Lecture 8: Labour economics

Spring 2010

Lars Calmfors

Technological progress

- Labour productivity growth
- Capitalisation effect increases the profit due to job creation.
- The individual's productivity y grows at the rate g.
- Assume a balanced growth path where productivity, the real wage and profits all increase at the rate of g.
$\pi_{e}=$ profit from a filled vacancy (discounted value)
$\pi_{V}=$ profit from an unfilled vacancy (discounted value)

$$
\begin{align*}
& \pi_{e}=\frac{1}{1+r d t}\left[(y-w) d t+q d t(1+g d t) \pi_{v}+(1-q d t)\right] \\
& (1+g d t) \pi_{e} \tag{3}\\
& \boldsymbol{q}=\text { rate of job destruction }
\end{align*}
$$

Equation (3) can be rewritten:

$$
\begin{align*}
& (r-g) \pi_{e}=(y-w)+q(1+g d t)\left(\pi_{V}-\pi_{e}\right) \\
& d t \rightarrow 0 \Rightarrow \\
& (r-g) \pi_{e}=(y-w)+q\left(\pi_{V}-\pi_{e}\right) \tag{4}
\end{align*}
$$

- If π_{e} is "invested" in the labour market it earns a return made up of the instantaneous profit $(y-w)$ and an expected "capital gain" $q\left(\pi_{V}-\pi_{e}\right)$.
- In addition the value of the asset has risen by $q \pi_{e}$.
- A financial investment yields $r \pi_{e}$.
- $(r-g) \pi_{e}$ is the return from a financial investment less the "opportunity cost" $g \pi_{e}$ in an environment characterized by growth g.
- $(r-g) \pi_{e}$ is the effective rate of return on an investment.
- Growth is accompanied by a capitalisation effect equivalent to a reduction in the interest rate.
- The cost of a vacancy is assumed to be indexed to productivity, i.e. it is hy.

The return from an unfilled vacancy

$$
\begin{equation*}
(r-g) \pi_{v}=-h y+m(\theta)\left(\pi_{e}-\pi_{v}\right) \tag{4a}
\end{equation*}
$$

The free-entry condition $\pi_{v}=\mathbf{0}$ together with (4) and (4a) give:

$$
\begin{equation*}
\frac{y-w}{r-g+q}=\frac{h y}{m(\theta)} \tag{5}
\end{equation*}
$$

The expected profit from a filled job, π_{e}, is equal to the average cost of a vacancy, hy/m(θ).

- (5) represents labour demand.
- $g \uparrow \Rightarrow L H S \uparrow \Rightarrow \pi_{e} \uparrow$
- Hence, the RHS, the cost of an unfilled vacancy, must also go up. This occurs if the average duration of a vacancy $1 / m(\theta)$ increases, which happens when labour market tightness increases.
- Hence, $g \uparrow \Rightarrow \theta \uparrow$, i.e. an upward shift of the labour demand schedule.

Figure 10.1
The effect of an increase in productivity.

Wage setting

$V_{e}=$ the discounted expected utility of an employed worker
$V_{u}=$ the discounted expected utility of an unemployed worker

$$
\begin{equation*}
(r-g) V_{e}=w+q\left(V_{u}-V_{e}\right) \tag{6}
\end{equation*}
$$

We assume that the income of an unemployed worker is indexed to productivity, such that it is zy.

Then:

$$
\begin{equation*}
(r-g) V_{u}=z y+\theta m(\theta)\left(V_{e}-V_{u}\right) \tag{7}
\end{equation*}
$$

Apply the same wage bargaining model as in chapter 9, but change z to $z y$ and r to ($r-g$).

Equation (20) in chapter 9 can then be rewritten:

$$
\begin{align*}
& w=y[z+(1-z) \Gamma(\theta)] \\
& \Gamma(\theta)=\frac{\gamma[r-g+q+\theta m(\theta)]}{r-g+q+\gamma \theta m(\theta)} \tag{8}
\end{align*}
$$

- The "strength of the employee in bargaining", $\Gamma(\theta)$, increases with g.
- $g \uparrow$ reduces the effective interest rate.
- The "capital loss" from job destruction is reduced.
- Hence, less fear of unemployment.
- WC curve is shifted upwards.

From Figure 10.1

A rise in productivity growth:
(i) raises the wage
(ii) has an ambiguous effect on θ.

But (5) and (8) together give:

$$
\begin{equation*}
\frac{(1-\gamma)(1-z)}{r-g+q+\gamma \theta m(\theta)}=\frac{h}{m(\theta)} \tag{9}
\end{equation*}
$$

Differentiation of (9) shows that rise in \boldsymbol{g} raises $\boldsymbol{\theta}$.

$$
\frac{d \theta}{d g}=\frac{h}{h \gamma \underbrace{[\underbrace{m(\theta)+\theta m^{\prime}(\theta)}]}_{(+)} \underbrace{-(1-\gamma)(1-z) m^{\prime}(\theta)}_{(+)}}>0
$$

$\theta \uparrow \Rightarrow u \downarrow$

Intuition: The profit from a filled job increases also after the effect on wage bargaining has been taken account of.

