  is very large and/or the unit information cost  is very low, then the

ex ante probability of investment, ̂, is close to the probability that the net return

exceeds the interest rate. In the limit  → +∞, the investor acts as if she were
perfectly informed about the true state of nature.

We illustrate the above analysis graphically for a double-or-nothing project that

either has net return rate 1 or −1. Let  be the probability for the first outcome. The
11We here assume that  has probability zero of being exactly equal to the interest rate .
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investor’s ex ante expected profit is shown as a function of the prior  for the "good"

state of nature is shown in Figure 3 below, drawn for  = 1,  = 0 and  = 05.

Figure 1: The investor’s expected profit in the rational-inattention model.

In this example, the range of priors  for which the investment conditions are nor-

mal is approximately 012    088.12 The upward-bending curve is the investor’s

expected profit. Not surprisingly, it is increasing in the prior  for the good state of

nature. Its horizontal line segment, for low , represent her expected profit (zero) in

sour investment conditions ( . 012). For  & 088, investment conditions are sweet,
which results in the steep straight line part of the curve (the net return from blind

investment). The dashed 45-degree line is the ex ante expected profit to a perfectly

informed investor (that is, who knows the true state of nature, or, equivalently, has

zero information cost,  = 0). Such an investor will invest if and only if the state of

nature is good (which it is with probability ). By contrast, the expected profit to a

completely uninformed investor (who’s only information is the prior, or equivalently

has infinite information cost,  = +∞) is zero for all  ≤ 12, since it is then optimal
for her not to invest. It is 2 − 1 for all   12, since it is then optimal for her to

invest. This is the dashed steep line.

The diagram thus shows how the ex ante expected profit to the rationally inatten-

tive investor lies between the two extremes–of perfect information or no information–

in normal investment conditions, and how the investor chooses not to be informed

12More exactly, the normality condition writes

1− −2

2 − −2
  

2 − 1
2 − −2


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when the probability for the good state of nature is either low or high. Not sur-

prisingly, the rationally inattentive investor always does worse than the perfectly

informed investor, never worse than the uninformed investor, and, for an interval of

moderate priors, does better than the latter. For low and high priors she does no

better than the uninformed investor. It is in the middle range–under normal invest-

ment conditions, and only then–that she does better than the latter. As the unit

information cost   0 diminishes, the profit curve in the diagram moves upwards

until it hits the diagonal in the limit as → 0.

3. Delegation to a rationally inattentive agent

Suppose now that the investor considers the possibility of hiring an agent who has

some comparative advantage in acquiring and processing relevant information. We

model also this actor as rationally inattentive. Suppose that the principal knows the

agent’s unit cost for collecting and analyzing information as well as his risk attitude.

However, the principal does not know the agent’s effort, the quality of the agent’s

information, or what information this is. The only verifiable information is whether

or not investment was made, and, if made, its return. In view of these informational

difficulties, the principal delegates the investment decision to the agent, if hired.

The agent is risk neutral or risk-averse, and we take him to be purely self-

interested, a homo oeconomicus. His effort and investment decision will thus be

entirely driven by self interest. The investor may benefit from such an arrangement–

compared with acting in autarky–if the agent is talented enough (has a low unit cost

of information), makes sufficient effort to gather and process information, and subse-

quently makes a wise investment decision from the principal’s viewpoint.

To be more precise, we consider contracts of the form hwi, where  ∈ R is the
agent’s pay if he does not invest, andw : → R is a payment scheme, a function that
specifies the reimbursement  = w () to the agent for every possible realized net

return rate  ∈ from investment in the project. We focus on contracts that meet

the limited-liability constraint of never requiring the agent to make a net payment to

the principal. More precisely:  ≥ 0 andw () ≥ 0 in all states of nature  = 1 .
We will refer to  as the agent’s salary and the difference w () −  as his bonus, if

positive, or penalty, if negative. The agent’s Bernoulli function of income, , is taken

to be strictly increasing and continuous. His unit cost of information acquisition is

  0, and his outside option has expected utility ̄.

Again applying Theorem 1, Lemma 2 and Corollary 2 in Matejka and McKay

(2015), we obtain similar expressions for the agent, once hired, as were obtained for

the investor in autarky. Essentially, one only has to replace the investor’s net returns

by utilities from remuneration when investing and not investing. The agent’s salary

will play the same role as the investor’s opportunity cost .
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To be more precise, let   0 be the agent’s unit information cost, ∗ his a
priori investment probability, and ∗|= his conditional investment probability when
 ∈ . We then have

∗|= =
∗[()]

∗(()) + (1− ∗) ()
 (16)

where

∗ ∈ arg max
∈[01]

X
∈

 () · ln £[()] + (1− ) ()
¤
 (17)

and, if ∗ ∈ (0 1), X
∈

 () · [()]
∗[()] + (1− ∗) ()

= 1 (18)

Just as for the investor in autarky, the agent’s investment conditions may be

"sour", "normal" or "sweet". Necessary and sufficient conditions for the three cases

parallel those for the investor in autarky:

Corollary 2. Investment conditions are normal for the agent if

− lnE
£
−[()]

¤
  ()   lnE

£
[()]

¤
 (19)

sour if

 () ≥  lnE
£
[()]

¤
 (20)

and sweet if

 () ≤ −E
£
−[()]

¤
 (21)

In other words, once employed, the agent will make no effort to acquire information

and not invest if his salary is too high, as expressed by inequality (20). He will also

make no effort to acquire information, but nevertheless invest, if his salary is too

low, as expressed in (21). For intermediate salaries, those that satisfy (19), he will

acquire some information and thereafter invest if and only if the obtained information

is sufficiently favorable for investment, for him personally under his contract. We

finally note that the agent’s behavior, once employed by the principal, is uniquely

determined by his (positive or negative) utility gain from investing,  [w ()]−  (),

under each possible outcome  ∈ .13

What contract, if any, will a rational and risk-neutral principal propose the agent?

First, the contract has to meet the agent’s participation constraint that his ex ante

13This is evident after some algebraic manipulation of all equations and inequalities above, which

shows that all that matters are the two quantities E
£
[(())−()]

¤
and E

£
−[(())−()]

¤
.
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expected utility under the contract does not fall short of his reservation utility. Sec-

ond, the contract must be such that it provides normal investment conditions for

the agent (otherwise he is not worthwhile to hire). Third, among all contracts, if

any, that meet these two requirements, the contract should yield the highest possible

expected profit to the principal. Fourth and finally, the principal’s maximal expected

profit from hiring the agent should exceed the expected profit from not hiring the

agent, which could be either to not invest, yielding the net return rate , or to acquire

information herself (at unit information cost ) and making the investment decision

single-handedly.

We will analyze these four conditions in turn. For this purpose, we begin by noting

that the agent’s ex ante expected utility under any contract hwi can, in analogy
with (8), be written as

 (w) = (1− ∗) () +
X
∈

∗ () [w ()]
∗ + (1− ∗) (()−[()])

(22)

− 
¡
 (∗)− E £ ¡∗|¢¤¢

The first condition mentioned above, the agent’s participation constraint, is simply

 (w) ≥ ̄ (23)

The second condition, that the agent’ investment conditions should be normal,

is precisely (19). In words, this condition requires that the salary, and bonuses and

penalties should be "well-balanced". In particular, the salary should be neither too

low nor too high. As will be seen shortly, this requirement implies that the agent’s

participation constraint will not always be binding, not even when the agent is risk

neutral. It may be in the principal’s interest to pay the agent enough in salary so that

a potential loss of salary deters him from making risky investments or being poorly

informed.

In order to pin down the third and fourth conditions, we first need to express the

principal’s ex ante expected profit from hiring the agent under any contract hwi.
This expected profit is the convex combination of two terms, where the first is a

probability-weighted sum of the net returns to the principal from investing in each

state (net of the payment to the agent). The second term is the principal’s interest

earnings net of the salary to the agent:

Π (w) = (1− ∗) ( − ) +
X
∈

∗ () [ −w ()]
∗ + (1− ∗) −([()]−())

 (24)

The weight on the first term, ∗, is the agent’s ex ante investment probability–
before acquiring information–under contract hwi. If the contract provides normal
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investment conditions for the agent, 0  ∗  1, then ∗ is uniquely determined
by (18). If instead the agent’s investment conditions are sour under the contract,

∗ = 0, then he acquires no information and does not invests. In this case (24)

gives E [Π (w)] =  − . Likewise, if the contract turns the agent’s invest-

ment sweet, ∗ = 1, then the agent invests "blindly", resulting in E [Π (w)] =
 · E [ −w ()] ≤  · E []. Clearly, there is no point for the principal to pro-
pose the agent a contract under which he collects no information, since the principal

would earn at least as much by making the investment decision herself without any

information acquisition;  ≥  −  and E [] ≥ E [ −w ()].
We can now state the third condition, that the contract should be optimal for

the principal among all feasible contracts, if any, that meet the agent’s participation

constraint and provides normal investment conditions to the agent. Formally, this

third condition can be summarized as the requirement that the contract, h∗w∗i,
should be a solution of the program

max
hi s.t. (23) & (19)

Π (w) (25)

This brings us to the fourth condition, that all of this should be worthwhile

for the principal. Suppose, thus, that h∗w∗i solves program (25) and results in

profit Π (∗w∗). If the principal, when acquiring information in autarky has unit
information cost , then it is optimal for her to offer the agent the said contract if

and only if

Π (∗w∗) ≥ Π̂ ( )  (26)

where we note that if the principal’s unit information cost is prohibitively high (→
∞), then she would in autarky not acquire any information, and then (26) would
become Π (∗w∗) ≥  ·max {E []}.

