
Lent Term, PS 1 (Solutions) Ec402

Problem Set 1

This problem set is intended to shape your understanding of what a causal relation is and why
‘correlation does not imply causation’. We will the positive correlation between income and health
(the income health gradient) discussed in lecture as an example. Suppose in the following we are
interested in the causal effect of income on health and we know that the true relation is:

Healthit = β0 + β1Incomeit + β2Educationit + β3Ageit + εit (1)

Question 1 - Data Structures

A) Question: What type of data would you need to estimate this equation? Why?

Answer: The data is indexed by two subscripts: i refers to different data-points, labeled i,
within the same time period and t refers to data from different time periods, labeled t. If the
different i are individuals which stay the same over time (so we track the same individual over
time) we speak of ‘panel data’ whereas if i refers to a sample from group i (where the composition
of this sample might change over time) we speak of ‘repeated cross-sectional data’. So we need
one of the two.

B) Question: If you had only uni-dimensional data, what estimating equation would you use?
Either

Healtht = β0 + β1Incomeit + β2Educationt + β3Ageit + εt

or
Healtht = β0 + β1Incomet + β2Educationt + β3Aget + εt

Answer: If we have only uni-dimensional data we can only estimate the second equation. In
the first equation some of the data has two subscripts and hence would require two-dimensional
data.

Question 2 - Data Quality

You get your data and while you can perfectly measure income, you are unable to measure education
and age perfectly.

A) Question: Algebraically, show what the inconsistency on the OLS estimate would be if you
just run a regression of health on income, so you omit education and age. In what direction
do you expect this inconsistency to go? (Assume for this question that the income measure is
independent of the error term.)

Answer: Define for convenience y, x, e and a as the vectors containing the data for health,
income, education and age, respectively. Further, suppose we converted all data in mean-
deviations form. We know that when using this data without including a constant term we
get numerically the same coefficient estimates as when using the original data and including a
constant. Since we are not interested in the constant here, we can use the data in mean-deviations
form and omit the constant, which makes the algebra easier.

Then when calculating the mentioned OLS estimate we calculate

β̂1 = (x′x)−1x′y (2)

We plug in (as usual) for y. You arrive at:
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β̂1 − β1 = β2 · (x′x)−1x′e + β3 · (x′x)−1x′a + (x′x)−1x′ε

= β2 ·
(

x′x
N

)−1 x′e
N

+ β3 ·
(

x′x
N

)−1 x′a
N

+
(

x′x
N

)−1 x′ε
N

To calculate the inconsistency we take plims. Note that x′x = Σix2
i and similarly for x′e and x′a.

Note that plimΣix
2
i

N = E(x2
i ) = V ar(xi) since E(xi) = 0 because every is in mean-deviations

form.1 This same argument holds for writing plimx′a
N = Cov(x, a), plimx′e

N = Cov(x, e) and
plimx′ε

N = Cov(x, ε) = 0. Hence we can rewrite

plim(β̂1 − β1) = β2 ·
Cov(x, e)
V ar(x)

+ β3 ·
Cov(x, a)
V ar(x)

(3)

V ar(x) will be strictly positive (if it was 0 we could not calculate the OLS estimator) and hence
the bias depends on both the covariance terms and the true coefficients. Presumably β2 > 0,
β3 < 0, Cov(x, e) > 0 and Cov(x, a) > 0. So the first part is positive whereas the second part
is negative. Hence, since we don’t know the exact quantities involved, the sign of the bias is
indetermined.

B) Question: While you are not able to measure education and age perfectly, you are able to do
so with some error. The error is random so that you know what you observe is:

ãi = ai + νi (4)

and

ẽi = ei + υi (5)

What is the bias in your OLS estimate from using these measures? (Consider in turn that you
only measure age with error and that you only measure education with error.)

Answer: Let us consider the case where age is measured with error and eduction is not in the
regression. Again convert all data into mean-deviations form. We can then rewrite the true
relation as

y = β1x + β2ã + ε− β2ν (6)

Note that ã and ν are surely correlated! So when calculating OLS

β̂OLS =
(
β1

β2

)
+

[
x′x x′ã
ã′x ã′ã

]−1 (
x′(ε− β2ν)
ã′(ε− β2ν)

)
the plim of the 2nd element of the last vector is surely not 0.

This result shows how having measurement error in one variable can render all coefficient esti-
mates biased! The intuition is the following: Suppose the mis-measurement is very severe such
that the age variable you have is mostly noise. If there is some covariance between your variables
of interest (here: income) and the mis-measured variable (here: age) then the coefficients on
income will ‘jump in’ for the effect of age, or: the effect of higher age will be attributed to be
an effect of higher income. Note that this only works if the true age and income are correlated.

Further you can understand why the measurement error bias on the coefficient of the mis-
measured variable is downwards (‘attenuation bias’): If it becomes pure noise, it will not explain
anything and the coefficient on it will be 0 on average.

1We assumed here that all xi have the same variance.
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C) Question: Compare your predicted bias in A and B. Discuss which approach you would take
and why.

