
Lent Term, PS 3 (Solutions) Ec402

Problem Set 3

We talked about the role of conditional expectation functions in estimating differences in outcome.
Then we considered a specific form of the error: unobserved group level differences. We discussed using
fixed effects models as well as, in the case when this effect is uncorrelated, random effects models. We
discussed this in the context of a family effects model. This exercise is intended to help you develop
the underlying theory of CEF’s and an empirical understanding of estimation with fixed effects.

Question 1 - Conditional Expectation Functions

A) Question: Prove that the any outcome Y can be decomposed into two parts, the CEF (i.e
E[Yi|Xi]), and a mean-independent idiosyncratic term, ε, and that therefore, ε is uncorrelated
with any function of X.

Answer:

(i) Let us just define εi ≡ yi − E[yi|Xi].1 Then by construction

E[εi|X] = E[yi − E[yi|Xi]|Xi] = E[yi|Xi]− E[yi|Xi] = 0

(ii) Let h(Xi) be any function of Xi, then

E[h(Xi)εi] = E[E[h(Xi) · εi|Xi]] = E[h(Xi) · E[εi|Xi]] = 0

B) Question: Now show that the function X ′β, where β is the population regression parameter
vector, provides the best (in a minimum MSE sense) linear approximation to E[Y |X], i.e. prove
β = argminbE(E[Y |X]−X ′b)2.

Answer: Any linear approximation of the CEF will be of the form Xb. We search for the best
linear approximation minimizing the mean-squared-error, so we want to solve

minbE[(E[y|X]−Xb)2] (1)

It turns out that the solution to
minbE[(y −Xb)2] (2)

will be the same as to the first problem. But the solution to the second problem is OLS. You
can see this since

E(y −Xb)2 = E(y − E[y|X] + E[y|X]−Xb)2

= E[(y − E[y|X]) + (E[y|X]−Xb)]2

= E(y − E[y|X])2 + E(E[y|X]−Xb)2

+2E[(y − E[y|X]) · (E[y|X]−Xb)]

The first bit does not depend on b and hence does not affect the minimization, and the last bit
is just E[ε · h(X)], where h(X) is a function of X. But this we showed is 0.

This is a justification for being interested in the true population regression parameter β.

C) Question: Explain (in words or math) why the fact that the CEF can be additively separated
from the unobserved error is critical for the Conditional Independence Assumption to allow
causal interpretations of β?

1To understand this, just think of the joint density function of yi and Xi. What we are doing is that at any Xi we
take the expectations over all possible yis that come with this Xi and then define yi as this expectation plus some
error - all at a given Xi, so at one cut through the joint density function.
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Answer: Generally the CEF will take some form f(X;β) and we write y = f(X;β) + ε.
By the above property we have that E[y|X] = E[f(X;β)|X]. If further f(X;β) is linear, so
f(X;β) = Xβ, this allows us to interpret β as causal since

∂E[y]
∂X

=
∂f(X;β)
∂X

=
∂Xβ
∂X

= β (3)

Note that if the CEF is not linear, this would not work. The second derived property ensures
that, if we specify f(X;β) = Xβ correctly (corresponding to A2+A3Rmi), βOLS will be an
unbiased estimate for β.

Question 2 - Understanding Fixed and Random Effects

Suppose we have a standard linear model of an outcome yit, that is yit = x′itβ + εit. In this model,
suppose that the error term can be decomposed into two parts, a time specific component δt and an
idiosyncratic, mean zero error term µit. That is the composite error term is εit = δt + µit.

A) Question: If we assume that δt is not correlated with X, we can estimate this without worrying
about omitted variable bias. To test that it is independent, suppose that we estimated the function
with a time fixed effect and without. What do we compare to demonstrate that the time fixed
effect is independent of X? Why does that test make sense?

Answer: First note that whether δt and X are correlated or not has implications for β̂RE and
β̂FE :

Random Effects If the δt and Xs are uncorrelated, then Random Effects will be consistent and
efficient (it is just GLS). But if δt and X are correlated, then it will be inconsistent.