3.1. Risk-neutral agent. We here examine in more detail the special case of a

risk-neutral agent.14 The principal’s expected profit from any contract hwi can
then be written in the form

Π (w) =

X
=1

∗ [( − )  +  − ]

∗ + (1− ∗) (−)
−  (27)

where  =  () and  = w () for each state of nature , and, under normal

investment conditions for the agent, ∗ ∈ (0 1) satisfies
X
=1



∗ + (1− ∗) (−)
= 1 (28)

14The case of a risk-averse agent with logaritmic utility of income is also analytically tractable.

However, for the sake of brevity we do not treat that case.
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The agent’s behavior, once hired, is thus driven entirely by the net transfers after

investment from the principal to the agent, the differences  = − (when positive a
bonus, when negative a penalty). Because the vector of net transfers,  = (1  ),

determines ∗, the ex ante probability that the agent will invest, according to equation
(28), and, given ∗, this determines in turn all conditional investment probabilities,
according to equation (16), which results in equation (27).

The agent’s expected utility takes the form

 (w) =  +

X
=1

∗ ( − )

∗ + (1− ∗) (−)
−  · (∗) (29)

+  ·
X
=1



µ
∗

∗ + (1− ∗) (−)

¶
An application of the Karush-Kuhn-Tucker theorem leads to the following obser-

vation:

Proposition 2. If a contract hwi solves (25), then ∗ ∈ (0 1) is uniquely deter-
mined by (28). Moreover,

 −  − 
∗

1− ∗
(−) =  −  − 

∗

1− ∗
(−) (30)

for any states of nature  and  with    0.

Each side of (30) is strictly decreasing in the payment to the agent after invest-

ment, but increasing in the agent’s salary. Hence, if the payments to the agent after

investment in any two states are positive, then the pay will be higher in the state

with a higher net return: if    0 and   , then   . Consequently,

any optimal contract hwi under which the agent’s participation constraint is not
binding has the following monotonicity property: either all payments are positive

and 0  1  2     or 1 = 2 =  =  = 0 for some positive integer

  , and 0  +1  +2    . Is the first case possible? The answer

is no if the agent’s participation constraint is slack. The reason can be seen directly

in the definition (27) of the principal’s expected profit. Suppose that 1  0. Then

subtract some small amount  ∈ (0 1) from all payments  after investment and

also from the salary, . This does not affect the first term in (27), since the agent’s

behavior, once hired, is driven entirely by the net transfers. However, such a subtrac-

tion reduces the second term, the agent’s salary, by . Hence, a net increase in the

principal’s expected profit (by   0). In sum:
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Corollary 3. If a contract hwi is optimal and the agent’s participation constraint
is slack, then there exists a positive integer    such that

1 =  =  = 0  +1     (31)

Moreover, irrespective of whether the agent’s participation constraint is binding

or not, the pay schedule after investment is strictly monotonic in the realized net

return of investment, wherever positive. Indeed, it follows from (30) that the pay

schedule is strictly concave where positive.15 Consequently, linear contracts (such as

a fixed salary plus stocks) are suboptimal.

Corollary 4. If a contract hwi is optimal, then there exists a strictly increasing
and strictly concave function  : R → R+ such that w () = max {0  ()} for all
 ∈ , where

 () = −  ·
¡


¢− (32)

for constants   0 and , where  is the Lambert W function.

The so-called Lambert W function is implicitly defined by  =  () where

 = , see e.g. Corless et al. (1996). The result in Corollary 4 is illustrated

in the diagram below (drawn for  = 1,  = 005,  = 05 and  = 0015).

-0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

x

w(x)

Figure 2: The shape of the optimal contract to a risk-neutral agent.

15More precisely, all payments on can be represented by a continuous, strictly increasging and

concave function on the convex hull of  . There are infinitely many other reprentation functions

with this wider domain that lack all these properties outside the finite subset  of theír domain.
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The kinked solid curve is the after-investment payment function w, the thin hori-

zontal line the agent’s salary , and the dashed straight line the net return, , from

investment. In this example, the agent thus has to pay a penalty if he invests and

the return rate  falls below ≈ 36%, and he is paid a bonus if he invests and the net
return rate exceeds this level. His bonus increases with the investment’s net return,

but at a falling rate. The principal thus retains an increasing share. The penalty is

maximal–equal to agent’s salary–for all net return rates below ≈ 5%.
Returning to the general case, we note that optimal pay schemes are "more linear"

the lower is the agent’s unit information cost. In the limit when the agent is perfectly

informed about the state of nature at no cost, the pay scheme becomes affine. The

conflict between the need to incentivize (a) information acquisition and (b) judgement

at the moment of investment is then mute. To see this, consider Proposition 2, assume

that 1    , and let  → 0. By (28), ∗ → P [ ()  ] ∈ (0 1). Hence, in
the limit  −  =  −  for all    0. In other words, the principal then

pays the agent a constant share of the net return from investment.

Is it worthwhile for the principal to hire an agent? This depends on the agent’s

comparative advantage in acquiring and processing relevant information about invest-

ment projects. In Figure 3 below we compare autarky with delegation in the same

numerical specification as in Figure 1 ( = 1,  = 2, 1 = −1, 2 = 1,  = 0, and
 = 05).

Figure 3: The investor’s ex ante expected profit under delegation.

The solid curve is the investor’s expected profit under delegation to a risk neutral

agent with ten times lower unit information cost than the investor,  = 005. The
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dashed curve is the investor’s expected profit in autarky. We see that delegation

results in a higher expected profit to the investor for a wide intermediate range of

priors . In particular, for priors near one half, when there is most to be gained by

way of information acquisition, it is worthwhile for the principal to hire the agent.

But will the agent accept the offered contract? The low curve, that jumps up from

zero, then increases slightly, and then falls back to zero, is the agent’s expected utility

under the corresponding globally optimal contract. Hence, the agent’s participation

constraint will not be binding if his reservation utility ̄ is less than approximately

008 in this example. We also see that, for the intermediate interval of -values at

which there are positive gains of trade, welfare, defined as the sum of expected profits

and utility, is an increasing function of , running not far below the maximum possible

(the diagonal), with the share that befalls the principal increasing from zero to about

two thirds.

Evidently the gains of trade are (smaller) larger the (higher) lower is the agent’s

unit cost of information (given the investor’s own unit cost of information). Figures

4 and 5 illustrate this.

Figure 4: The principal’s expected profit from delegation to a less able agent.

In Figure 4, the agent’s unit cost of information is one fifth of that of the principal,

 = 01. The diagram shows that there exists no contract that makes it worthwhile

for the principal to hire such an agent: for all priors the principal is better off in

autarky (the dashed curve lies above the solid curve). If the principal does not have

the time or possibility to acquire information herself (equivalent to setting  = +∞),
then her ex ante expected profit would be zero for all  ≤ 12 and rise linearly (along
the steep dashed straight line) she would be willing to hire even this less able agent,
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but only for a relatively small range of priors (approximately 033    060). Fig-

ure 5 shows the opposite situation when the agent is very able, when his unit cost is

only  = 001. The diagram shows that such an agent is well worthwhile to hire for

a wide range of priors.

Figure 5: The principal’s expected profit under delegation to a more able agent.

We note that the agent’s expected utility if hired, as indicated in the above di-

agrams, is higher the less able the agent is. This may appear counter-intuitive.