Answer: Another way of asking the question would be to say: Suppose we have a mis-measured
variable. Should we include it or should be drop it? Firstly: Both will lead to a bias, the
measurement error bias or the omitted variable bias, respectively. So you have the choice
between two poor options. Which one you choose might depend on

- whether one can sign the bias,

- the extent to which one prefers upward or downward biased estimates,

- the relative size of the measurement error in the variables and

- the strength of the correlation between the omitted variables and both income and health.

Question 3 - Causal Relationship

Question: For each of the factors listed above (education, occupation, age, sex, marital status
and ethnicity) discuss the way in which the correlation of these issues might affect your ability to
estimate the causal effect of income on health. For each factor, assume it is the ONLY omitted
variable in regression.

Answer: Suppose the correct specification was (forgetting about sex and ethnicity)

yi = β1 · xi + β2 · ei + β3 · oi + β4 · ai + β5 ·mi + εi (7)

where yi is some measure of the health of individual i and xi is individual i’s income. Now sup-
pose we omit (because we just forget or we do not have data) each of education (ei), occupation
(oi), age (ai) and marital status (mi) in turn. Then we have shown in class (for a simpler case,
however) that the sign of the bias on β̂1 will depend on βj , j ∈ 1, 2, 3, 4 and the covariance of the
omitted variable with xi. I would expect (though arguments different from mine might predict
something else and be more convincing) that

- education influences health positively (better access to information) and is positively
correlated with income (higher marginal productivity) - resulting in an upward bias, so we
overestimate the coefficient β1 on average,

- occupation might measure whether you work in a mine, which would influence health
negatively and occupation would be negatively correlated with income - resulting again in
an upward bias,

- age would probably influence health negatively and be correlated positively with income,
- resulting in an downward bias, so we underestimate the coefficient β1 on average,

- marital status would influence income positively (because of tax discount, e.g., or assor-
tative matching) and be maybe positively related to health (because of some assortative
matching in the ‘marriage market’) - resulting in an upward bias, so we overestimate the
coefficient β1 on average.

Note how these biases make intuitive sense. For example consider the downward bias induced
by the omission of age: If indeed older people earn more but have a poorer health status, then
when you regress health on income without having age in the regression, you might even find
that ”having more income decreases your health status”. But this would only be concluded since
you have forgotten ai in the regression. If you had included it the coefficient on income would
measure how higher income affects health given the same age level !

By the way: if you were to write a paper on this, this whole design would probably not get you
very far. People would continue to tell you which variables you should have included (and some
of these might not be measurable) or they might tell you that a good health status itself might
cause a higher income. In any case even the weakest version of A3 would be violated.
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Question 4 - Data Interpretation

Some scholars have used cross-country comparisons between the US and UK to address some of these
concerns. The argument they provide is that the main excluded factor is access to medical care, which
varies dramatically by education and income in the US. In the UK, the NHS provides free insurance
so this is not a problem.

A) Question: What is the assumption such a strategy would make to ”identify” the causal rela-
tionship of income on health? Does this make sense?

Answer: Clearly one way income influences health is through access to health care. Now, if you
are not interested in this part of the effect of income on health, but rather want to measure the
sum of all other effects of income on health (whatever the exact channel, e.g. better nutrition,
might be) then the UK data seems useful since the access to health care is theoretically the same
for citizens of all income levels.

You might then be tempted to us the UK data and just run a regression of health status on
income and some other controls. However, this would only work under the assumption that no
other controls should be included and there is no reverse causation - and this assumption needs
to be a reasonable one.

B) Question: If you believe the identifying assumption of this paper, does this evidence support a
causal effect of income on health? Why or why not? (Please look at the question sheet for the
graphs.)

Answer: If you believe that there are no omitted variable or reverse causality problems (‘iden-
tifying assumption’, cause it ensures that A3 holds), then you would conclude that income has
an effect on health independent of access to health care. (We did not run the regression, but
from the graph it seems the coefficient would be positive and significant.)

By the way, if the only thing different between the US and the UK was the access to health
care, the lower slope in the UK would actually indicate that access to health care might be a
channel through which income effects health status - hence in the US the total effect of income
on health status is bigger.

C) Question: What else might explain the observed similarities and differences between the US
and UK?

Answer: Again, all the arguments made above would not make a good paper. The similarities,
i.e. that income and health are positively correlated, might for example be driven by the omitted
‘ability’ of the individual (that is to say: cleverness). This might drive up both income and health
and cause the correlation observed in the data. The problem is this ‘ability’ is inherently difficult
to measure. And even if, somebody would probably come up with another omitted variable.
Can you think of one?

And the differences between the US and UK might be driven by the fact that other features of
the health system apart from free access are different in the UK and US, too. Or you might
argue that the upper two or three deciles (which are on the x-axis in the graph) have actually
a higher income in the US than in the UK - so we actually compare apples with pears.

D) Question: Can you think of a test to distinguish between the theory in A and the theory in B?
Please describe?

Answer: If we wanted to check our ‘identifying assumption’ , we might just take one omitted
variable, say education, and split the sample into those with high education and low education
and see how low education guys have poor health and income and high education guys have
good health and good income.
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