
Lent Term, PS 2 (Solutions) Ec402

Problem Set 2

Last time we talked about the difficulty to satisfy any version of A3 with non-experimental data.
Now we discuss how even with experimental data it is difficult to estimate some well-defined treatment
effects in the presence of heterogenous treatment effects. This problem set is intended to shape
your understanding of different treatment effects of interest (ATE, TOT, LATE, ITT) and how we
can learn (or not) about some of them from experimental data. As well we will discuss what happens
if there is non-perfect compliance with the experimental treatment assignment.

Question 1 - Issues of Compliance

A) Question: In the example of the MDVE, the treatment effect differed for a variety of reasons
including that police simply forgot to bring the color-coded note pad. If this was the only form
of bias and you would run a simple OLS regression of the outcome on treatment, why would this
be an unbiased estimate of the ATE? Show this algebraically and then interpret your results.

Answer: First note that the OLS estimate with a constant gives the same coefficient as the OLS
estimate when using the data in mean-deviations form and skipping the constant coefficient. Let
us do the later, for notational simplicity. Let αi be the true treatment effect for individual i, ᾱ
is the ATE, yi is the outcome variable (here: re-offence rates) and Ri is a dummy being one if
the individual received treatment. Then

yi = αiRi + εi = ᾱRi + εi + (αi − ᾱ)Ri︸ ︷︷ ︸
ε∗i

(1)

α̂OLS = ᾱ+ (R′R)−1R′ε∗ = ᾱ+

∑
Ri=1 εi

TR
+

∑
Ri=1(αi − ᾱ)

TR
(2)

E[α̂OLS] = ᾱ+ E[εi|Ri = 1] + E[αi − ᾱ|Ri = 1] (3)

(1) is the true relation, (2) is the OLS estimate and (3) is its expectation. This should be ᾱ for
OLS to be an unbiased estimate of ATE.

Conclusion: εi and the size of the treatment effect need to be mean independent of receiving
treatment. With random assignment and perfect compliance this will be the case. However,
generally there won’t be perfect compliance. But then - even with random assignment - the
OLS estimate is not unbiased for ATE. This is because then E[αi − ᾱ|Ri = 1] is probably not
0 since those with and over-average treatment effect (αi > ᾱ) select into treatment. [So among
those with Ri = 1 the average of αi − ᾱ is bigger than 0.]

B) Question: In the experiment we investigate, the treatment assignment was random. But was
there perfect compliance? Determine the compliance rates using the data you were provided. You
can do this by using the command: tab t_random t_final, row

Answer:

‘Coddle’ is defined as ‘treatment’ here (though that seems a little counter-intuitive). Hence we
have few ‘always takers’, but quite some ‘never takers’.

C) Question: The researchers in the MDVE kept track of why they may have given a different
treatment than was assigned. To see these reasons, look at the variable reason2. You can do this
by typing: tab reason2

Answer:

We see that there are quite some ‘never-takers’. For them the police probably decides not to
give the assigned ‘coddle’ treatment since they are hard-core guys for whom the effect of this
comparatively soft treatment on the re-offence rates would be particularly high. What does this
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mean for E[αi − ᾱ|R = 1]? It would be < 0 since only those who are comparatively not so
dangerous get the treatment and hence the bias of OLS as estimate of ATE is downwards.

Question 2 - Measuring treatment effects

In class we discussed the Angrist (2006) paper which analyzes the Minnesota Domestic Violence Ex-
periment (MDVE) in a Instrumental Variable framework. Define the assigned treatment of coddling
as Ti and the received treatment of coddling at Ri. Also recall our counterfactuals: Y1i is the outcome
for individual i if they received treatment. Y0i is the outcome for individual i if they did not received
treatment. In practice we only observe Y1i for the treatment group and Y0i for the control group so
that for any individual i, we don’t know the counterfactual unobserved outcome.
While in general we want to estimate the average treatment effect, ATE = E[Y1i − Y0i], sometimes
compliance is an issue. As a result, instead of ATE, experimental studies may focus on the intent
to treat effect, ITT = E[Y1i|Ti = 1] − E[Y0i|Ti = 0]. This is because looking only at what treatment
was actually delivered, the treatment on the treated or TOT = E[Y1i|Ri = 1]− E[Y0i|Ri = 0], cannot
be estimated consistently/unbiasedly since some individuals selected themselves into the control and
treatment group. Hence the group of non-treated will not be a good control for the group of treated
individuals. We discussed why in this context, an estimable treatment effect may be the local average
treatment effect or LATE = E[Y1i − Y0i|R1i > R0i]. Ri indicates whether individual i received
treatment, R1i indicates whether individual i when assigned treatment would receive treatment and R0i