Fixed Effects This is not the case for a Fixed Effects estimation, since this essentially gets
away with δt. It is not efficient if δt and X are uncorrelated, but in both cases it will be
consistent.

So under the H0: δt and X are uncorrelated, both estimators are consistent and should give
similar results while under the alternative, Ha: δt and X are correlated, FE/OLS is consistent
but RE/GLS is not. If we can find the distribution of the difference of the estimators under the
null we can define a critical region and perform a hypothesis test.

To develop this test, use the idea is that under the null both FE/OLS and RE/GLS estimators
are consistent but only GLS is efficient. To find the distribution of the difference note that the
covariance of an efficient estimator with the difference between that efficient estimator and an
inefficient estimator is zero2, or

Cov[(β̂fe − β̂re), β̂re] = Cov[β̂fe, β̂re]− V ar[β̂re] = 0

So then the variance of [β̂fe − β̂re] is:

V ar[β̂fe − β̂re] = V ar[β̂fe] + V ar[β̂re]− 2 · Cov[β̂fe, β̂re] = V ar[β̂fe]− V ar[β̂re]

Define this difference in variances as Ω. Then we can define the test statistics H,

H = [β̂fe − β̂re]′Ω−1[β̂fe − β̂re]

This is distributed χ2 with K − 1 degrees of freedom. If this quantity is very large (so the
different of β̂re and β̂fe is big) we reject the null.3 In our case H0: ‘δt and X are independent’.

2Surely you were not expected to know this!
3If you are interested, this test is a version of the Wu-Hausmann test.
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B) Question: Now suppose we find that δt is correlated with X, and we wish to estimate a model
in differences from mean form. What assumptions must we make to ensure that will eliminate
the problem of omitted variable bias?

Answer: To the extent that an omitted variable affects all individuals at a given time, t, we
can control for this using a time fixed effect.4 This works since we are controlling for any factor
which is the same across all individuals at time t in the regression when we run

yit = X ′itβ +D′tδ + εit (4)

where Dt is a matrix of time dummies and δ are the coefficients on these time dummies.

For this to work we certainly need that

- the omitted variable indeed takes the same value for all individuals i in time t and

- the omitted variable indeed has the same effect for all i, so there is no heterogeneity in δ.

C) Question: We want to test if it is reasonable to assume that β is the same in all time periods.
We could do this by running a single regressions. If we had T periods, what could we test to
verify if our hypothesis on β is correct?

Answer: If you want to test whether the effect of xit on yit is the same in all time periods, you
can just allow them to be different and then test the linear hypothesis that they are the same.

So you would want to run the regression

yit = Xitβt + δt + εit (5)

This will give you the same coefficient estimates as running T separate regressions (since you
have for each time period a separate intercept and slope coefficient). However, running them
jointly allows you to test the H0: β1 = β2 = ... = βk in the simple fashion we are used to.

Question 3

In lecture we discussed a study on the returns to education which used differences in schooling between
identical twins to identify the causal effect of education on earnings. The key assumption of this paper
was the family level effects were the only omitted variable and that these effects were homogeneous
within a family and additively separable from other variables of interest. They use this fact to then
estimate the returns to schooling and find that the standard estimate is significantly bigger than the
twins-based estimate.

A) Question: The study authors Ashenfelter and Rouse (1998) present evidence that differences
in schooling between twins are uncorrelated with birth order and a range of characteristics such
as union status, self-employment, tenure and spouse’s education. They therefore argue that
between-twins education differences estimates are not biased. What is the assumption that this
evidence makes to convince us that the twins-difference estimated effect is unbiased.