- Productivity growth makes job creation more profitable.
- Note that the effect is associated with higher productivity growth, not with a one-shot increase in the productivity level.
- Limitation: Exogenous rate of job destruction q.
- But if $q=q(g)^{(+)}$, then the effect on unemployment is not à priori clear!

Table 10.2
Evolution of the D5/D1 ratio among men in the 1980s and 1990 s.

Country	$1975-79$	$1995-96$	$1975-79$ to $1995-96$
Australia	1.57	1.68	0.11
Canada *	2.07	2.22	0.15
France $^{\text {Germany }}$	1.68	1.60	-0.08
Japan	1.52	1.46	-0.06
Sweden	1.58	1.60	0.02
United Kingdom	1.32	1.40	0.08
United States	1.58	1.80	0.22

Source: Bertola et al. (2001, table 3).

* Periods 1980-1984 and 1990-1994.
\dagger The first period is 1980-1984.

Table 10.3
Evolution of unemployment rates per skill level between 1981 and 1996.

Country	u_{l}		Δu_{l}	u_{h}		Δu_{h}	$\Delta u_{\ell}-\Delta u_{h}$
	1981	1996		1981	1996		
Canada	7.3	13.4	6.1	2.0	6.6	4.6	1.5
France	5.4	13.0	7.6	3.0	5.9	2.9	(4.7)
Sweden	3.0	10.5	7.5	0.6	5.4	4.8	2.7
United Kingdom	13.7	15.1	1.4	2.7	4.1	1.4	0
United States	10.3	11.0	0.7	2.2	2.6	0.4	0.3

Source: OECD data and personal calculations.
Note: u_{l} designates the unemployment rate of individuals with low educational levels (secondary school education not completed). u_{h} designates the unemployment rate of individuals with high educational levels (college or university training). Δ designates the difference between 1996 and 1981.

Table 10.4
The evolution of employment rates per skill level between 1981 and 1996.

	e_{ℓ}			e_{h}				
Country	1981	1996		Δe_{ℓ}	1981	1996	Δe_{h}	$\Delta e_{\ell}-\Delta e_{h}$
Canada	79.6	64.3		-15.3	74.6	84.7	-9.9	-5.4
France	80.3	67.2		-12.8	92.5	87.4	-5.1	-7.7
Sweden	85.3	73.5		-12.2	95.2	93.1	-2.1	-10.1
United Kingdom	71.7	61.7	-10	91.3	88.8	-2.5	-7.5	
United States	69.8	66.1		-3.7	91.8	90.5	-1.3	-2.4

Source: OECD data and personal calculations.
Note: e_{ℓ} designates the employment rate of individuals with low educational levels (secondary school education not completed). e_{h} designates the employment rate of individuals with high educational levels (college or university training). Δ designates the difference between 1996 and 1981.

The Anglo-Saxon vs the European model

- Biased technological progress
- Two labour markets: skilled and unskilled labour
- Three goods
- final good
- two intermediate goods (one produced with skilled labour; one produced with unskilled labour)
- Each employee produces one intermediate good per unit of time.

Production of the final good
$F\left(A_{h} L_{h}, A_{l} L_{l}\right) \quad A_{h}$ and L_{h} measure the levels of technical progress

- The market for the final good is perfectly competitive.
$\underset{L_{h}, L_{l}}{\operatorname{Max}} \quad F\left(A_{h} L_{h}, A_{l} L_{l}\right)-p_{h} L_{h}-p_{L} L_{L}$
$p_{i}=A_{i} F_{i}\left(A_{h} L_{h}, A_{l} L_{l}\right) \quad i=h, l$
$\frac{p_{h}}{p_{l}}=\frac{A_{h} F_{h}\left(A_{h} L_{h}, A_{l} L_{l}\right)}{A_{l} F_{l}\left(A_{h} L_{h}, A_{l} L_{l}\right)}$

Stationary state
$r \pi_{i}=p_{i}-w_{i}+q_{i}\left(\pi_{V i}-\pi_{i}\right)$
$h_{i}=\operatorname{cost}$ of a vacancy
$\theta_{i}=V_{i} / U_{i}=$ labour market tightness
$m\left(\theta_{i}\right)=M_{i}\left(V_{i} / U_{i}\right) / V_{i}=$ the rate at which vacant jobs of type i are filled

$$
\begin{equation*}
r \pi_{V i}=-h_{i}+m_{i}\left(\theta_{i}\right)\left(\pi_{i}-\pi_{V i}\right) \tag{40}
\end{equation*}
$$

From free-entry condition $\pi_{v i}=0$, (39) and (40) we have:
$\frac{h_{i}}{m\left(\theta_{i}\right)}=\frac{p_{i}-w_{i}}{r+q_{i}}$

Wage negotiations

$Z_{i}=$ income of an unemployed person
$V_{e i}=$ discounted utility of an employed \boldsymbol{i} worker
$V_{u i}=$ discounted utility of an unemployed \boldsymbol{i} worker
$r V_{e i}=w_{i}+q_{i}\left(V_{u i}-V_{e i}\right)$
$r V_{u i}=z_{i}+\theta_{i} m\left(\theta_{i}\right)\left(V_{e i}-V_{u i}\right)$