However, from Corollary 3 we know that the agent, when his participation constraint

is not binding (as we here assume), will be paid nothing after a failed investment:

1 = 0. In order to obtain information about the project at hand, a more able agent

needs to exert less effort and so has to be paid less than a less able agent, who has

to work hard to become well-informed. Hence, in the absence of a (binding) partici-

pation constraint, a smaller bonus is sufficient for the more able agent, at any given

level of the penalty, and the penalty is equal to the salary. The above diagrams show

that the principal benefits from the agent’s increased ability (lower unit cost of infor-

mation ). The optimal contracts, conditional upon hiring, in these three examples

(evaluated at  = 05) are:

TABLE 1¯̄̄̄
¯̄̄̄  salary bonus penalty profit utility

010 0141 0158 0141 0122 0171

005 0110 0129 0110 0250 0144

001 0039 0045 0039 0424 0055

¯̄̄̄
¯̄̄̄

Both expected profit and welfare (defined as the sum of utility and profit) increase

with increased ability of the agent while the agent’s expected utility decreases (in
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this range). The principal’s expected profit in autarky (when her unit information

cost is  = 05) is approximately 0217. Hence, she will not offer any contract to the

low-ability agent.

The present analysis is premised on the assumption that the principal knows the

agent’s type (preferences, information costs, and reservation utility). What can be

said in cases of incomplete information? Suppose that there are three types of agent,

those in Table 1, and assume that the principal does not know what type a given

agent has. The principal would prefer to hire the most able type of agent, granted

such agents’ reservation utilities are not too high. Hence, a high-ability agent with

reservation utility not above 0055 does not necessarily want to appear less able than

he is. A low-ability agent might not want to appear as more able that he is either,

since then the conditions of the contract might become too tough. A low-ability agent

( = 010), if hired under the contract for the high-ability type ( = 001), would

obtain expected utility 0043, and a medium-ability agent ( = 005) under that

contract would obtain expected utility 0045. Hence, these are the critical reservation

utilities for enabling the principal to use screening and self-selection in order to make

only high-ability agents "bite". These observations can be generalized and would be

worthwhile to study more in depth, but, in the interest of brevity we leave them for

future research.

Returning to our complete-information setting, we also note the slight asymmetry,

despite the project’s symmetry: the bonus rates, defined as (2 − ) , are always

larger than the penalty rate (which is always 100% due to the binding limited-liability

constraint). This asymmetry is also apparent in Corollary 4, which establishes that

optimal contracts are non-linear. In particular, incentive schemes containing a salary

and a constant share of the project’s net return may not be optimal. The reason is

that, although such contracts will perfectly align the agent’s incentives with those of

the principal (had the principal had access to the agent’s private information about

the project at hand) at the moment of investment, they will not provide enough

incentive for the agent’s information acquisition. The agent carries all the burden of

information acquisition but reaps only part of the benefit of enhanced information,

so a share of the project return (such as stocks in the company) may be insufficient.

As the bonus and penalty are increased in order to enhance the agent’s information

acquisition, the penalty will soon hit the limited-liability constraint. Indeed, for

projects with binary return distributions (as in the above diagrams), the limited

liability constraint is binding; 1 = 0. Any increase of the penalty is therefore more

costly for the principal than the same increase of the bonus. This is because an

increase of the penalty can only be made by raising the salary, and if the bonus is

to be kept intact, also of the payment after a successful investment. Hence, if the

agents is paid a fixed salary and some stocks, then some options (say, to buy future

stocks at today’s price) has to be added so as to boost the reward after successful
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investments.

In order to study the role of the participation constraint, one needs to solve the

principal’s problem when this constraint is binding. Figure 6, below (drawn for the

same parameters as in Figure 3, and  = 05), illustrates precisely this.

Figure 6: Iso-profit curves and iso-utility curves in contract space.

The diagram shows indifference curves for both parties in contract space, with

the salary  (which is equal to the penalty) on the horizontal axis and the bonus,  =

2−, on the vertical. The principal’s iso-profit curves are the solid curves that form
closed loops, while the agent’s iso-utility curves are the dashed and negatively sloped

curves. The principal’s global optimum, in the absence of the agent’s participation

constraint, is indicated by the small square at approximately, ∗ ≈ 0110 and ∗ ≈
0129, at which points the principal’s expected profit is approximately 0250 and

the agent’s expected utility approximately 0144. Hence, if the agent’s reservation

utility is below this level, then his participation constraint is slack. The largest

iso-profit curve in the diagram corresponds to zero expected profit, the profit the

principal would earn in autarky if not acquiring information herself. If her unit cost

of information acquisition would be  = 05 (the same as in Figures 1 and 3), then

her expected profit in autarky would be approximately 0217, corresponding to the

smallest iso-profit curve in the diagram.
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The diagram also shows that the agent’s expected utility is not quasi-concave in

contract space; the non-convex upper contour sets for his expected utility being the

areas above the dashed curves. Despite this, the principal’s maximization program

(25) has unique solutions, indicated by little circles, for each of the different levels of

his reservation utility ̄. These are the optimal contracts for the principal to offer.

All optimal contracts in this example includes a higher bonus than penalty–they lie

above the diagonal–although the project in question is perfectly symmetric (1 = −1,
 = 0, 2 = 1, and  = 12). This asymmetry of the optimal contracts, discussed in

general above, implies that the agent’s incentive, at the moment of investment (after

he has acquired his private information) are not perfectly aligned with those of the

investor. Under an optimal contract, the agent is thus willing to take a little more risk

than the investor, to invest even when his private information is not sufficient to make

investment rational for the investor, had the investor had that information. In other

words, optimality (for the principal) requires that her desire to align the incentives at

the investment decision have to be traded off against her desire to induce the agent to

be well informed. In a sense, information is a public good for the two parties, so the

agent has a tendency to under-invest in it unless compensated by the principal, who,

however, cannot monitor the agent’s effort and cannot increase the penalty without

raising the salary.

Remark 1. The non-convexity in the risk neutral agent’s preferences as defined over

contracts, exhibited in Figures 3-6, and to be seen also in the next section, is not

too surprising in the light of previous research. Already Radner and Stiglitz (1984)

showed that information, when treated as a good, leads to non-convexities. See also

Chade and Schlee (2002) and Weibull, Mattsson and Voorneveld (2007).

4. A signal-extraction model

Are the qualitative results model specific, due to some "hidden" feature of the

rational-inattention model framework? In order to investigate this issue we here

compare the above results with those of an alternative model, a canonical model of

signal-extraction. We elaborate this model only for projects with binary return dis-

tributions, risk neutral agents, and investments with binary returns. In the present

framework, information takes the form of a noisy signal about the true return rate,

and this noise is costly to reduce. We begin by considering an investor in autarky

and then turn to delegation.16

16This comparative exercise differs from that in Fosgerau et al (2017) in that while they consider

the choice of a single decision maker who faces finitely many alternatives, we here consider both au-

tarky and agency, in simple binary investment problems, and also analyze implications for expected

profits and utilities.
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4.1. Investor in autarky. Just as in Sections 2-4, a risk-neutral and rational

investor considers an indivisible investment opportunity, or project, that requires a

lump-sum investment,   0, and gives a risky return  . The probability distribution

of the random net return  =  − 1 is known by the investor and has support
 = {1 2}. If the investor opts not to invest, then she obtains a sure net return
rate  = 0. We assume that 1  0  2. If she decides to acquire information about

the project, then she will receive a noisy signal  about its net return rate,

 =  +  (33)

where the noise  term is statistically independent of . It is normally distributed

with mean zero and variance 1  0. We call   0 the signal precision. While in

the rational-inattention approach the decision-maker is free to design how to obtain

information and what information to obtain, here she receives information as a signal,

and can only affect the noisiness of the signal. More specifically, the investor’s cost

of obtaining any given degree of signal precision   0 is  (), where  is a strictly

increasing function.

The investor’s profit, if she decides to invest, is the (random) net return minus

the information cost (which she has to pay even if she subsequently decides not to

invest). Under what conditions will the investor decide to acquire information? If

she decides to acquire information, what signal precision   0 will she choose? Once

her information has arrived, what investment decision will she then make? Will the

results be qualitatively similar to those obtained in the rational-inattention model?

We answer these questions in reversed order.

Suppose that the investor has obtained information, the realization of a signal

 of precision   0. Her information costs being sunk, it is now optimal for her

to invest if and only if the received signal is such that the associated conditionally

expected net return rate is nonnegative,

E [ |  = ] ≥ 0 (34)

Since the simple signal structure (33) meets the monotone likelihood ratio property

(MLRP), this inequality can be written equivalently as

 ≥ ̂ () (35)

for some ̂ () ∈ R, the optimal (finite or infinite) signal threshold.17 This threshold
defines an optimal investment strategy, given any signal precision   0 that the

investor’s signal may have.