Answer: We saw, that once we have included fixed effects, our estimator will explain differences
in the outcome variable within groups (i.e. families) with the variation in the explanatory
variable within these groups. That excludes many potential omitted variables. But we still
need to ensure that within one group the differences in the explanatory variable are indeed as
good as random. So, in our example, the reasons why identical twins get different amounts

4For a concrete example, think of some data where you are worried about omitted variables. For example yit

being a variable capturing whether individual i broke his arm in week t and xit being a variable capturing for how
many hours he worked. Wanting to find the causal relation between the two, you should be worried about omitted
variables. For example if there was snow in week t this might drive up the incidence of broken arms and drive down
the number of hours worked - which would give us a correlation between yit and xit even though there is no causal
relation.
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of schooling should have nothing to do with their earnings! Or: We try to show that for our
purposes the differences in schooling among identical twins are as good as random.

A potential problem is that there are many things which might drive one of the twins to get
more education than the other and drive the earnings as well. We cannot look at all of them.
But if we at least find that some of the potential candidates have no correlation with how many
years of schooling one or the other twin gets, this gives us some comfort. That is what the
authors do - and the question says they find no correlation.

If we believe/assume that all other factors which may be correlated with both schooling
choice and earnings and which we could not observe are sufficiently correlated with
those which we checked, then the fact that we do not find anything for those which we
observed makes it unlikely that our estimates are biased by any of the unobserved and hence
omitted factors.

B) Question: In the paper, the authors estimate the return to schooling including the average level
of education in the family as control (but no fixed effects). They find a significant correlation
between the average family education and income. What must they assume for the average level
of education to deal with omitted variables?

Answer: It needs to be both that the family effect (of e.g. income) is occurring only through
schooling (i.e. not other unobservable family characteristics) and that the effect of average family
education of the outcome variable is linear. If the omitted variables work through the average
family education, including the latter variable will capture the effects of the omitted variable.
However, compared to including fixed effects this specification is less flexible. In particular the
authors need to believe that the average level of education influences the outcome in a linear way.
If they had included family fixed effects this would not be the case, rather we would estimate
for each family a family-specific coefficient.

C) Question: In the table below, the author find different estimate when including average family
education (column 2) than when excluding family variable (column 1). What does the change
in the coefficient estimate when including family control variables tell you about the bias in the
more parsimonious specification in column 1?

Answer: Suppose we do not include fixed effects, but just control for the average level of
education in the family.5 Then the effect of the own education goes down. This might have two
reasons:

- There might be something else which drives both average education and earning up in the
family, e.g. parents social network.

- [Or this might as well capture the fact that there are spill-over effects of education on the
siblings.]

In any case it shows that the initially estimated relation between an individual’s edu-
cation and his earnings was overestimated in (1).

D) Question: Show that the β estimated from the fixed effects estimator is the same as a difference
estimator (i.e. twin-i - twin-average variables). Assume we are estimating a simple regression
of y = βs+ Fδ + µ where s is schooling and F is a matrix of family level dummy variables and
δ is the associated coefficient vector.

Answer: We can estimate straightforwardly the OLS estimator for the following FE model

yij = βsij + f ′ijδ + εij

We know that using partitioned regression results we can calculate β̂OLS equivalently as

5This will never fit the data better than fixed effects.
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β̂OLS = [s′MF s]−1s′MF y

= [(MF s)′(MF s)]−1(MF s)′MF y

where MF = I − F (F ′F )−1F ′.

You can easily see why this is called the difference estimator. Just show that MFx gives a
vector of deviations of xij from the family mean of x. (We have done something very similar
with seasonal fixed effects in Vassilis’ part.)

Graphically,

(a) Fixed Effects estimation (b) Within estimation

E) Question: Columns (3) and (5) correct for measurement error. What happens to the coeffi-
cients? Why does this make sense?

Answer: In columns (3) and (5) the authors instrument for explanatory variable (years of
schooling). Among other things this takes care of potential measurement error.

The fact that the coefficient estimates indeed increase relative to the respective non-instrumented
counterparts, i.e. (2) and (4), might be explained by the fact that previously the coefficient
estimates suffered from the attenuation (i.e. downward) bias with is cause by measurement
error.6

6Note that this has pretty much nothing to do with the fixed effects issues.
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