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Introduction

Today we will

- briefly talk about the Conditional Expectation Function and

- lengthily talk about Fixed Effects: How do we calculate them, what do we
estimate when including them, how does this help?



1. Conditional Expectation Function
A. Definition of the Conditional Expectation Function

(i) Let us just define εi ≡ yi − E[yi|Xi].1 Then by construction

E[εi|X] = E[yi − E[yi|Xi]|Xi] = E[yi|Xi]− E[yi|Xi] = 0 (1)

(ii) Let h(Xi) be any function of Xi, then

E[h(Xi)εi] = E[E[h(Xi) · εi|Xi]] = E[h(Xi) · E[εi|Xi]] = 0 (2)

1To understand this, just think of the joint density function of yi and Xi. What we are doing is that at any
Xi we take the expectations over all possible yis that come with this Xi and then define yi as this expectation
plus some error - all at a given Xi, so at one cut through the joint density function.



1. Conditional Expectation Function
A. CEF is a valuable summary of bivariate relationship in data

Source: Steve Pischke’s Ec486 notes.



1. Conditional Expectation Function
B. β̂OLS is best linear approximation to CEF

Any linear approximation of the CEF will be of the form Xb. We search for the best
linear approximation minimizing the mean-squared-error, so we want to solve

minbE[(E[y|X]−Xb)2] (3)

It turns out that the solution to

minbE[(y −Xb)2] (4)

will be the same as to the first problem. But the solution to the second problem is
OLS. You can see this since

E(y −Xb)2 = E(y − E[y|X] + E[y|X]−Xb)2 (5)

= E[(y − E[y|X]) + (E[y|X]−Xb)]2 (6)

= E(y − E[y|X])2 + E(E[y|X]−Xb)2 (7)

+2E[(y − E[y|X]) · (E[y|X]−Xb)] (8)

The first bit does not depend on b and hence does not affect the minimization, and the
last bit is just E[ε · h(X)], where h(X) is a function of X. But this we showed is 0.



1. Conditional Expectation Function
B. β̂OLS is best linear approximation to CEF

Source: Steve Pischke’s Ec486 notes.



2. Repeated Cross Sectional Data
A. Are the time fixed effects correlated with the Xs?

Whether the δt and X are correlated or not has implications for β̂RE and β̂FE :

Random Effects If the δt and Xs are uncorrelated, then Random Effects will be
consistent and efficient (it is essentially GLS). But if δt and X are
correlated, then it will be inconsistent.

Fixed Effects This is not the case for a Fixed Effects estimation, since this
essentially gets away with δt. It is not efficient if δt and X are
uncorrelated, but in both cases it will be consistent.



2. Repeated Cross Sectional Data
A. Are the time fixed effects correlated with the Xs?

To check whether the δt are independent of X we can

- Either just look the the coefficients. If they are by some measure ‘far’ apart, e.g.
their confidence intervals do not overlap, the reason might be that β̂RE is
inconsistent and hence far off.

- A more formal test would be the Wu-Hausman test. The idea is that if under
some H0 two estimators are consistent (β̂FE and β̂RE) and one efficient (β̂RE),
but under Ha the latter is not consistent anymore, we can make use of the fact
that under H0 are on average 0 and distributed as

(β̂RE − β̂FE)′[V ar(β̂RE)− V ar(β̂FE)]−1(β̂RE − β̂FE) ∼a χ2(k − 1) (9)

If this quantity is very large (so the different of β̂RE and β̂FE is big) we reject
the null. In our case H0: ‘δt and X are independent’



2. Repeated Cross Sectional Data
B. Taking care of omitted variables which are fixed within t

Think of some data where you are worried about omitted variables. For example

yit being a variable capturing whether individual i broke his arm in week t and

xit being a variable capturing for how many hours he worked.

Wanting to find the causal relation between the two, you should be worried about
omitted variables. For example if there was snow in week t this might drive up the
incidence of broken arms and drive down the number of hours worked - which would
give us a correlation between y and x even though there is no causal relation.



2. Repeated Cross Sectional Data
B. Taking care of omitted variables which are fixed within t

Now, to the extend that the omitted variable effects all the same in week t, we can
take care of this by just including time-fixed-effects. These will capture any omitted
effect which is the same for all in week t. So we would run

yit = Xitβ + δt + εit (10)

For this to work we obviously need that

- the omitted variable indeed takes the same value for all individuals i in time t and

- that the omitted variable indeed has the same effect for all individuals i.



