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Introduction

Last time we talked about the difficulties to satisfy any version of A3 with
non-experimental data.

Today we talk about how even with experimental data it is difficult to estimate some
well-defined treatment effect. In particular we will (sensibly) assume that there are
heterogeneous treatment effects and no perfect compliance.

We will talk about different quantities you might want to estimate (ATE, TOT), how
they relate to what you actually can estimate (OLS, ITT, IV/LATE) and how this
depends on the type of compliance.



1A. Using OLS

With heterogeneous treatment effects, what will the simple OLS estimate of a
regression of the outcome variable on the received treatment status give?

First note that the OLS estimate with a constant gives the same coefficient as the
OLS estimate when using the data in mean-deviations form and skipping the constant
coefficient. Let us do the later, for notational simplicity.

yi = αiRi + εi = ᾱRi + εi + (αi − ᾱi)Ri︸ ︷︷ ︸
ε∗i

α̂OLS = ᾱ+ (R′R)−1R′ε∗ = ᾱ+

∑
Ri=1 εi

TR
+

∑
Ri=1(αi − ᾱ)

TR

E[α̂OLS] = ᾱ+ E[εi|R = 1] + E[αi − ᾱ|R = 1]

Conclusion: So receiving treatment needs to be mean independent of εi and of the
size of the treatment effect. With random assingment and perfect compliance this will
be the case. However, generally there won’t be perfect compliance and hence a simple
OLS estimate is biased.



1B. Our Example: Compliance an issue for us?

‘Coddle’ is defined as ‘treatment’ here (though that seems a little counter-intuitive).
Hence we have few ‘always takers’, but quite some ‘never takers’.



1C. Our Example: Consequence of non-compliance for OLS?

We see that there are quite some ‘never-takers’. Why do they not seem to get the
coddle treatment? What does this mean for E[αi − ᾱ|R = 1] and hence the bias of
OLS as estimate of ATE?



2A. Understanding ITT vs ATE

ITT = E[Yi|T = 1]− E[Yi|T = 0]

= E[Yi|T = 1&R = 1] · (1− pn) + E[Yi|T = 1&R = 0] · (pn)

−E[Yi|T = 0&R = 1] · (pa) + E[Yi|T = 0&R = 0] · (1− pa)

= E[Yi|T = 1&R = 1]− E[Yi|T = 0&R = 0]

−pn(E[Yi|T = 1&R = 1]− E[Yi|T = 1&R = 0)

−pa(E[Yi|T = 0&R = 1]− E[Yi|T = 0&R = 0)

= E[Y1i|T = 1&R = 1]− E[Y0i|T = 1&R = 1]

+E[Y0i|T = 1&R = 1]− E[Y0i|T = 0&R = 0]

−pn(E[Yi|T = 1&R = 1]− E[Yi|T = 1&R = 0)

−pa(E[Yi|T = 0&R = 1]− E[Yi|T = 0&R = 0)

where pn ≡ P (R = 0|T = 1) and pa ≡ P (R = 1|T = 0).



2A. Understanding ITT vs ATE

Hence generally:

ITT = ATE | treatment assigned and perfect compliance

+ selection bias | perfect compliance

− imperfect compliance bias

But...

a ... with perfect compliance pn = pa = 0 and we are left with

ITT = ATE | treatment assigned + selection bias

b ... and the ‘selection bias’ is zero under randomization of the treatment, since
then E[Y0i|T = 1]− E[Y0i|T = 0]. This is the standard argument for
randomization.

Note: We want to know ATE, but the only thing we can calculate here is ITT. In our
example compliance is not perfect. What does this mean for the size of ITT relative
to ATE?



2B. Understanding TOT vs LATE

Another thing we might be interested in is TOT. As opposed to ATE we ask:

‘What is the treatment effect on those actually treated?’

TOT = E[Y1i|R = 1]− E[Y0i|R = 1]

= (pr)(E[Y1i|R = 1&T = 1]− E[Y0i|R = 1&T = 1])

−(1− pr)(E[Y1i|R = 1&T = 0]− E[Y0i|R = 1&T = 0])

= (pr)(E[Y1i|R = 1&T = 1]− E[Y0i|R = 0&T = 0])

−(1− pr)(E[Y1i|R = 1&T = 0]− E[Y0i|R = 1&T = 0])

= (pr)(complier treatment effect)

−(1− pr)(always taker treatment effect)

where pr ≡ P (T = 1|R = 1).

Note: None of this we can calculate. But we can use the IV method, which can be
interpreted as LATE of the compliers (under the assumption that there are no defiers).
How close this is to the TOT depends on whether the assumption is right, how many
‘always takers’ there are and how big their treatment effect is.



2C. Our example: Which type of compliance problem do we have?

We have very few ‘always takers’, hence we would expect the IV estimate to recover
reasonably well the TOT.



3A. An example: ITT



3B. An example: ITT with controls



3C. An example: OLS



3D. An example: IV/LATE



3E. An example: Interpreting the effects

ITT The effect of 0.103 means an increase in the reoffence rate of 57%.

OLS The effect of 0.106 means an increase in the reoffence rate of 59%.

IV The effect of 0.131 means an increase in the reoffence rate of 73%.

It is reasonable to think that ATE and TOT are of similar size, since the treatment
was assigned randomly. Which of the above comes closest to this? What did we say
about the biases in ITT, OLS and IV?



4. External validity

Suppose we manage to design the experiment carefully and tackle convincingly the
issues in questions 1, 2 and 3 (internal validity).

Then the second question is whether the results from the experiment translate to a
possible policy (external validity). Think about what is different when actually
implementing the policy vs. running the experiment.
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