17Even under the MLRP, ̂ () may be infinite, in which case ̂ () = −∞ means "always invest"

and ̂ () = +∞ "never invest". However, because of its thin tails, the normal distribution has

̂ () ∈ R for all   0, see Lemma 1 in Appendix A.
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We now take one step backwards in time and consider the investor’s informa-

tion acquisition decision. Anticipating that she will use her optimal signal threshold

thereafter, she chooses her signal precision so that it maximizes her ex ante expected

profit, the expected financial profit net of information costs,

Π̃ () =  ()−  ()  (36)

where the first term is the expected net return from using the optimal investment

strategy (given ):

 () =  · E [ |   ̂ ()] · Pr [ ≥ ̂ ()] (37)

It is the product of three factors: the size of the investment, the conditionally expected

net return if investment is made, and the probability for investment (recall that the

opportunity cost, the interest rate, is here normalized to zero).

If the investor chooses not to acquire any information,  = 0, then it is optimal

for her to invest in the project if and only if its a priori expected return rate is

nonnegative (since  = 0). By contrast, if she chooses to acquire information,   0,

then the chosen precision  has to meet the first-order condition that its marginal

financial value equals its marginal cost,

 0 () =  0 ()  (38)

We will say that nature is in the good state when  = 2 and in the bad state

when  = 1, and write  =  (2) for the prior probability for the good state, just

as in the binary case studied in Section 3 above. As shown in Lemma 1 in Appendix

B, the investor’s optimal signal threshold is

̂ () =
2 + 1

2
− ln ̂

(2 − 1) 
 (39)

where

̂ =


1− 
· 2

|1|  (40)

a parameter that we call the risk balance of the project, being the ratio between the

project’s "expected upside", 2, and "expected downside", (1− ) |1|. Equation
(39) tells us that the more favorable the risk balance, the lower the investor’s optimal

signal threshold, that is the wider is the range of signals for which she is willing to

invest. Moreover, the project is a priori profitable (unprofitable) if the risk balance

exceeds (falls short of) unity; ̂  1 ⇔ E []   = 0.
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It is not difficult to verify (see Appendix B) that the associated marginal value of

information can be written as

 0 () =
2 − 1

2
·  · ̂√
2

· exp
"
− 1
2

µ
ln ̂

2 − 1

¶2
− 

2

µ
2 − 1

2

¶2#
 (41)

where

̂ = 
p
 (1− )2 |1| (42)

a quantity we will refer to as the riskiness of the project. The marginal value of

information is thus positive at all positive signal precisions. However, when ̂ 6= 1 it
tends to zero as the signal precision either tends to zero or to plus infinity. A poorly

informed investor is not much helped by a small bit of information, and very well

informed investor does not benefit much by a small piece of additional information.

Hence, the marginal value of information is non-monotonic with respect to signal

precision in the generic case when ̂ 6= 1. More precisely , if ̂ 6= 1, then  0 ()  0

for all   0, lim→+∞  0 () = 0, and lim→0  0 () = 0. By contrast, if ̂ = 1, then
still  0 ()  0 for all   0, and lim→+∞  0 () = 0, but now lim→0  0 () = +∞.
Hence, in this knife-edge case, but only then, the marginal value of information is

infinite at zero signal precision and declines monotonically towards zero as signal

precision rises.

Moreover, we see in (41) that, at any given positive signal precision, the marginal

value of information is increasing in the riskiness ̂ of the project, but non-monotonic

in its risk balance ̂. At any given signal precision, is largest for projects with unit

risk balance. This is precisely when the uninformed investor is indifferent between

investing and not investing (when E [] = 0). The more the risk balance deviates

from unity, the lower is the marginal value of information for the investor.

In order to close the model, we need to specify the cost of information acquisition.

We consider a certain parametric form that turns out to be analytically convenient,

namely cost functions of the form

 () =  ·
Z 

0

1√

exp

µ
− 



¶
 (43)

for     0. The associated marginal information cost,  0 (), is positive at
all positive signal precisions, running from zero as zero signal precision towards plus

infinity as precision tends to plus infinity. Indeed,  is convex if and only if 16 ≥ 1,
and it is always convex on the interval

£
0
¡
1−√1− 16¢ 4¤, see Appendix B.

For moderate ranges of signal precision, the graph of these cost functions can be made

almost indistinguishable from more conventional cost functions such as  () =  2.18

18Arguably, this class of cost functions are close to canonical cost functions in economics. An
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For cost functions of the form (43), the optimal signal precision can be solved

explicitly. Let

̂ = ln ̂+ ln

µ
2 − 1

2

¶
− ln

³

√
2
´
 (44)

a (positive or negative) quantity that is increasing in the riskiness of the project, ̂,

and decreasing in the information cost parameter . Let

̂ = ̂2 −
"µ

2 − 1

2

¶2
+ 2

#
·
"µ

ln ̂

2 − 1

¶2
− 2

#
(45)

This quantity is positive when the risk balance ̂ is close to unity. When ̂  0, let

̂ =
̂ +

p
̂

(2 − 1)
2
4 + 2

 (46)

The following result combines the necessary first-order condition  0 () =  0 ()
for a positive signal precision  to be optimal with the also necessary requirement

that this should result in a higher expected profit to the investor than choosing signal

precision  = 0 (and then going for the best alternative use of her money).

Proposition 3. Suppose that the cost function is of the form (43). If ̂  0, ̂  0,

and Π (̂)   ·max {E []}, then ̂ is the optimal signal precision. If ̂ ≤ 0, the
optimal signal precision is zero.

In other words, the condition ̂  0 is necessary, but not sufficient, for the investor

to bother to acquire information. Suppose that ̂ is positive. It is not difficult to

verify that the investor’s optimal signal precision is then positive and given by (46)

if either ̂ ≥ 0 or

̂  0 and −(2−1)
√
2  ̂  (2−1)

√
2 (47)

Hence, there are two distinct conditions under which the investor will not acquire

any information, just as in the rational-inattention model. Under certain investment

conditions, the investor will not bother to acquire any information and will not in-

vest. Under other investment conditions, she will invest "blindly", that is without

alternative to these functions would be to use entropy also here. The noise term in our model is

assumed to be normally distributed and the entropy of the normal distribution is an increasing

function of its variance. Hence, a decreasing function of signal precision  . However, to use such a

cost function would weaken our robustness results since it would bring the signal extraction model

closer to the rational inattention model.
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bothering to acquire any information. Under intermediate investment conditions, the

investor will acquire some information and invest if and only if the received signal

is sufficiently favorable. This is the first point where we note a similarity with the

rational-inattention model.

In force of Proposition 3, the three investment conditions can be precisely iden-

tified, a task to which we now turn in a special case, namely a double-or-nothing

investment project. Let  = 1, 1 = −1, and 2 = 1. Then the risk balance is

simply the odds ratio, ̂ =  (1− ), and the riskiness is the geometric mean of the

probabilities for the two states of nature, ̂ =
p
 (1− ). Moreover,  ≥ 0 if and

only if  ≤
p
 (1− ) 2. This inequality holds if the information-cost parameter 

is small and/or the prior  is close to one half. In particular, ̂  0 for all  ∈ [0 1]
if and only if   1

√
8 ≈ 02. Suppose that  meets this condition. Then ̂  0 if

and only if µ
ln  − ln (1− )

2

¶2
 2 (48)

For  = 12, this is identical with the definition of (strictly) normal investment con-

ditions in the rational-inattention model when applied this example (for  = 12).19

The diagram below shows the investor’s expected profit (solid curve) as a function

of the prior  for the good state of nature in the present signal-extraction model for

 = 01 and  = 05, and  = 025. Comparing this with the investor’s value function

in the rational-inattention model (dashed curve, the same as in Figure 1), we again

note model robustness.

Figure 7: The investor’s expected profit in the signal-extraction model.

19To see this, note that (48) then is equivalent with −2  ln [ (1− )]  2, or −2   (1− ) 

2, and compare with footnote 12.



Investment, rational inattention, and delegation 30

4.2. Delegation. Suppose now that the investor considers the possibility of hir-

ing an agent who has a comparative advantage in acquiring and processing relevant

information about investment projects, just as in the rational inattention model. If

hired by the principal, in this model the agent will choose his signal precision and

make the investment decision accordingly. To be more specific, the agent, if employed,

will either make no effort to acquire information or he will decide to acquire some

information and receive a noisy private signal  about the net return rate of the

project,

 =  +  (49)

where the noise  is statistically independent of. This noise term is again normally

distributed with mean zero, but now with variance 1  0, where   0 is the

signal precision chosen by the agent.