2. Repeated Cross Sectional Data
C. Constant effects β across time periods t

If you want to test whether the effect of X on y is the same in all time periods, you
can just allow them to be different and then test the linear hypothesis that they are
the same.

So you would want to run the regression

yit = Xitβt + δt + εit (11)

This will give you the same coefficient estimates as running t separate regressions
(since you have for each time period a separate intercept and slope coefficient).
However, running them jointly allows you to test the H0: β1 = β2 = ... = βk in the
simple fashion we are used to.



3. Using Fixed Effects - Example
A. Returns to schooling among identical twins

Ashenfelter and Rouse (1998) try to identify the causal effect of schooling, xif on
wages outcomes, yif . This question has gotten much/most/almost all attention in
the Labour literature - and inherently difficult because of omitted variable problems,
e.g. students from a rich family might get both a long education and high wages, but
they get the latter because of their parents’ network and not their good education.



3. Using Fixed Effects - Example
A. Suppose we do not include fixed effects.



3. Using Fixed Effects - Example
A. Suppose we do not include fixed effects.



3. Using Fixed Effects - Example
A. Returns to schooling among identical twins

Their study tries to tackle this problem by comparing how the wages differ for
identical twins who received different amount of schooling. They implement this
with family fixed effects.

- How might this take care of the omitted variable ‘ability’?

- Of which type of omitted variables can we take care of with family fixed effects?

- Of which type of omitted variables do family fixed effects not take care of?

- Of which unobserved factors can you think which drive the correlation between
earnings and schooling among identical twins? Are they taken care of by
including family fixed effects?



3. Using Fixed Effects - Example
A. Understanding fixed effects



3. Using Fixed Effects - Example
A. Exploiting ‘within’ variation



3. Using Fixed Effects - Example
A. Compare to what OLS would have given!



3. Using Fixed Effects - Example
A. Returns to schooling among identical twins

We saw, that once we have included fixed effects, our estimator will explain differences
in the outcome variable within groups (i.e. families) with the variation in the
explanatory variable within these groups. That excludes many potential omitted
variables.

But we still need to ensure that within one group the differences in the explanatory
variable are indeed as good as random. So, in our example, the reasons why identical
twins get different amounts of schooling should have nothing to do with their
earnings! Or: We try to show that for our purposes the differences in schooling among
identical twins are as good as random.



3. Using Fixed Effects - Example
A. Returns to schooling among identical twins

Potential Problem: There are many things which might drive one of the twins to
get more education than the other and drive the earnings as well. We cannot look at
all of them. But if we at least find that some of the potential candidates have no
correlation with how many years of schooling one or the other twin gets, this gives us
some comfort. That is what the authors do - and the question says they find no
correlation.

If we believe/assume that all other factors which we could not check are sufficiently
correlated with those which we checked, then it is unlikely that our estimates are
biased by any of these omitted variables.



3. Using Fixed Effects - Example
C. Including just group level variables

Suppose we had not including fixed effects, but just controlled for the average level of
education in the family. (Will this fit the data as well as fixed effects?) Then the
effect of the own education goes down. This might have two reasons:

- There might be something else which drives both average education and earning
up in the family, e.g. parents social network.

- [Or this might as well capture the fact that there are spill-over effects of
education on the siblings.]

In any case it shows that the initially estimated relation between an individual’s
education and his earnings was overestimated in (1).



3. Using Fixed Effects - Example
D. β̂ for FE estimator same as from Difference estimator

We can estimate straightforwardly the OLS estimator for the following FE model

yij = βsij + δjfj + εij

Alternative we can calculate β̂OLS using partitioned regression results as

β̂OLS = [s′MF s]
−1s′MF y

= [(MF s)
′(MF s)]

−1(MF s)
′MF y

where MF = I − F (F ′F )−1F ′ and F is the matrix of family dummy variables.

You can easily see why this is called the difference estimator. Just show that MF x
gives a vector of deviations of xij from the family mean of x. (We have done
something similar with seasonal fixed effects in Vassilis’ part.)



3. Using Fixed Effects - Example
D. Exploiting ‘within’ variation

Fixed Effects estimation Within estimation



3. Using Fixed Effects - Example
E. Correcting for measurement error

In columns (3) and (5) the authors instrument for explanatory variable (years of
schooling). Among other things this takes care of potential measurement error.

The fact that the coefficient estimates indeed increase relative to the respective
non-instrumented counterparts, i.e. (2) and (4), might be explained by the fact that
previously the coefficient estimates suffered from the attenuation (i.e. downward)
bias with is cause by measurement error.2

2Note that this has pretty much nothing to do with the fixed effects issues.
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