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Introduction

Last time we talked about the difficulties to satisfy any version of A3 with
non-experimental data.

Today we talk about how even with experimental data it is difficult to estimate some
well-defined treatment effect. In particular we will (sensibly) assume that there are
heterogeneous treatment effects and no perfect compliance.

We will talk about different quantities you might want to estimate (ATE, TOT), how
they relate to what you actually can estimate (OLS, ITT, IV/LATE) and how this
depends on the type of compliance.



1A. Using OLS

With heterogeneous treatment effects, what will the simple OLS estimate of a
regression of the outcome variable on the received treatment status give?

First note that the OLS estimate with a constant gives the same coefficient as the

OLS estimate when using the data in mean-deviations form and skipping the constant
coefficient. Let us do the later, for notational simplicity.
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Conclusion: So receiving treatment needs to be mean independent of ¢; and of the
size of the treatment effect. With random assingment and perfect compliance this will
be the case. However, generally there won't be perfect compliance and hence a simple
OLS estimate is biased.



1B. Our Example: Compliance an issue for us?

. tab t_random t_final, row

Key

frequency
row percentage

Police
Sheet Final Disposition

Coleor arrest advise suspect t other Total
pink 91 +] 1 1 93
97.85 0.00 1.08 1.08 100.00
yellow 19 34 5 2 110
17.27 76.36 4.55 1.82 100.00
blue 26 5 &3 13 127
20.47 3.94 65.35 10.24 100.00
Total 136 89 89 16 330
41.21 26.97 26.97 4.85 100.00

‘Coddle’ is defined as ‘treatment’ here (though that seems a little counter-intuitive).
Hence we have few ‘always takers’, but quite some ‘never takers’.



1C. Our Example: Consequence of non-compliance for OLS?

. tab reason2

Reason for Not complying with Random

Assignment Freq. Percent <cum .
blank 313 94.85 94 .85
party assaults police officer 1 0.30 95.15
victim makes citizen's arrest 1 0.30 95.45
injury constitutes an aggravated assaul 5 1.52 96.97
victim has order of protection against/ 1 0.30 97.27
other 4 1.21 98.48
unknown 5 1.52 100.00

Total 330 100.00

We see that there are quite some ‘never-takers’. Why do they not seem to get the
coddle treatment? What does this mean for E[a; — &| R = 1] and hence the bias of
OLS as estimate of ATE?



2A. Understanding ITT vs ATE

ITT = EY|T =1]- E[Y;|T =0]

= EYi|T =1&R=1]-(1 —pn) + E[Yi|T = 1&R = 0] - (pn)
—E[Y;|T = 0&R = 1] - (pa) + E[Y;|T = 0&R = 0] - (1 — pa)

= E[Y;|T = 1&R = 1] — E[Y;|T = 0&R = 0]
—pn(E[Y;|T = 1&R = 1] — E[Y;|T = 1&R = 0)
—pa(E[Y;|T = 0&R = 1] — E[Y;|T = 0&R = 0)

= E[Y;|T=1&R =1] - E[Yy|T = 1&R = 1]
+E[Yy;|T = 1&R = 1] — E[Yy;|T = 0&R = 0]
—pn(ElY;|T = 1&R = 1] — E[Y;|T = 1&R = 0)
—pa(ElY;|T = 0&R = 1] — E[Y;|T = 0&R = 0)

where p, = P(R=0|T =1) and p, = P(R=1|T =0).



2A. Understanding ITT vs ATE

Hence generally:

ITT = ATE | treatment assigned and perfect compliance
+ selection bias | perfect compliance

— imperfect compliance bias
But...
a ... with perfect compliance pn, = pq = 0 and we are left with
ITT = ATE | treatment assigned + selection bias

b ... and the ‘selection bias’ is zero under randomization of the treatment, since
then E[Yy;|T = 1] — E[Yy;|T = 0]. This is the standard argument for
randomization.

Note: We want to know ATE, but the only thing we can calculate here is ITT. In our
example compliance is not perfect. What does this mean for the size of ITT relative
to ATE?



2B. Understanding TOT vs LATE

Another thing we might be interested in is TOT. As opposed to ATE we ask:

‘What is the treatment effect on those actually treated?’
TOT = E[Y1;|R=1]—-E[Yy|R=1]

= (p)(E[Y1|R = 1&T = 1] — E[Yy:|R = 1&T = 1])
—(1 = p,)(E[Y1i|R = 1&T = 0] — E[Yo;|R = 1&T = 0])

= (pr)(B[Y1:|R = 1&T = 1] - B[Y0;|R = 0&T = 0])
—(1 = pr)(E[Y1i| R = 1&T = 0] - E[Yoi|R = 1&T = 0])

= (pr)(complier treatment effect)

—(1 — pr)(always taker treatment effect)

where p, = P(T = 1|R=1).