indicates whether individual i when not assigned treatment would receive treatment. R1i = R0i = 1
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are ‘always-takers’ and R1i = R0i = 0 are ‘never-takers’. In all of this assume there are no ‘defiers’
(monotonicity assumption)1.

A) Question: Show that in general, with non-compliance, ITT will be smaller than the true ATE.
What is the intuition behind this? (HINT: Think about when ITT and ATE will be equal.)

Answer: Consider the definitions of both treatment effects.

ATE ≡ E[Y1i − Y0i]

is the expected effect of treatment on a randomly drawn person from the population (Wooldrige,
p.604). Let Yi ≡ Y0i(1−Ri) + Y1iRi be the observed outcome for individual i.

ITT ≡ E[Yi|Ti = 1]− E[Yi|Ti = 0]

is expected difference in the outcomes of those assigned to treatment and those who were not
assigned to treatment. Also,

pa ≡ Pr[R = 1|T = 0] is the proportion of always takers and

pn ≡ Pr[R = 0|T = 1] is the proportion of never takers.

Then (using the law of iterated expectations)

ITT = E[Yi|T = 1]− E[Yi|T = 0]

= E[Yi|T = 1, R = 1] · (1− pn) + E[Yi|T = 1, R = 0] · (pn)
−E[Yi|T = 0, R = 1] · (pa) + E[Yi|T = 0, R = 0] · (1− pa)

= E[Yi|T = 1&R = 1]− E[Yi|T = 0&R = 0]
−pn(E[Yi|T = 1, R = 1]− E[Yi|T = 1, R = 0)
−pa(E[Yi|T = 0, R = 1]− E[Yi|T = 0, R = 0)

Under perfect compliance with the treatment assignment pn = pa = 0 and E[•|T = 1, R =
1] = E[•|T = 1] and hence2

ITT = E[Y1i|T = 1]− E[Y0i|T = 0]

and under randomization (Y1i, Y0i) is fully independent of T . Hence

ITT = E[Y1i − Y0i] = ATE

Conclusion: With randomization of the treatment assignment and perfect compliance ITT is
the same as ATE. However without perfect compliance ITT is generally smaller than ATE.3

1‘Defiers’ are those who, when assigned treatment would not take it and when not assigned treatment, would take it
anyways.

2Note that we replace Yi with what it actually is.
3You might note that one way for this to hold is that both among those who are assigned treatment on those who are

not assigned treatment, the group who then actually receives the treatment (i.e. R=1 ) has higher outcomes than
the group who did not (i.e. R=0). Then the terms in brackets are positive and hence the bias is negative.
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B) Question: In general, TOT and LATE will not be the same. This is because TOT is a weighted
average of two effects: one on always-takers and one on compliers. Show that this is the case.

Answer: Again let us recap the treatment effects:

TOT ≡ E[Y1i − Y0i|Ri = 1]

”is the mean effect for those who actually participated in the program” (Wooldrige, p.605).
LATE is calculated pretty much like the ATE, but only using compliers:

LATE ≡ E[Y1i − Y0i|R1i > R0i]

In other words, it is ”the average treatment effect for those who would be induced to participate
by changing T from zero to one” (Wooldridge, p.635). Now, first note that there are two types
who receive treatment (Ri = 1), compliers (for whom R1i > R0i) and always-takers (for whom
R1i = R0i = 1). Then (using the law of iterated expectations)

TOT ≡ E[Y1i − Y0i|Ri = 1]
= E[Y1i − Y0i|R1i > R0i]︸ ︷︷ ︸

treatment effect of compliers

·Pr(R1i > R0i|Ri = 1)

+ E[Y1i − Y0i|R1i = R0i = 1]︸ ︷︷ ︸
treatment effect of always-takers

·Pr(R1i = R0i = 1|Ri = 1)

Conclusion: TOT is a weighted average between compliers and always takers. When there are
no ‘always-takers’ (Pr(R1i = R0i = 1|Ri = 1) = 0) then TOT is equal to LATE. This is very
useful, since an IV estimate of the treatment effect will be a consistent estimate of LATE - and
if there are no ‘always-takers’ hence TOT.