A contract hwi between the principal and agent takes the same form as in the

rational-attention model. It consists of a non-negative pay schedule,w, which specifies

the agent’s remuneration conditional on the realized net return of the investment, if

made, and a non-negative pay, , to the agent if the latter decides not to invest. The

agent’s remuneration is thus a random variable,

̃ =

½
w () if investment is made

 otherwise
 (50)

The non-negativity requirement, the limited-liability constraint, rules out contracts

hwi by which the agent may (with positive probability) have to make a net payment
to the principal. Formally, w () ≥ 0 with probability one and  ≥ 0.
Just as in the rational-inattention model, the agent’s utility is additively separable

in utility from income and disutility from effort to gather information. His utility is

here the random variable

̃ = 
³
̃
´
−  ()  (51)

where the first term is his utility from his income ̃ , evaluated in terms of his Bernoulli

function  for income, and the second term is his disutility from the effort needed

to obtain signal precision  ≥ 0. Both functions,  and , are twice differentiable,

and we assume that 0  0
  0, 00 ≤ 0, and  00

 ≥ 0. Zero signal precision is

costless,  (0) = 0. The agent’s participation constraint is E
h
̃
i
≥ ̄. The principal

anticipates all of this, and will thus offer a contract that maximizes her expected

profit–the residual that remains after the agent has been paid his due–among all

contracts that meet the agent’s participation constraint.
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In the binary case that we here consider, any contract hwi between the investor-
cum-principal and agent boils down to only three payments to the agent; his "salary"

 if he does not invest, his pay 2 = w (2) if investing in the good state, and his

pay 1 = w (1) if investing in the bad state. We focus on contracts that are strictly

monotonic in the sense that they pay most after a successful investment and least

after a failed investment; 1    2.

We solve the model backwards in time. Suppose, thus, that the agent has already

signed the contract and made his effort to gather information about the project. For

what signal realizations will he invest? Being rational and self-interested, he will

base this decision on his expected remuneration utility under the given contract. The

disutility of his effort to collect information is now bygone, as is his outside option.

It is thus optimal for the agent to invest if and only if his conditionally expected

utility from remuneration when investing, given his signal realization, exceeds his

remuneration utility from not investing,

E
h
̃ |  = 

i
≥  ()  (52)

Equality in this condition uniquely determines a signal threshold, ∗ (w ) ∈ R,
above which it is optimal for the agent to invest and below which it is optimal for

him to not invest. For any contract w ∈ and any any positive signal precision 
that he may have chosen (by way of his effort to acquire information), this optimal

investment threshold can be shown (Lemma 3 in Appendix B) to be

∗ (w ) =
2 + 1

2
− ln  (w)

(2 − 1) 
 (53)

where

 (w) =


1− 
·  (2)−  ()

 ()−  (1)
 (54)

is what we call the carrot-stick ratio of the contract, a useful concept in this type

of analysis (see Appendix). The latter is the probability-weighted ratio between the

agent’s two utility gains from "doing the right thing" in each state of nature (to invest

in the good state and not invest in the bad). The carrot-stick ratio,  (w), plays the

same role for the agent as the risk balance, ̂, played for the investor in autarky. We

note that the carrot-stick ratio of a contract is independent of the agent’s choice of

signal precision.

We now take one step backwards in time, to the moment when the agent has

signed a contract and is about to decide how much effort to gather information. It

is not difficult to show that the agent will either make no effort at all, choose signal

precision  = 0, or else make a positive effort and subsequently obtain signal with
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positive precision,   0. In the latter case, the agent’s optimal signal precision has

to meet the following first-order condition:

2 − 1

2
·  (w)√

2
· exp

"
−(2 − 1)

2


8
−
µ
ln  (w)

2 − 1

¶2
1

2

#
=  0

 ()  (55)

where

 (w) =
p
 (1− ) ( (2)−  ()) ( ()−  (1)) (56)

(see Appendix B). We will call  (w) the contract’s power ; another useful concept

in our analysis It is proportional to the product of the agent’s two utility gains from

"doing the right thing" in each state of nature. The proportionality factor is larger the

more uncertain the project is ex ante (before the agent’s signal has been observed).

In particular, this factor is maximal when both states of nature are equally likely.

We also note that, like the carrot-stick ratio, the power of a contract is independent

of the agent’s signal precision. We also note that equation (55) is formally identical

with the necessary first-order condition for the investor’s choice of signal precision in

autarky, (41). The only difference is that the role of ̂ is now played by  (w) and

the role of ̂ by  (w).

The left-hand side of (55) is the agent’s marginal increase of his expected remu-

neration utility from a marginal increases in his signal precision. The right-hand side

is his marginal disutility of raising his signal precision. One sees that the marginal

remuneration utility to the agent is higher the higher is the power,  (w), of his

contract, ceteris paribus. One also sees that the agent’s marginal remuneration utility

is non-monotonic in the carrot-stick ratio,  (w), of the contract. It is maximal when

the carrot-stick ratio is 1. We also note that it is necessary that the contract contains

both a bonus and a penalty, that 1    2. For otherwise the contract would

have zero power, in which case the left-hand side in (55) would vanish, which would

induce the agent to acquire no information at all.

Suppose that the agent’s disutility or cost of information acquisition, , belongs

to the same family of cost functions as that of the investor, that is, is of the form

(43), for some     0. The agent’s optimal signal precision under any strictly

monotonic contract can then w ∈  be found by an application of Proposition 3,

with ̂ and ̂ replaced by

 (w) = ln (w) + ln

µ
2 − 1

2

¶
− ln

³

√
2
´

(57)

and

 (w) = [ (w)]
2 −

"µ
2 − 1

2

¶2
+ 2

#
·
"µ
ln  (w)

2 − 1

¶2
− 2

#
 (58)
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respectively. For contracts with  (w)  0, let

 ∗ (w) =
 (w) +

p
 (w)

(2 − 1)
2
4 + 2

 (59)

For any contract hwi and signal precision   0, write  (w ) for the agent’s

expected utility when acquiring signal precision  and employing his optimal invest-

ment strategy for this signal precision under contract hwi.

Corollary 5. Suppose that the agent’s cost function is of the form (89). If (w) 

0,  ∗ (w)  0 and  (w  ∗ (w))  ̄, then the agent will choose signal precision

 ∗ (w). Otherwise, the agent will choose signal precision zero.

Clearly it is not in the interest of the principal to offer the agent a contract under

which the agent will not acquire any information. Hence, it is necessary that the

contract satisfies  (w)  0, or, equivalently,∙
ln

µ
2 − 1

2
√
2

¶
+ ln (w)

¸2


"µ
2 − 1

2

¶2
+ 2

#
·
"µ
ln  (w)

2 − 1

¶2
− 2

#
 (60)

and also that  (w) +
p
 (w)  0, or, equivalently, either

ln (w) ≥ ln
³

√
2
´
− ln

µ
2 − 1

2

¶
(61)

or

ln (w)  ln
³

√
2
´
− ln

µ
2 − 1

2

¶
and

µ
ln  (w)

2 − 1

¶2
 2 (62)

These observations suggest a way ahead for an analysis of the delegation prob-

lem that the investor faces. First, let 0 denote the set of feasible contracts hwi
that satisfy (60) and either (61) or (62). This will be called the set of feasible and

potentially profitable contracts for the principal, the contracts under which the agent

will acquire some information. For every such contract hwi the agent will choose
the positive signal precision  ∗ (w) defined in (59) and subsequently use his opti-
mal signal threshold ∗ ((w)  ), defined for all signal precisions   0 in (53).

Anticipating this, the principal expects the profit

Π̃ (w) =  (2 − 2 + ) ·  (w) +  (1 − 1 + ) ·  (w)−  (63)

where  (w) is the probability that the state of nature is good and the agent invests,

and  (w) is the probability that the state of nature is bad and the agent invests.
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As shown in Appendix B, for hwi ∈ 0 equation (63) can be written explicitly in

terms of the primitives of the model (see Lemma 3). Let1 ⊆0 be the (potentially

empty) set of contracts in 0 that meet the agent’s participation constraint.

If 1 is empty, then the principal will offer no contract to the agent. If 1 is

nonempty and sup∈1
Π̃∗ (w)  0 = , then there are contracts that are profitable

to the principal and acceptable by the agent. In other words, then there exist gains

of trade between the two parties. If the supremum profit among those contracts is in

fact achieved by some contract, then the principal will offer any such contract. If the

supremum profit is not achieved by any contract in 1 (which is a priori possible,

since 1 is not a compact set), then for every   0 there will exist a nonempty

subset of contracts in1 under which the principal’s expected profit is within  from

the supremum profit. Hence, there will then exist contracts that are -optimal for

the principal, for arbitrarily small   0.

Suppose that the agent is risk neutral. Then the agent’s signal threshold is a

function of the bonus and penalty, and so is the agent’s optimal signal precision.

