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Introduction

Today we will

- talk about what ‘weak stationarity’ is,

- see how to estimate the parameter of an MA(1) process,

And we will

- simulate the distribution of the t-statistic when the data series has a unit-root and

- see how it is useless.



Question 1.A
Weak Stationarity

Question: Is

yt = Σ∞j=0θjεt−j = θ0εt + θ1εt−1 + θ2εt−2 + ... (1)

with Σ∞j=0|θj | <∞ and {εt} a m.d.s., E[εt] = 0 and E[ε2] = σ2, weakly stationary?



Question 1.A
Weak Stationarity

Definition (Weak Stationarity)
A time-series process, {zt}t=∞t=−∞, is weakly stationary if

E[zt] is finite and independent of t and

Cov(zt, zt−k) is finite and independent of t.

Definition (Martingale Difference Sequence)
A sequence {zt} is a martingale difference sequence if E[zt|zt−1, zt−2, ...] = 0.



Question 1.A
Weak Stationarity

Check whether conditions for weak stationarity is satisfied:

1.) E[yt] = θ0E[εt] + θ1E[εt−1] + θ2E[εt−2] + ... = 0

2.) Cov(yt, yt−k) = E[ytyt−k] = E[(θ0εt + θ1εt−1 + ...)(θ0εt−k + θ1εt−k−1 + ...)]

Note: Because εt is a m.d.s. by definition E[εt|εt−1, εt−2, ...] = 0. Since
mean-independence implies zero-covariance and since E[εt] = 0 we know
E[εiεj ] = Cov(εiεj) = 0 for all i 6= j. Therefore if we open up the brackets in
the above formula and take expectations all terms where the ε’s have different
subscripts drop out. Hence, using E[ε2t ] = σ2

Cov(yt, yt−k) = θkθ0E[ε2t−k] + θk+1θ1E[ε2t−k−1] + ... = σ2Σ∞p=0θk+pθp

Are both finite and independent of t?



Question 1.A
Weak Stationarity

Only thing we need to show is that γk ≡ Cov(yt, yt−k) is finite for all k or

|γk| <∞

Proof: Note that |a + b| ≤ |a| + |b| and hence

|γk| ≤ σ
2Σ∞p=0|θk+pθp|

Now, if we can show that Σ∞k=0|γk| < ∞ this implies that for every k we have |γk| < ∞. Summing the above and noting that

|θk+pθp| = |θk+p| · |θp| gives

Σ∞k=0|γk| ≤ σ
2Σ∞k=0Σ∞p=0|θk+p| · |θp| = σ

2Σ∞p=0|θp|Σ
∞
k=0|θk+p|

But since by assumption there is a M such that Σ∞p=0|θp| = M < ∞ surely for every k we have Σ∞k=0|θk+p| ≤ M and

hence

Σ∞k=0|γk| ≤ σ
2Σ∞p=0|θp|Σ

∞
k=0|θk+p| ≤ σ

2
MΣ∞p=0|θp| = σ

2
M

2
< ∞



Question 1.B/C
What are we up to?

Question: How to estimate θ in

yt = θεt−1 + εt (2)

given that we do not know εt−1?

Idea: We can find a consistent estimate, ût, of the εt’s (step 1; Q2.B) and then run
the above regression using this ût−1 (step 2; Q2.C).



Question 1.B
How to find a consistent estimate of εt?

We know that the true DGP is yt = θεt−1 + εt = (1 +Lθ)εt. We know that if |θ| < 1
this is ‘invertible’, so we can write it as the AR(∞)

εt =
yt

1 + Lθ

= yt + (−θ)yt−1 + ...+ (−θ)pyt−p + Σ∞j=p+1(−θ)jyt−j

or, as well it will be true,

yt = −(−θ)yt−1 − ...− (−θ)pyt−p − Σ∞j=p+1(−θ)jyt−j + εt

The yt we know, so this we can estimate! And since this is a stationary, ergodic
sequence, we know that when we run the regression of yt on past values of y up to
t− p the coefficients ρ are consistent1, so

plim(ρ̂i) = (−1)i+1θi

Remember, we wanted to find a consistent estimate of εt. So what seems like a
promising way to get this?

1You might ask: Why don’t we stop here, we already have a consistent estimate of θ? The answer seems to be
that either we could not get correct standard errors on this estimate or the proposed procedure is more efficient.



Question 1.B
How to find a consistent estimate of εt?

We just calculate

ût = yt − ρ̂1yt−1 − ...− ρ̂pyt−p (3)

But is this consistent? Plug in for yt and check:

plim(ût) = plim(yt − ρ̂1yt−1 − ...− ρ̂pyt−p)

= plim([θ − ρ̂1]yt−1 + ...+ [−(−θ)p − ρ̂p]yt−p − Σ∞j=p+1(−θ)jyt−j + εt)

Since we saw before that plim[θ− ρ̂1] = 0 and similarly for the first expressions we find

plim(ût) = plim(−Σ∞j=p+1(−θ)jyt−j︸ ︷︷ ︸
ωt

+εt)



Question 1.B
How to find a consistent estimate of εt?