Note: None of this we can calculate. But we can use the IV method, which can be
interpreted as LATE of the compliers (under the assumption that there are no defiers).
How close this is to the TOT depends on whether the assumption is right, how many
‘always takers' there are and how big their treatment effect is.



2C. Our example: Which type of compliance problem do we have?

We have very few ‘always takers’, hence we would expect the IV estimate to recover
reasonably well the TOT.



3A. An example: ITT

regress reoffendl coddle_assigned
Source 58 df MS Number of obs = 330
F( 1, 328) = 4.85
Mode 1 .714701115 1 .714701115 Proeb > F = 0.0284
Residual 48.376208 328 .147488439 R-squared = 0.0146
Adj R-squared = 0.0116
Total 49.0909091 329 .14921249 Root MSE = .38404
reoffendl Coef. std. Err. t P>|t| [95% conf. Interval]
coddle_ass~d .1034436 .0469916 2.20 0.028 .0110006 .1958865
_cons .1075269 .0398233 2.70 0.007 .0291855 .1858682




3B. An example: ITT with controls

regress reoffendl coddle_assigned w82 ql g2 g3 nonwhite mixed anyweapon s_influence

Source 55 df M3 Humber of obs = 330

FC 9, 3200 = 1.31

Model 1.7384865 9 .193165167 Prob > F = 0.2330
Residual 47.3524226 320 .147976321 R-squared = 0.0354
Adj R-squared = 0.0083

Total 49.0909091 329 .14921249 ROOT MSE = .3B468
reoffendl Coef. std. Err. t P>t [95% Conf. Intervall
coddle_ass~d .09811 .0475365 2.06 0.040 . 0045865 .1916336
y82 .0132675 .0529572 0.25 0.802 -.0909207 .1174558

ql -.0368912 .0805851 -0.46 0.647 -.1954347 .1216524

q2 .0529932 .0651508 0.81 0.417 -.0751848 .1811712

q3 -.0292877 .0698676 -0.42 0.675 -.1667456 .1081701

nonwhite .0276911 .0436444 0.63 0.526 -. 058175 .1135572
mixed -.0198068 .0496336 -0.40 0.690 -.1174563 0778427
anyweap on -.0770743 .0489911 -1.57 0.117 -.1734597 .019311
s_influence .0169292 .0439631 0.39 0.700 -.069564 .1034224
_cons .1049738 .0768676 1.37 0.173 -. 046256 .2562035




3C. An example: OLS

regress reoffend2

coddle_received

Source sS df MS Number of obs = 330

F( 1, 328) = 6.39

Model .901740724 1 .901740724 Prob » F = 0.0119
Residual 46.2528047 328 .141014649 R-squared = 0.0191

Adj R-squared = 0.0161

Total 47 .1545455 329 .143326886 Root MSE = .37552
reoffend2 Coef . std. Err. t P>|t| [95% Conf. Interval]
coddle_rec~d .1062007 . 041997 2.53 0.012 .0235832 .13388183
_cons .1102941  .0322005 3.43 0.001 .0469436 .1736397




3D. An example: IV/LATE

ivreg reoffendl (coddle_received

coddle_assigned)

Instrumental variables (25L5) regression

Source Ss df Ms Mumber of obs = 330

F(C 1, 328) = 4.76

Model -.135460603 1 -.135460603 Prob = F = 0.0298
rResidual 49.2263697 328 .150080395 R-squared =

Adj R-sguared = .

Total 49.0909091 329 .14921249 RoGt MSE = .3874

reoffendl Coef. Std. Err. t P=|t] [95% Conf. Interwvall

coddle_rec~d .1311702 . 0601084 2.18 0.030 .0129236 .2494167

_cons .104706 . 0412729 2.54 0.012 .023513 .185899

Ins trumented:

Instruments:

coddle_received
coddle_assigned




3E. An example: Interpreting the effects

. osum reoffendl

variable | Obs Mean std. Dev. Min Max

reoffendl | 330 .1818182 . 3862803 0 1

ITT The effect of 0.103 means an increase in the reoffence rate of 57%.
OLS The effect of 0.106 means an increase in the reoffence rate of 59%.
IV The effect of 0.131 means an increase in the reoffence rate of 73%.
It is reasonable to think that ATE and TOT are of similar size, since the treatment

was assigned randomly. Which of the above comes closest to this? What did we say
about the biases in ITT, OLS and IV?



4. External validity

Suppose we manage to design the experiment carefully and tackle convincingly the
issues in questions 1, 2 and 3 (internal validity).

Then the second question is whether the results from the experiment translate to a
possible policy (external validity). Think about what is different when actually
implementing the policy vs. running the experiment.
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