Hence, once hired, the agent’s behavior is completely determined by the bonus and

penalty. The salary is a pure transfer from the principal to the agent, with no be-

havioral consequences, given the bonus and penalty. In order to induce the agent to

be better informed, though he has a comparative advantage, it is thus needed that

the contract has a sufficient bonus and penalty. Given the moral hazard involved,

do contracts exist that result in a gain to the investor, compared with doing without

an agent? The diagram below has been created for the same project as used in the

rational-attention model, in Figure 6.

Figure 8: Iso-profit and iso-utility curves in contact space.
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The information-cost parameters for the agent are here  = 0025,  = 01 and

 = 05. It turns out that if the principal would have the same parameters, except

for a ten times higher cost parameter  = 025 (the same value as in Figure 7), then

there would be no gains of trade between the two parties. Hiring the agent under

the globally optimal contract (indicated by the little square in the diagram) would

result in expected profit to the principal of approximately 0183 while the principal’s

expected profit in autarky would be about 0236.20 Hence, for these parameter values,

the signal-extraction model delivers less gains of trade than the rational-inattention

model; a quantitative difference between the two models. By contrast, the isoquants,

solid for the principal, dashed for the agent, are not unlike for those in the rational-

inattention model. Yet another qualitative similarity between the two models.

5. Discussion

The rational inattention model was here developed and analyzed for projects with

finitely many potential outcomes. However, the analysis also applies to return rates

with much more general probability distributions. The present model also allows gen-

eralization from one investment project to any finite number of investment projects.

Such generalizations are much harder in the signal-extraction model, which we also

found harder to work with even in the special case of a single investment project

with binary outcomes. We showed that the two modelling approaches gave quali-

tatively similar results in this special case. The main analytical advantage of the

rational-inattention model over the signal-extraction model is that instead of having

to nest the agent’s optimization problem within the principal’s maximization prob-

lem, the agent’s optimal information-cum-investment strategy is already represented

in the principal’s goal function, as the agent’s ex ante expected investment probabil-

ity, which uniquely determines his conditional investment probabilities in all states

of nature.

For each of the two models, we identified three "investment conditions". Rational

investors invest "blindly" in "sweet" investment conditions, that is, they do not ac-

quire any additional information but rely entirely on their prior beliefs. Under such

conditions, investors only learn by experience, after they have invested and invest-

ments start to yield returns. Hence, in an ongoing economy with many investors of

the kind studied here, a gradual deterioration in investment conditions (which may

be correlated across investors and projects) will then only be observed with a delay.

Under "sour" investment conditions, there is also no information acquisition, but now

20The globally optimal contract for the principal is  ≈ 0063 and 2 ≈ 0132, and hence bonus
rate ≈ 110%, numbers that are comparable with those for the rational-inattention model, see Table
1.
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there is also no experience accumulated, not even with a delay since no investment

takes place. Hence, even if investment conditions would improve, this may not be

noticed by rational investors. Hence, it may take a long time to get an economy out

of sour investment conditions, much longer and slower than the time to get out of

sweet investment conditions. Under normal investment conditions, however, investors

quickly notice even small changes in the environment since they acquire (private) in-

formation before they make their investment decisions, and condition their investment

decisions on the obtained information. Hence, in such conditions, but only then, do

investors "know their business". These asymmetries between the three conditions,

and transitions between them, may play some role for understanding the dynamics

of business cycles, a topic for future study.

The present model builds upon many heroic simplifications. A relevant but chal-

lenging extension of our model would be to allow for incomplete information about

the agent’s talent (unit information cost), risk attitude (Bernoulli function of income),

and/or outside option. Can a principal then use screening to let agents self-select a

contract? This depends crucially upon whether agents know their own type or not.

It would be particularly risky if some agents have inflated beliefs about their own

talent (that is, underestimate their unit cost of information and/or overestimate the

precision of their signal). In such cases, a wise and experienced principal may note a

candidate’s biased beliefs and may actually gain from hiring an over-confident agent,

since such an agent may be willing to accept a tougher contract. Another inter-

esting extension would be to consider agents with career concerns, and/or social or

moral preferences such as loyalty with the principal or a wish to "do the right thing".

However, in order to analyze any of these richer and more realistic cases, it seems

necessary to first understand the simpler case of a single agent whose type is known

by both parties. This is precisely the task we have here undertaken.

6. Appendix A: The rational inattention model

We first establish that equation (4) is necessary for optimality. Taking the derivative

of the maximand in (17) with respect to , one obtains

X
∈

 () · 
̂ + (1− ̂) 

=
X
∈

 () · 
̂ + (1− ̂) 

 (64)

Multiplication of both sides by 1− ̂ gives

(1− ̂)
X
∈

 () · 
̂ + (1− ̂) 

=
X
∈

 () · (1− ̂) 

̂ + (1− ̂) 
 (65)
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The left-hand side equals (1− ̂)  (̂). As for the right-hand side, we note that

(1− ̂) 

̂ + (1− ̂) 
= 1− ̂|= (66)

for all  ∈  . Multiplying both sides of the latter equation by  () and summing

over all  ∈  , and using the identity
P

∈  () ̂|= = ̂ (̂), we obtain that

the right-hand side of (65) equals 1 − ̂ (̂). Hence, (1− ̂)  (̂) = 1 − ̂ (̂), or

 (̂) = 1.

6.1. Proof of Proposition 1. Clearly  is a smooth function with

 0 () = −
X
∈

 () 
¡
 − 

¢
[ + (1− ) ]

2
∀ ∈ [0 1] (67)

and

 00 () = 2
X
∈

 () 
¡
 − 

¢2
[ + (1− ) ]

3
≥ 0 ∀ ∈ [0 1]  (68)

In particular,  is a continuous and strictly convex (since is not a singleton). Since

 (1) = 1,  () = 0 for at most one  ∈ (0 1). If  (0) ≤ 1 then  ()  1 for all

 ∈ (0 1), which establishes (11), since  (0) = E £(−)¤; investment conditions
are sour if E

£
(−)

¤ ≤ 1. Likewise,  ()  1 for some  ∈ (0 1) if  (0)  1 and
 0 (1)  0, which establishes (10), since  0 (1) = E

£
(−)

¤− 1; investment condi-
tions are normal iff E

£
(−)

¤
 1 and E

£
(−)

¤
 1. Investment conditions

are sweet in the residual case, that is, when  0 (1) ≤ 0, or E £(−)¤ ≤ 1.
6.2. Proof or Corollary 1. For any   0, there exist  meeting (10) if and only

if

lnE
£


¤
+ lnE

£
−

¤
 0 (69)

By assumption,  has non-singleton support, and the logarithm is a strictly concave

function, so by Jensen’s inequality

lnE
£


¤
+lnE

£
−

¤
 E

£
ln 

¤
+E

£
ln −

¤
=  ·(E []− E []) = 0.

(70)
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6.3. Proof of Corollary 2. Write  () for the left-hand side of (18), with ̂

replaced by an arbitrary  ∈ [0 1]. This defines  : [0 1] → R as a smooth function
with

0 () = −
X
∈

 () (())
¡
(()) − ()

¢
[(()) + (1− ) () ]

2
(71)

and

00 () = 2
X
∈

 () (())
¡
(()) − ()

¢2
[(()) + (1− ) () ]

3
≥ 0 (72)

for all  ∈ [0 1]. Hence, similarly as for  in the case of an investor in autarky, 
is continuous and strictly convex, and  (1) = 1. Hence,  ()  1 for all  ∈ (0 1)
if  (0)  1, and  ()  1 for all  ∈ (0 1) if  (0)  1 and 0 (1) ≤ 0, where

 (0) = E
£
[(())−()]

¤
and 0 (1) = E

£
[()−(())]

¤−1, which establishes all
claims.

