Lecture 1: Labour economics

Spring 2010
Lars Calmfors

The choice between consumption and leisure

$$
U=U(C, L)
$$

$C=$ consumption of goods
$L=$ consumption of leisure
$L_{0}=$ total amount of time
$h=L_{0}-L=$ working time
$U(C, L)=\bar{U}$ defines an indifference curve

Figure 1.1

$\boldsymbol{U}(\boldsymbol{C}, L)=\boldsymbol{U}(\boldsymbol{C}, L)=\bar{U}$ defines a function $\boldsymbol{C}(\boldsymbol{L})$, which satisfies $\boldsymbol{U}[\boldsymbol{C}(\boldsymbol{L}), \boldsymbol{L}]=\bar{U}$

Differentiation w.r.t L gives:

$$
U_{C} C^{\prime}+U_{L}=0
$$

$$
C^{\prime}(L)=-\frac{U_{L}(C, L)}{U_{C}(C, L)}
$$

$$
\left|C^{\prime}(L)\right|=\frac{U_{L}(C, L)}{U_{C}(C, L)}=M R S_{C, L}
$$

Indifference curves are negatively sloped.
Indifference curves are convex (absolute value of slope falling with L) if $C^{\prime \prime}(L)>0$.
$C^{\prime \prime}(L)$ is obtained by differentiating $C^{\prime}(L)=-U_{L}(C, L) / U_{C}(C, L)$ w.r.t L and substituting $-U_{L} / U_{C}$ for C^{\prime} after differentiation.

We get:

$$
\boldsymbol{C}^{\prime \prime}(\boldsymbol{L})=\frac{U_{L}\left[2 U_{C L}-U_{L L} \frac{U_{C}}{U_{L}}-U_{C C} \frac{U_{L}}{U_{C}}\right]}{\left(U_{C}\right)^{2}}
$$

$$
C^{\prime \prime}(L)>0 \text { if } 2 U_{C L}-U_{L L} \frac{U_{C}}{U_{L}}-U_{C C} \frac{U_{L}}{U_{C}}>0
$$

This is certainly the case if $U_{c L}=0$ since $U_{L L}<0$ and $U_{c C}<0$.

The choice problem of the individual

$w=$ real hourly wage
$w h=$ real wage income
$R=$ other income

The individual's budget constraint: $C \leq w h+R$
Alternative formulation of budget constraint:
$C \leq w\left(L_{0}-L\right)+R$
$C+w L \leq w L_{0}+R \equiv R_{0}$

Interpretation:

- The individual disposes of a potential income R_{0} obtained by devoting all of his time to working and using other resources \boldsymbol{R}. Leisure or consumer goods can be bought with this income.
- The wage is the price as well as the opportunity cost of leisure.

The decision problem of the individual:
$\operatorname{Max} U(C, L)$ s.t. $C+w L \leq R_{0}$ $\{C, L\}$

Interior solution, such that $0<L<L_{0}$ and $C>0$.
$\mu>0$ is the Lagrange multiplier.
The Lagrangian is:
$£(C, L, \mu)=U(C, L)+\mu\left(R_{0}-C-w L\right)$
The FOCs are:
$U_{c}(\mathrm{C}, L)-\mu=0$
$U_{L}(\mathrm{C}, L)-\mu w=0$

The complementary slackness condition:
$\mu\left(R_{0}-C-w L\right)=0$ with $\mu \geq 0$

Since $\mu=U_{c}(\mathrm{C}, L)>0$ with an interior solution, it follows that the budget constraint is then binding, i.e. $C+w L=R_{0}$

The optimal solution is then:

$$
\begin{aligned}
& \frac{U_{L}\left(C^{*}, L^{*}\right)}{U_{c}\left(C^{*}, L^{*}\right)}=w^{*} \\
& C^{*}+w L^{*}=R_{0}
\end{aligned}
$$

Figure 1.2

Equation of budget line:

$$
\begin{aligned}
C+w L & =R+w L_{0}=R_{0} \\
C & =R+w\left(L_{0}-L\right) \\
L & =L_{0} \Rightarrow C=R \\
L & =0 \Rightarrow C=R+w L_{0}=R_{0}
\end{aligned}
$$