C) Question: In question 1 you showed that in the MDVE, there was mostly only one-sided non-
compliance. If this was true, how does LATE relate to TOT in this case?

Answer: The IV estimator will consistently estimate LATE. But we have very few ‘always
takers’, almost none. Then LATE = TOT. Hence in our case the IV estimator will consistently
estimate TOT.

Question 3 - Replicating Angrist’s Results

To get used to working with your data and interpreting Stata output, please replicate the results found
in Angrist. Don’t worry if your estimates are not exactly the same as those presented in the paper
(they won’t be for complicated reasons related to simulated outcomes that are done slightly differently
in this data than in the data in the paper).

A) Question: Begin with the ’Reduced Form’ estimate of the probability an individual re-offends
on the assigned treatment. You can do this with the command:
regress reoffend1 coddle_assigned
What is your estimate? Explain why this estimate can be interpreted as the ITT.

Answer:

We estimate that the treatment ‘coddling’ (rather than arresting) increases in the re-offence rate
by 0.10. The OLS regression simply gives us the difference of the re-offence rates of those who
were assigned the ‘coddle’ treatment and those who were not. This is the sample analog of the
ITT since it uses assigned treatment, regardless of actual receipt of the treatment to measure
the treatment effect.
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B) Question: Now add some covariates. You can do this by the command:
regress reoffend1 coddle_assigned y82 q1 q2 q3 nonwhite mixed anyweapon
s_influence.
Does your point estimate change much? Why not? What happens to the R-Squared? Why is
this important?

Answer:

The point estimate does not change much. Because assignment was random, the point estimate
should not change when including control variables. The R-squared increased. This allows
greater precision for the estimates because the residual variance is reduced.

C) Question: Estimate the OLS treatment effect. You can do this with the command:
regress reoffend1 coddle_received.
How does this compare to the estimates in A? Is this the true treatment effect? Why or Why
not? [NOTE: You are using a different outcome variable here (reoffend2) because issues related
to the outcome simulation. Don’t worry about that and just pretend as if this is the same variable
as in A and D]

Answer:

This is a little bit higher than the effect in 3.A (0.003 difference). If there were no compliance
problems or selection bias for treatment versus control this would be an unbiased estimate of the
average treatment effect (see question 1.A). Because there are compliance problems, we cannot
expect this to be a good estimate of the average treatment effect.

D) Question: Estimate the IV treatment effect. You can do this with the command:
ivreg reoffend1 (coddle_received = coddle_assigned).
What type of treatment effect does the instrumental variables approach recover? Why?

Answer:
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This recovers the LATE treatment effect. The point estimate is substantially higher than in the
previous parts of this question.

E) Question: Compute the mean re-offense rate. You can do this with the command: sum reoffend1
From this compute the percent change in recidivism rates for the various estimates ITT, OLS
and LATE presented in class. Is the relationship between the estimates as you predicted? Why
or why not?

Answer:

ITT The effect of 0.103 means an increase in the re-offence rate of 57%.

OLS The effect of 0.106 means an increase in the re-offence rate of 59%.

IV The effect of 0.131 means an increase in the re-offence rate of 73%.

In the light of question 2 we can make sense of these results. First remember that (under the
assumption of no defiers) ATE is a weighted average of the average treatment effects on always-
takers, never-takers and compliers and TOT is a weighted average of the average treatment
effect on always takers and compliers. Since there no always-takers in our example, TOT is the
average treatment effect of compliers and ATE is the average treatment effect of complieres and
never-takers. Hence we would expect ATE to be bigger than TOT. We won’t be able to find
out what ATE is, but let us see which of the above estimates comes closest to estimate TOT?
Remember what we said about the biases of OLS, ITT and IV:

- We know that here those who select out of treatment were those who have high re-offence
rates anyways, hence a simple OLS estimate comparing the outcomes of those who got
treated with those who did not get treated would underestimate TOT.
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- We expect ITT to be less than TOT again because of non-compliance. If all those actually
assigned the ‘coddle’ treatment would get it (and the other way around, though that does
not seem to be a problem here), ITT would estimate TOT (and ATE) unbiasedly. However,
here the worst (those who would have the highest re-offence rates) are actually taken out of
the treated group and put into the non-treated group. This makes the treated group look
rather favorable and hence our estimate of the treatment effect being biased downwards.