6.4. Proof of Proposition 2. Let hwi be a contract that solves program (25)
for a risk neutral agent. By the Karush-Kuhn-Tucker theorem, there exists a non-

negative scalar , a Lagrangian associated with the agent’s participation constraint,

such that the following equation holds for all  ∈ with   0:

Π (w)



+  ·  (w)


= 0 (73)

Here
Π (w)



=
Π (w)



+
Π (w)

∗
· 

∗



 (74)

where the first term is the direct effect and the second term the indirect effect via

the ex ante investment probability ∗. By the envelope theorem (applied to the

maximization program in Corollary 1 of Matějka and McKain, 2015), the derivative

of the agent’s expected utility with respect to payment  only contains the direct

effect:
 (w)



=
 (w)



 (75)

where  (w) is the sum of the first two terms in (22). Moreover,

Π (w)



+
 (w)



= 0

Hence, the necessary condition (73) can be written as

(1− ) · Π (w)


+
Π (w)

∗
· 

∗



= 0 (76)
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Let  (w) denote the continuously differentiable left-hand side of (28), and recall

that  (w)  6= 0 at  = ∗. Hence, by the implicit-function theorem, equation
(28), written as  (∗w) = 1, uniquely defines ∗ as a differentiable function of 

(on an open neighborhood around the initial point (w ∗)), such that

∗



= − (
∗w)



·
µ
 (∗w)

∗

¶−1
 (77)

Hence, (76) can be written as

(1− ) · Π (w)


−  ·  (
∗ )



= 0 (78)

where

 =
Π (w)

∗
·
µ
 (∗w)

∗

¶−1
(79)

is the same for all  ∈ with   0. Moreover,

Π (w)



=  · (1− ∗) ∗ [ ( − ) +  − ] 
(−)

 · [∗ + (1− ∗) (−) ]2
(80)

− ·
∗
£
∗ + (1− ∗) (−)

¤
[∗ + (1− ∗) (−) ]2



and
 (∗ )



=  · (1− ∗) (−)

 · [∗ + (1− ∗) (−) ]2
 (81)

so (78) can be written as

0 = (1− ) (1− ∗) ∗ [ ( − ) +  − ] 
(−)

− (1− ) 
∗ £∗ + (1− ∗) (−)

¤
− · (1− ∗) (−)

or

∗ [ ( − ) +  − ]− 
∗

1− ∗
£
∗(−) + (1− ∗)

¤
=



1− 

or

 −  − 
1

1− ∗
£
∗(−)

¤
= 

where  is the same for all  ∈ with   0. This gives (30).
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6.5. Proof of Corollary 4. By Proposition 2 there exists a constant  such that

for all  ∈ with  ()  0:

 =  () +  · () + (82)

or, equivalently,

() =
−−  ()


(83)

for

 =
∗
1− ∗

−  0

Equation (83) defines  as a continuous, strictly increasing and strictly convex func-

tion  of the payment  =  () at each net return rate . Clearly  is continuous

and strictly increasing. Hence it has an inverse,  = −1, which is also continuous and
strictly increasing, as well as strictly concave, and we have  () = max {0  ()}.
We proceed to show that the function  can be expressed in terms of the the

principal branch 0 of the (multi-valued) Lambert W function, implicitly defined

for all   −1 by  = 0 () for 
 = . First, consider the following simple

transcendental algebraic equation in  ∈ R:
− =  ( − ) (84)

for    ∈ R. This equation can be written as
 − 


· (−) = −




or  = , for  = ( − )  and  = − (). Hence, by definition of the
Lambert W function,

0

µ
−



¶
=

 − 




or

 = + 0

µ
−



¶


which thus solves (84). It follows that the similar equation  =  (− ) has

solution

 = − 0

µ




¶


Accordingly, a solution of (83) is

 = −− 0

µ

(−)



¶
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which establishes (32) if  is such that


(−)


=  

or

 =



− =

∗

1− ∗
−(+) 

Hence,   0 under normal investment conditions, which are necessary for optimality

of the contract.

7. Appendix B: The signal-extraction model

We begin by establishing a lemma, that states that the optimal signal threshold is

always finite (for normally distributed noise) and can be written in the form (39).

The lemma also provides formulae for the two conditional investment probabilities.

Assume that the noise term  is normally distributed with mean value zero and

variance 2 = 1 . As is well-known, its PDF

 () =

r


2
· −22

meets the MLRP, for every   0, and its CDF is

Φ () =

r


2

Z 

−∞
−

22

We will call   0 the signal precision. We write  = 1 and Φ = Φ1 for the PDF and

CDF of the standard normal distribution, N (0 1). Let 1  0  2 be the possible

values of  and write  for the probability that  = 2, the "good" outcome.

Lemma 1. The optimal signal threshold for the investor in autarky is

̂ () =
2 + 1

2
− ln ̂

(2 − 1) 
 (85)

The conditional investment probability in the "good" state of nature ( = 2) is

2 () = Φ

µ
ln ̂

(2 − 1)
√

+

2 − 1

2

√


¶
 (86)

and the conditional investment probability in the "bad" state of nature ( = 1) is

1 () = (1− ) · Φ
µ

ln ̂

(2 − 1)
√

− 2 − 1

2

√


¶
 (87)
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Proof: For any  ∈ R and any   1:

E [ |  = ] =

X
=1

 · P [ =  |  = ] 

For any   0, and writing  = P ( = ):

P [ =  |  ∈ (−  + )] =
P [ ∈ (−  + ) |  = ]P

=1 P [∈ (̂−  ̂+ ) |  = ]


Moreover,

P [ ∈ (−  + ) |  = ] = P [ ∈ (−  −  −  + ) |  = ]

For small   0,

P [ ∈ (−  −  −  + ) |  = ] ≈ 2 ·  (− )

Hence, as  ↓ 0,

P [ =  |  ∈ (−  + )]→  (− )P

=1  (− )

In the case of the normal distribution,

 (− )P

=1  (− )
=

 exp
£− (− )

2
2
¤P

=1  exp
£− (− )

2
2
¤

=
 exp [ (− 2)]P

=1  exp [ (− 2)]

Hence,

E [ |  = ] =

X
=1

 exp [ (− 2)]P

=1  exp [ (− 2)]
 (88)

For  = 2, and writing  for 2:

E [ |  = ] =
(1− )1 exp [ (− 12)1] + 2 exp [ (− 22)2]

(1− ) exp [ (− 12)1] +  exp [ (− 22)2]

If 0    1 and 1  0  2:

lim
→−∞

E [ |  = ] = 1  0  2 = lim
→+∞

E [ |  = ]
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Hence, for any   0, the optimal signal threshold for the investor is a real number,

̂ (). Moreover, for  = ̂ (), E [ |  = ] = 0 iff

(1− )1 exp [ (− 12)1] + 2 exp [ (− 22)2] = 0

or, equivalently,

exp [ (− 12)1] =
2

(1− ) |1| exp [ (− 22)2]

or

exp [ (− 12)1 −  (− 22)2] =
2

(1− ) |1|
or

exp
£− (2 − 1) + 

¡
22 − 21

¢
2
¤
=

2

(1− ) |1|
or, taking the logarithm of both sides,

 (2 − 1) = 
¡
22 − 21

¢
2− ln ̂

which gives (85).

The conditional investment probabilities, for any investment signal threshold 

(optimal or not), is

 = P [   | ] = 1−Φ (−) 

For the optimal signal threshold with respect to normally distributed noise, this gives

 =

r


2
·
Z +∞

̂()−
−

22

which, after some algebraic manipulation results in the claimed conditional probabil-

ities for  = 1 and  = 2 (and exploiting the symmetry of 1):

2 () = 

r


2
·
Z +∞

̂()−2
−

22 =
√
2
·
Z +∞

(̂()−2)
√


−
22

= 
¡
1− Φ1

¡
[̂ ()− 2]

√

¢¢
= Φ1

¡
[2 − ̂ ()]

√

¢

= Φ1

∙µ
2 − 2 + 1

2
+

ln ̂

(2 − 1) 

¶√


¸
and, likewise,

2 () = (1− )Φ1
¡
[1 − ̂ ()]

√

¢

= (1− )Φ1

∙µ
1 − 2 + 1

2
+

ln ̂

(2 − 1) 

¶√


¸




Investment, rational inattention, and delegation 44

7.1. A family of hyperbolic-exponential functions. Consider functions  :

R+ → R+ of the following form

 () =

Z 

0

−− (89)

for parameters     0, and  ∈ R. We will here henceforth set  = 12.21 Clearly
these functions are differentiable at positive  , with derivative

 0 () =
√

· −  (90)

We note that  (0) = 0, lim→0 0 () = lim→+∞  · exp (−2) = 0, and
lim→+∞ 0 () = lim→+∞ () · exp (2) = +∞. Moreover,

Lemma 2. For any     0, and  = 12, the cost function  in (89) is convex

if and only if 16 ≥ 1. Moreover, if 16  1, then it is convex on the intervals£
0
¡
1−√1− 16¢  (4)¤ and £¡1 +√1− 16¢  (4) +∞¢.
Proof:

 00 () =
√


µ
+



2

¶
− − 1

2




√

−

Hence,  00 () ≥ 0 if
+



2
≥ 1

2

or 2 +  ≥ 2. This inequality evidently holds for all  near zero, since   0.