- Change in w rotates budget line around A
- Change in R gives rise to a parallel shift of the budget line

The reservation wage

- E must lie to the left of \boldsymbol{A} for there to be a positive labour supply ($L<L_{0}$)

1. Tangency point at $A: L=L_{0}$ and $h=L_{0}-L=0$ is interior solution
2. Indifference curve is more sloped than budget line at $A: L=L_{0}$ and $\boldsymbol{h}=\boldsymbol{L}_{0}-\boldsymbol{L}=0$ is a corner solution
3. Indifference curve is less sloped than budget line at A : $L<L_{0}$ and $h=L_{0}-L>0$ is an interior solution
$M R S$ at point A is called the reservation wage, w_{A}

$$
\boldsymbol{w}_{A}=\frac{U_{L}\left(R, L_{0}\right)}{U_{c}\left(R, L_{0}\right)}
$$

- An individual participates in the labour force only if $\boldsymbol{w}>\boldsymbol{w}_{\boldsymbol{A}}$.
- The reservation wage depends on non-wage income.
- If leisure is a normal good (i.e. increases with income), then a higher non-wage income creates a disincentive for work.

Properties of labour supply

$$
\begin{equation*}
\frac{U_{L}\left(C^{*}, L^{*}\right)}{U_{C}\left(C^{*}, L^{*}\right)}=w \text { and } C^{*}+w L^{*}=R_{0} \tag{2}
\end{equation*}
$$

Equation (2) implicitly defines labour supply.
$L^{*}=\wedge\left(w, R_{0}\right)$
$h^{*}=L_{0}-L^{*}$ is the Marshallian or uncompensated labour supply.

The impact of $\boldsymbol{R}_{\mathbf{0}}$ on leisure:

From (2) we have:
$w U_{C}\left(R_{0}-w L^{*}, L^{*}\right)-U_{L}\left(R_{0}-w L^{*}, L^{*}\right)=0$

Differentiate w.r.t L^{*}, w and R_{0} and use:
$w=U_{L} / U_{c}$ after the differentiation to get rid of \boldsymbol{w}.

We then obtain:

$$
\begin{aligned}
& \Lambda_{1}=\frac{\partial L^{*}}{\partial w}=\frac{-L\left(\frac{U_{c L} U_{c}-U_{c c} U_{L}}{U_{L}}\right)-U_{c}\left(\frac{U_{c}}{U_{L}}\right)}{\left[2 U_{c L}-U_{L L}\left(\frac{U_{c}}{U_{L}}\right)-U_{c c} \frac{U_{c}}{U_{L}}\right]} \\
& \Lambda_{2}=\frac{\partial \dot{L}^{*}}{\partial R_{0}}=\frac{U_{c L} U_{c}-U_{c c} U_{L}}{\left[2 U_{c a}-U_{L L}\left(\frac{U_{c}}{U_{L}}\right)-U_{c c}\left(\frac{U_{L}}{U_{c}}\right)\right]}
\end{aligned}
$$

- From quasi-concavity (convex indifference curves) we have that the denominators of \wedge_{1} and \wedge_{2} are positive.
- Hence signs of \wedge_{1} and \wedge_{2} are determined by the numerators.
- $\wedge_{2}>0$ if $\boldsymbol{U}_{C L} \boldsymbol{U}_{C}-\boldsymbol{U}_{C C} \boldsymbol{U}_{L}>0$. This is the condition for leisure to be a normal good, i.e. for leisure to increase if income increases.
- $\wedge_{1}<0$, i.e. leisure falls and labour supply increases if the wage increases, unambiguously only if leisure is a normal good.
- There is both an (indirect) income effect and a substitution effect. Both are negative if leisure is a normal good.

The effect of an increase in non-wage income R :

Figure 1.2

The effect of a wage increase

$$
\begin{aligned}
& L^{*}=\wedge\left(w, R_{0}\right) \quad R_{0}=w L_{0}+R \\
& \frac{d L^{*}}{d w}=\wedge_{1}+\wedge_{2} \frac{\partial R_{0}}{\partial w}=\stackrel{(-)}{\wedge_{1}}+\stackrel{(+)}{\wedge_{2}} L_{0}
\end{aligned}
$$

Figure 1.3

- w increases from w to w_{1}

Keep $\boldsymbol{R}_{\mathbf{0}}$ unchanged. New budget line $\boldsymbol{A}_{\mathbf{1}} \boldsymbol{R}_{\mathbf{0}}$. As if decline from R to $\boldsymbol{R}_{\mathrm{c}}=\boldsymbol{R}-\left(\boldsymbol{w}_{1}-\mathbf{w}\right) L_{0}$.
$R_{\mathrm{c}}=$ compensated income. $A_{1} R_{0}$ is the compensated budget constraint.