From eq. (20) in chapter 9
$w_{i}=z_{i}+\left(p_{i}-z_{i}\right) \Gamma_{i}\left(\theta_{i}\right)$
$\Gamma_{\mathrm{i}}\left(\theta_{i}\right)=\frac{\gamma_{i}\left[r+q_{i}+\theta_{i} m\left(\theta_{i}\right)\right]}{r+q_{i}+\gamma_{i} \theta_{i} m\left(\theta_{i}\right)}$

$$
i=h, l
$$

$z_{i}=b_{i} w_{i}$
$h_{i}=h p_{i}$
$w_{i}=b_{i} w_{i}+\left(p_{i}-b_{i} w_{i}\right) \Gamma_{i}\left(\theta_{i}\right)$
$w_{i}=p_{i} \Phi\left(\theta_{i}\right) \quad \Phi\left(\theta_{i}\right)=\frac{\Gamma_{i}\left(\theta_{i}\right)}{1-b_{i}+b_{i} \Gamma_{i}\left(\theta_{i}\right)} \quad i=1,2$
(41) and (42a) give:
$\frac{h}{m_{i}\left(\theta_{i}\right)}=\frac{1-\Phi_{i}\left(\theta_{i}\right)}{r+q_{i}}$

- Labour market tightness is independent of the prices of the intermediate goods and thus of technological progress.
- Hence, unemployment from the Beveridge curve does not depend on technological progress (bias).
- But the relative wage w_{l} / w_{h} does depend on technological bias (prices).
- This is an Anglo-Saxon labour market.

A European labour market

- Unskilled workers are paid a minimum wage.
- Assumption: The minimum wage is indexed to the wage of skilled workers.

$$
w_{l}=\mu w_{h}=\mu p_{h} \Phi_{h}\left(\theta_{h}\right) \quad 0 \leq \mu \leq 1
$$

$$
\frac{h_{l}}{m\left(\theta_{l}\right)}=\frac{p_{l}-w_{l}}{r+q_{l}}=\frac{p_{l}-\mu p_{h} \Phi_{h}\left(\theta_{h}\right)}{r+q_{l}}
$$

$$
\frac{h P_{l}}{m\left(\theta_{l}\right)}=\frac{p_{l}-\mu p_{h} \Phi_{h}\left(\theta_{h}\right)}{r+q_{l}}
$$

$$
\frac{h}{m\left(\theta_{l}\right)}=\frac{1-\mu \frac{p_{h}}{p_{l}} \Phi_{h}\left(\theta_{h}\right)}{r+q_{l}}
$$

- Obviously θ_{l} is affected by a change in p_{h} / p_{l} due to technological bias.
- θ_{h} is determined as in the Anglo-Saxon model and is not affected by technological bias.
- It follows that relative unemployment is affected by technological bias.

CES production function

$$
\begin{align*}
& F\left(A_{h} L_{h}, A_{l} F_{l}\right)=\left[\left(A_{h} L_{h}\right)^{(\sigma-1) / \sigma}+\left(A_{l} L_{l}\right)^{(\sigma-1) / \sigma}\right]^{\sigma(\sigma-1)} \\
& \frac{p_{h}}{p_{l}}=\left(\frac{A_{h}}{A_{l}}\right)^{(\sigma-1) / \sigma}\left(\frac{L_{h}}{L}\right)^{-1 / \sigma} \tag{46}
\end{align*}
$$

Anglo-Saxon model

$$
\frac{w_{h}}{w_{l}}=\left(\frac{A_{h}}{A_{l}}\right)^{(\sigma-1) / \sigma}\left[\frac{N_{h}\left(1-u_{h}\right)}{N_{l}\left(1-u_{l}\right)}\right]^{-1 / \sigma} \quad \frac{\Phi_{h}\left(\theta_{h}\right)}{\Phi_{l}\left(\theta_{l}\right)}
$$

European labour market

(46) together with $L_{i}=N_{i}\left(1-u_{i}\right)$ and

$$
\frac{h_{l}}{m_{l}\left(\theta_{l}\right)}=\frac{p_{l}-w_{l}}{r+q_{l}}
$$

gives:

$$
\frac{h\left(r+q_{l}\right)}{m_{l}\left(\theta_{l}\right)}=1-\mu\left(\frac{A_{h}}{A_{l}}\right)^{(\sigma-1) / \sigma}\left[\frac{N_{h}\left(1-u_{h}\right)}{N_{l}\left(1-u_{l}\right)}\right]^{-1 / \sigma} \Phi_{h}\left(\theta_{h}\right)
$$

- θ_{h} and u_{h} are independent of technological bias.
- It can be derived that $\nu_{l}=\nu_{l}\left(\mu_{l}\right)$.
- Rise of $\boldsymbol{x}=A_{h} / A_{\eta}$ with $\sigma>1$ shifts $L D$ curve downwards in Figure 10.11.
- $u_{l} \uparrow$ and $\frac{u_{l}}{u_{h}} \uparrow$.

Figure 10.11
The unskilled labor market equilibrium.