- We know that (under the monotonicity assumption, which seems reasonable here) IV will
consistently estimate LATE. But since here there are few/no ‘always-takers’, this is the
same as TOT.

”The coddle treatment, when applied, increases the re-offence rates by 73%” is hence our best
answer!

Question 4 - Interpreting the results

The MDVE found convincing evidence that individuals who are arrested after they commit domestic
violence are less likely to re-offend after arrest. If we manage to design the experiment carefully and
tackle convincingly the issues in questions 1, 2 and 3 we say that the estimates are internally valid.
Many advocates and policy makers were concerned about police not arresting frequently enough and
hence many states passed so called ”Mandatory Arrest Laws” which required the police to arrest an
offender when a domestic violence incident was reported. In my paper (Iyengar, 2009), I show that
in states that passed these laws, domestic violence actually went up after the laws were passed. This
exercise helps understand why experimental results may not be translated correctly into public policy.
This second question, whether the results from the experiment translate to a possible policy, is a
question of external validity. To answer it think about what is different when actually implementing
the policy vs. running the experiment.

A) Question: Consider first the initial experiment: Someone reported a crime and then a police
unit dispatched would apply a randomly assigned treatment. This meant that the treatment effect
measured Pr(Reoffend|Arrest & Report). Does a law which mandates the police arrest replicate
this experimental setting? Why or why not.

Answer: A mandatory arrest laws increases the Pr(Arrest) while the experiment increased the
Pr(Arrest|Report). Thus the effect of a mandatory arrest law is to estimate Pr(Reoffend|Arrest)
unconditional on reporting.

As a policy maker we would be interested in decreasing Pr(Reoffend)! We can rewrite

Pr(Reoffend) = Pr(Reoffend|Report) · Pr(Report) + Pr(Reoffend|No report) · Pr(No report)
= Pr(Reoffend|Arrest & Report) · Pr(Arrest|Report) · Pr(Report)
+ Pr(Reoffend|No arrest & Report) · Pr(No arrest|Report) · Pr(Report)
+ Pr(Reoffend|No report) · Pr(No report)

The experiment showed that Pr(Reoffend|Arrest & Report) < Pr(Reoffend|No arrest & Report).
Hence you might be tempted to pass a mandatory arrest law (increasing Pr(Arrest|Report)) in
order to decrease the re-offence rates. However, while in the experiment Pr(Report) remained
unchanged, with a mandatory arrest policy this might decrease. And since Pr(Reoffend|No report)
is likely to be high, the re-offence rates (observed or not) might go up.

B) Question: Iyengar (2009) uses a ’natural experiment’ to measure the causal effect of mandatory
arrest laws on domestic violence. The variation comes from the fact that some states passed
mandatory arrest laws (treatment group) and some states did not (control group) and thus some
individuals were ’as if ’ randomly assigned to treatment. What assumption is necessary for this
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to be a ’quasi’ experiment? [HINT: Think about what the source of variation is and how that is
related to unobserved factors.] What evidence could Iyengar provide to support this assumption?

Answer: You need to think that states with mandatory arrest laws and states without them
looked the same before the laws were passed. Show that variables related to arrest, reoffense
rates, and violence levels are on average the same

C) Question: Figure 1 above shows that while intimate partner violence went up in states with
mandatory arrest laws, family violence (i.e. child abuse) went down after the laws were passed.
The paper also notes that while intimate partner violence is most often reported by the victim,
child abuse is typically reported by outside third parties (like doctors or teachers). Why does this
help explain why the results in family violence more closely mirror those of the experiment while
the results in intimate partner violence do not?

Answer: Because victims do not report in the case of family violence, their reporting may not
be reduced by the increased probability of arrest.
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