1. $E \rightarrow E^{\prime}$ is substitution effect reducing leisure. (Outlays of the consumer are minimised under the constraint of reaching a given level of utility.)
2. $E^{\prime} \rightarrow E^{\prime \prime}$ is (indirect) income effect reducing leisure farther if leisure is normal good.
3. $E^{\prime \prime} \rightarrow E_{1}$ is (direct) income effect increasing leisure if leisure is a normal good. It represents the increase in potential income from the wage increase.

Conclusion: Net effect of a wage increase on leisure/hours worked is ambiguous.

Simpler analysis:

1. $E \rightarrow E^{1}$ is substitution effect
2. $E^{\prime} \rightarrow E_{1}$ is global income effect (the indirect and direct income effects are aggregated)

Compensated and uncompensated elasticity of labour supply

$L^{*}=\wedge\left(w, R_{0}\right)$ is the Marshallian (uncompensated) labour supply.

The Hicksian (compensated) labour supply is obtained as the solution to the problem:
$\operatorname{Min} C+w L \quad$ s.t. $\quad U(C, L) \geq \bar{U}$ L,C

One then obtains $\widehat{L}=\hat{L}(\boldsymbol{w}, \overline{\boldsymbol{U}})$

The Slutsky equation:

$\eta_{w}^{h^{*}}=\eta_{w}^{\hat{h}}+\frac{w h^{*}}{R_{0}} \eta_{R_{0}}^{h^{*}}$
$\eta_{w}^{h^{*}}=$ the uncompensated labour supply elasticity w.r.t the wage
$\eta_{w}^{\hat{h}}=$ the compensated labour supply elasticity w.r.t the wage
$\eta_{R_{0}}^{h^{*}}=$ the income elasticity of labour supply

$$
R_{0}=w L_{0}+R
$$

- With constant elasticities, $\frac{w h^{*}}{R_{0}} \eta_{R_{0}}^{h^{*}}$ may increase relative to the substitution elasticity when the wage increases.
- The income effect may finally overtake the substitution effect.

Figure 1.4

$$
L_{0}-L=h
$$

Complications

- Higher overtime pay
- Progressive taxes
- Fixed cost to enter the labour market
- Only jobs with fixed number of hours
$L_{0}-L_{f}=h_{0}$ is the fixed number of hours demanded.

Figure 1.5

- E is the unconstrained optimum.
- If \boldsymbol{E} is to the left of \boldsymbol{E}_{f}, the individual would have liked to supply more hours.
- If E is to the right of E_{f}, the individual takes the job only if E_{f} is to the right of E_{A} (i.e. offering higher utility). The individual is forced to work more than he would want.
- If E_{f} is to the left of E_{A}, the individual chooses not to work. Involuntary non-participation.

The condition for taking a job is:

$$
\begin{aligned}
& U\left[R+w\left(L_{0}-L_{f}, L_{f}\right), L_{f}\right] \geq U\left(R, L_{0}\right) \\
& U\left[R+w_{A}\left(L_{0}-L_{f}, L_{f}\right), L_{f}\right]=U\left(R, L_{0}\right) \text { defines the reservation wage } w_{A}
\end{aligned}
$$

Aggregate labour supply and labour force participation

- Aggregate labour supply is obtained by adding up the total number of hours supplied by each individual.
- The existence of indivisibilities in working hours offered to agents implies that the elasticity of aggregate supply differs from that of the individual supply.
- Reservation wages differ among individuals
- differences in preferences
- differences in non-wage income
- The diversity of reservation wages $w_{A} \in[0,+\infty]$ is represented by the cumulative distribution function $\phi(w)$.
- $\phi(w)$ represents the participation rate, i.e. the proportion of the population with a reservation wage below w.
- If the population size is $N, \phi(w) N$ is the labour force.
- Given N, the wage elasticity of the aggregate supply of labour is equal to that of the participation rate.
- The elasticity is positive, since a higher wage draws workers into the labour market.
- Key empirical result: the wage elasticity of the participation rate is much larger than the wage elasticity of individual labour supply.