Moreover, it holds for all  ∈ R if 16  1. To see this, note that the equation

2 +  =


2

then has no real root, while if 16 = 1 it has exactly one root, namely,  = (4)
−1
,

and if 16  1 it has two roots,

 =
1±√1− 16

4

If 16 = 1, then  00 () ≥ 0 for all , with equality iff  = (4)
−1
, while if

16  1, then  00 () ≥ 0 for all

 ≤ 1−
√
1− 16
4

21The more general cases are also of interest, but will not be discussed, since they are not needed

in the present analysis.
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and all

 ≥ 1 +
√
1− 16
4



7.2. Proof of Proposition 3:. For the investor in autarky we have

 () = 2 · Φ
µ

ln ̂

(2 − 1)
√

+

2 − 1

2

√


¶
+ (91)

+(1− ) 1 · Φ
µ

ln ̂

(2 − 1)
√

− 2 − 1

2

√


¶
Clearly  is differentiable in  for any   0, and

 0 () = 2 · 


Φ

µ
ln ̂

(2 − 1)
√

+

2 − 1

2

√


¶
(92)

+(1− ) 1 · 


Φ

µ
ln ̂

(2 − 1)
√

− 2 − 1

2

√


¶
where




Φ

µ
ln ̂

(2 − 1)
√

+

2 − 1

2

√


¶
=

=




∙
ln ̂

(2 − 1)
√

+

2 − 1

2

√


¸
· 
µ

ln ̂

(2 − 1)
√

+

2 − 1

2

√


¶
(93)

=

∙
2 − 1

4
√

− ln ̂

2 (2 − 1) 
√


¸
· 
µ

ln ̂

(2 − 1)
√

+

2 − 1

2

√


¶


and



Φ

µ
ln ̂

(2 − 1)
√

− 2 − 1

2

√


¶
=

=




∙
ln ̂

(2 − 1)
√

− 2 − 1

2

√


¸
· 1

µ
ln ̂

(2 − 1)
√

− 2 − 1

2

√


¶
(94)

= −
∙
2 − 1

4
√

+

ln ̂

2 (2 − 1) 
√


¸
· 1

µ
ln ̂

(2 − 1)
√

− 2 − 1

2

√


¶
Hence,

 0 ()  =
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= 2 ·
∙
2 − 1

4
√

− ln ̂

2 (2 − 1) 
√


¸
· 
µ

ln ̂

(2 − 1)
√

+

2 − 1

2

√


¶
(95)

− (1− )1 ·
∙
2 − 1

4
√

+

ln ̂

2 (2 − 1) 
√


¸
· 1

µ
ln ̂

(2 − 1)
√

− 2 − 1

2

√


¶


or, since exp
£− (+ )

2
2
¤
= exp [− (2 + 2) 2]·exp (−) and exp £− (− )

2
2
¤
=

exp [− (2 + 2) 2] · exp ():
√
2 ·  0 ()

 (1− ) |1| · exp
"
1

2

µ
ln ̂

(2 − 1)
√


¶2
+
1

2

µ
2 − 1

2

√


¶2#
=

= ̂ ·
∙
2 − 1

4
√

− ln ̂

2 (2 − 1) 
√


¸
· exp

µ
− ln ̂
2

¶
(96)

+

∙
2 − 1

4
√

+

ln ̂

2 (2 − 1) 
√


¸
· exp

µ
ln ̂

2

¶
= ̂ ·

∙
2 − 1

4
√

− ln ̂

2 (2 − 1) 
√


¸
· 1√

̂

+

∙
2 − 1

4
√

+

ln ̂

2 (2 − 1) 
√


¸
·
p
̂

=
2 − 1

2
·
r

̂


.

or

 0 () =
2 − 1

2
· (1− ) |1|·

r
̂

2
·exp

"
−1
2

µ
ln ̂

(2 − 1)
√


¶2
− 1
2

µ
2 − 1

2

√


¶2#
(97)

This establishes the necessary FOC, which can be written in the form

 (2 − 1) ̂

2
√
2

= exp

Ã"
1

2

µ
ln ̂

2 − 1

¶2
− 

#
· 1

+

"
1

2

µ
2 − 1

2

¶2
+ 

#
· 
!

(98)

or, taking the logarithm of both sides,"
1

2

µ
2 − 1

2

¶2
+ 

#
·  − ln

∙
 (2 − 1) ̂

2
√
2

¸
+

"
1

2

µ
ln ̂

2 − 1

¶2
− 

#
· 1

= 0 (99)

Multiplication of both sides by  gives

 2 − + = 0 (100)
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where

 =
1

2

µ
2 − 1

2

¶2
+   0 and  =

1

2

µ
ln ̂

2 − 1

¶2
−  (101)

and  = ̂ as defined in the statement of the proposition. Equation (100) has one

root if 2 = 4, no root if 2  4, and two roots if 2  4. In the last

case they are

 1 =
1

2

³
 −

√
2 − 4

´
and  2 =

1

2

³
 +

√
2 − 4

´
 (102)

The first root is a local minimum and the second root a local maximum point. Writing

out  2 explicitly yields (46).

To verify global optimality, let Π () =  ()−  (). For any   0:

Π0 () =
 (2 − 1) ̂

2
√
2

· exp
"
− 1
2

µ
ln ̂

2 − 1

¶2
− 

2

µ
2 − 1

2

¶2#

− √

· exp

µ
 − 



¶
From the above we have that if   0 then Π0 ()  0 for all   0. Hence ̂ = 0. If

 = 0, then Π0 () ≤ 0 for all   0 with equality when  = 2. Again ̂ = 0. If

If   0, then Π0 ()  0 for all    1 and for all    2 (with equality at each of

these two points), while Π0 ()  0 for all  ∈ ( 1  2). Hence, if  2 ≤ 0, then ̂ = 0,

while if  2  0, then ̂ ∈ {0  2}, depending on which of Π (0) and Π ( 2) is biggest,

where Π (0) =  ·max {E []  0}, and

Π ( 2) = 2 · Φ
µ

ln ̂

(2 − 1)
√
 2
+

2 − 1

2

√
 2

¶
+

+ (1− ) 1 · Φ
µ

ln ̂

(2 − 1)
√
 2
− 2 − 1

2

√
 2

¶
−
Z 2

0

√

exp

µ
− 



¶


It is evident from the above (and the continuity ofΠ at zero) that a sufficient condition

for ̂ =  2 is that  1 ≤ 0   2. We note that  1 ≤ 0 if and only if  ≤ 0.
7.3. The agent’s optimal signal threshold. We here derive expressions for the

agent’s optimal signal threshold and investment probabilities, by similar arguments

as those given in the proof of Lemma 1. Again Φ denotes the CDF of the standard

normal distribution.
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Lemma 3. The agent’s optimal signal threshold under any strictly monotonic con-

tract w ∈ is

∗ (w ) =
2 + 1

2
− ln  (w)

(2 − 1) 
 (103)

When using this investment strategy, the probability that the state of nature is good

and that he will investment is

 (w ) =  · Φ
µ

ln  (w)

(2 − 1)
√

+

2 − 1

2

√


¶
 (104)

and the probability that the state will be bad and that he will invest is

 (w ) = (1− ) · Φ
µ

ln  (w)

(2 − 1)
√

− 2 − 1

2

√


¶
 (105)

Proof: Investment is optimal for the agent if his signal  ∈ R satisfies

−(−2)
22 (2) + (1− ) −(−1)

22 (1) ≥

≥
h
−(−2)

22 + (1− ) −(−1)
22
i
 ()

or

−(−2)
22 [ (2)−  ()] ≥ (1− ) −(−1)

22 [ ()−  (1)]

or

 (w) ≥ −(−1)
22+(−2)22 = 

1
2
(2−1)(1−2+2)

or

ln  (w) ≥ 1
2
 (2 − 1) (2 + 1)−  (2 − 1) 

or

 (2 − 1)  ≥ − ln  (w) + 1
2
 (2 − 1) (1 + 2)

or

 ≥ 2 + 1

2
− ln  (w)

(2 − 1) 

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Using this result one obtains, with  and Φ denoting the PDF and CDF of the

normal distribution with mean value zero and variance 2 = 1 :

 (w ) = 

Z +∞

∗()

 (− 2)  = 

Z +∞

∗()−2
 () 

= 

r


2
·
Z +∞

∗()−2
−

22 =
√
2
·
Z +∞

(∗()−2)
√


−
22

= 
¡
1− Φ1

£
(∗ (w )− 2)

√

¤¢
= Φ1

£
(2 − ∗ (w ))

√

¤

= Φ1

∙µ
2 − 2 + 1

2
+

ln  (w)

(2 − 1) 

¶√


¸
= Φ1

∙µ
2 − 1

2
+

ln  (w)

(2 − 1) 

¶√


¸
and

 (w ) = (1− )

Z +∞

∗()

 (− 1)  = (1− )Φ1
£
(1 − ∗ (w ))

√

¤

= (1− )Φ1

∙µ
1 − 2 + 1

2
+

ln  (w)

(2 − 1) 

¶√


¸


leading to the claimed expressions.
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