Cumulative distribution function

Labour supply with household production

$\boldsymbol{U}=\boldsymbol{U}(\boldsymbol{C}, L)$
$C=C_{D}+C_{M}$
$C_{M}=$ quantity of consumption goods bought in the market
$C_{D}=$ home production of consumption goods
$L_{0}=$ total endowment of time
$h_{M}=$ working hours in the market
$h_{D}=$ working hours in the household production
$L=$ leisure
$L_{0}=h_{M}+h_{D}+L$

Home production function: $C_{\underline{D}}=\boldsymbol{f}\left(\boldsymbol{h}_{\underline{D}}\right)$
$\mathbf{f}^{\prime}>0, f^{\prime \prime}<0$
$\mathbf{w} h_{M}=$ wage earnings
$R=$ non-wage income
Choose $C_{M}, C_{D}, h_{D}, h_{M}$ and L such that utility is maximised s. t. $C_{M} \leq w h_{M}+R$

$$
\begin{aligned}
& C_{M} \leq w h_{M}+R \\
& h_{M}=L_{0}-h_{D}-L \Rightarrow C_{M} \leq w\left(L_{0}-h_{D}-L\right)+R \\
& C_{M}+w L \leq w L_{0}-w h_{D}+R
\end{aligned}
$$

$$
w L_{0}+R=R_{0} \Rightarrow C_{M}+w L \leq R_{0}-w h_{D}
$$

$$
C+w L \leq \mathrm{R}_{0}+\left[f\left(h_{D}\right)-w h_{D}\right]
$$

The consumer's programme

$$
\underset{C, L, h_{D}}{\operatorname{Max}} U(C, L) \quad \text { s.t. } \quad C+w L \leq\left[f\left(h_{D}\right)-w h_{D}\right]+R_{0}
$$

According to the budget constraint, the total income of the consumer is equal to the sum of potential income R_{0} and "profit" from household production, $f\left(h_{D}\right)-w h_{D}$.

Two-step solution

Step 1: Choose $\mathbf{h}_{\mathbf{D}}$ so as to maximise profit from household production and thus also total income:

$$
f^{\prime}\left(h_{D}^{*}\right)=w
$$

Step 2: Given h_{D}, equivalent problem to that of the basic consumption/leisure model

- Replace

$$
\begin{aligned}
& R_{0}=w L_{0}+R \text { by } \bar{R}_{0}=R_{0}+f\left(h_{D}^{*}\right)-w h_{D}^{*}= \\
& =w L_{0}+R+f\left(h_{D}^{*}\right)-w h_{D}^{*}
\end{aligned}
$$

The optimal solution is then defined by:

$$
\begin{equation*}
\frac{U_{L}\left(C^{*}, L^{*}\right)}{U_{C}\left(C^{*}, L^{*}\right)}=w=f^{\prime}\left(h_{D}^{*}\right) \text { and } C^{*}+w L^{*}=\bar{R}_{0} \tag{5}
\end{equation*}
$$

Interpretation:

- Marginal rate of substitution between consumption and leisure is equal to the wage.
- Use time for household production up to the point when the marginal productivity of household production = the wage.
- The wage elasticity of labour supply is affected by the possibility to make trade-offs between household and market activities.
(5) gives: $L^{*}=\wedge\left(w, \bar{R}_{0}\right)$

Differentiation w.r.t w :

$$
\frac{d L^{*}}{d w}=\wedge_{1}+\wedge_{2} \frac{d \bar{R}_{0}}{d w} \quad \text { with }
$$

$\frac{d \bar{R}_{0}}{d w}=L_{0}-h_{D}^{*}$

Since $h_{M}^{*}=L_{0}-h_{D}^{*}-L^{*}$ we have:
$\frac{d h_{M}^{*}}{d w}=-\frac{d h_{D}^{*}}{d w}-\frac{d L^{*}}{d w}$
Since $w=f^{\prime}\left(h_{D}^{*}\right)$ we have $\frac{d h_{D}^{*}}{d w}=\frac{1}{f^{\prime \prime}\left(h_{D}^{*}\right)}<0$
Using that, we obtain

$$
\begin{aligned}
& \frac{d h_{M}^{*}}{d w}=-\frac{1}{f^{\prime \prime}\left(h_{D}^{*}\right)}-\wedge_{1}-\wedge_{2}\left(L_{0}-h_{D}^{*}\right)= \\
& =-\left(\wedge_{1}+\wedge_{2} L_{0}\right)+\left[\wedge_{2} h_{D}^{*}-\frac{1}{f^{\prime \prime}\left(h_{D}^{*}\right)}\right]
\end{aligned}
$$

$-\left(\wedge_{1}+\wedge_{2} L_{0}\right)$ is the impact on labour supply given household production: ambiguous sign.
$\wedge_{2} h_{D}^{*}-\frac{1}{f^{\prime \prime}\left(h_{D}^{*}\right)}$ is unambiguously positive if leisure is a normal good $\left(\wedge_{2}>0\right)$.

The possibility to make trade-offs between household production and market work increases the wage elasticity of labour supply.

- Possible explanation of why female labour supply is more elastic than male labour supply: clearly the case if men are in a corner solution with $h_{D}^{*}=0$ because $w>f^{\prime}(0)$.
- Weakness: Disutility of household and market work is assumed to be the same.

Intrafamily decisions

Interdependent decisions within a family

The unitary model

- Extension of the basic model
- Utility of the family is $U=U\left(C, L_{1}, L_{2}\right)$ $C=$ total consumption of goods of the family
$L_{i}(i=1,2)=$ leisure of individual i
Utility from consumption does not depend on distribution of consumption.

Programme of the household:
$\operatorname{Max} \quad U\left(C, L_{1}, L_{2}\right)$
C, L_{1}, L_{2}
s.t. $\quad C+w_{1} L_{1}+w_{2} L_{2} \leq R_{1}+R_{2}+\left(w_{1}+w_{2}\right) L_{0}$

- Distribution of non-wage incomes does not matter, only their sum $R_{1}+R_{2}$ (income pooling).
- Empirically questionable
- Fortin and Lacroix find support only for couples with pre-schoolage children.

The collective model

- Household choices must arise out of individual preferences
- But Pareto-efficient decisions

Programme:
$\operatorname{Max} \quad U_{1}\left(C_{1}, L_{1}\right)$

$$
C_{1}, C_{2}, L_{1}, L_{2}
$$

s.t. $\quad U_{2}\left(C_{2}, L_{2}\right) \geq \bar{U}_{2}$

$$
C_{1}+C_{2}+w_{1} L_{1}+w_{2} L_{2} \leq R_{1}+R_{2}+\left(w_{1}+w_{2}\right) L_{0}
$$

\bar{U}_{2} likely to depend on $\boldsymbol{w}_{\boldsymbol{i}}$ and $\boldsymbol{R}_{\boldsymbol{i}}$.

Chiappori (1992):
$\begin{array}{ccc}\operatorname{Max} & U_{i}\left(C_{i}, L_{i}\right) & \text { s.t. } \quad C_{i}+w_{i} L_{i} \leq w_{i} L_{0}+\Phi_{i}\end{array}$

$$
C_{i}, L_{i}
$$

- Φ_{i} is a sharing rule such that $\Phi_{1}+\Phi_{2}=R_{1}+R_{2}$
$\boldsymbol{\Phi}_{\boldsymbol{i}}$ depends on $\boldsymbol{w}_{\boldsymbol{i}}$ and $\boldsymbol{R}_{\boldsymbol{i}}$
- Efficient allocations are solutions to individual programmes where each individual is endowed with a specific non-wage income which depends on the overall income of the household.
- Also extensions of basic model with specification of the individual's non-wage income.
- Explanation of specialization in either household or market work
- Interdependence of decisions
- $\mathbf{w} \downarrow \Rightarrow$ reduction in household income \Rightarrow increased participation (from earlier non-participants)
- but this additional worker effect does not seem empirically important
- not negative but positive relationship between participation and average wage