We can rewrite

ωt = −Σ∞j=p+1(−θ)jyt−j
= −(−θ)p+1Σ∞j=0(−θ)jyt−j−p−1

= −(−θ)p+1(εt−p + θεt−p+1)

So, as p→∞, ωt → 0. Hence, since εt is the true value

plim(ût) = plim(εt) = εt



Question 1.C
How to find a consistent estimate of θ?

In the second step of the procedure we estimate θ in the regression

yt = θût−1 + νt (4)

Question: Will the θ̂OLS from this be consistent?



Question 1.C
How to find a consistent estimate of θ?

The OLS estimate will be

θ̂OLS =
Σût−1yt

Σû2
t−1

=
1
T

Σût−1(εt + θεt−1)
1
T

Σû2
t−1

=
1
T

Σût−1εt
1
T

Σû2
t−1

+ θ
1
T

Σût−1εt−1

1
T

Σû2
t−1

(5)

We can show that

plim( 1
T

Σû2
t−1) = σ2

plim( 1
T

Σût−1εt−1) = n, with n→ 0 as p→∞

plim( 1
T

Σût−1εt) = θσ2 +m, with m→ 0 as p→∞

Hence: plim(θ̂OLS) = θ as p→∞



Question 1.D
How does the precision of this depend on p?

Question: How does the precision of this depend on p?

- In large samples, the quality of the first step approximation improves as p goes to
infinity. This is because, the larger is p, the smaller is our residual term ωt. In
addition, the variance of the ût is declining in p.

- However, in small samples, as p goes to infinity, the standard errors for our ρ’s
grow. Intuitively, this is because we are using smaller and smaller samples as we
allow the specified lag lengths to grow.2

2It turns out (you did not need to know this for this question but it may be a useful thing to know) the optimal

rate for ρ→∞ is such that p2/T → 0.



Question 2
Asymptotic distribution of our test statistic

Remember from Vassilis that we derived the exact distributions of the F- and
t-statistic under A1-A5N.

If we do not have A5N then we could not derive the finite sample distribution, but we
could show that asymptotically the finite sample distribution is still correct. However,
for this proof (which we did not do in detail) we required that the data involved is
weakly stationary!



Question 2
Asymptotic distribution of our test statistic

Consider the simple case

yt = βyt−1 + εt (6)

with εt ∼ i.i.d. N(0, 1) and y0 = 0.

What will the asymptotic distribution look like if

(i) β1 = 1.0

(ii) β2 = 0.9

(iii) β3 = 0.5



Question 2
Monte Carlo experiment

Answer: We do not know exactly, but we can simulate it!

Idea: Given a true parameter, we just create a random data series with this parameter
and calculate the t-statistic. Then we do this 1000 times and see how the t-statistic is
distributed.



Question 2
Monte Carlo experiment - Stata code

In each of the 1000 repetition we start with generating random data

clear

set seed 23‘i’456

set obs 500

gen e = invnorm(uniform()) <----- generate random epsilon’s

gen t = 1

replace t = 1+ [_n-1] <----- give time subscripts

tsset t

gen b1 = 1.0 <----- let’s do it first for this beta



Question 2
Monte Carlo experiment - Stata code

Using a y0 = 0, the εt’s generated and β1 we can calculate the random series yt:

for num 1/3: gen yX = 0 if t ==0 <----- Set’s y_0=0

for num 1/3: replace yX = e if t == 1 <----- Set’s y_1=\epsilon_t

replace y1 = b1*y1[_n-1]+ e if t>1 <----- Calculates rest of series

for num 1/3: gen yX_lag = yX[_n-1] <----- Creates for each series

one of lagged values



Question 2
Monte Carlo experiment - Stata code

Then we run a regression and see what the t-statistic would be:

reg y1 y1_lag

gen b1_ols = _b[y1_lag]

gen mistake1 = b1_ols - b1

gen seb1 = _se[y1_lag]

gen tstat1 = mistake1/seb1

And save it:

gen ones = 1

collapse b1_ols mistake1 tstat1, by(ones)

save model‘i’, replace



Question 2
Monte Carlo experiment - Stata code

We just repeat this 1000 times with

local i = 1

while ‘i’ <= 1000 {

...

local i = ‘i’ + 1

}

and then put all the saved coefficient estimates, mistakes and t-statistics together

use model1, clear

for num 2/1000: qui append using modelX



Question 2
Monte Carlo experiment - Stata code

Now we can see

- how far we were off on average (mean of mistake),
sum mistake1

- plot the simulated distribution of the OLS estimator and
kdensity b1_ols

graph export b1.png

- plot the simulated distribution of the t-statistic
kdensity tstat1

graph export tstat1.png.

We would then repeat this for β = 0.9 and β = 1.0.3

3If you look at Radha’s code, do not get confused. The only difference is that every time she creates a series of
ε’s she uses this to calculate the yt for all 3 values of β not to repeat the creation of random data.



Question 2
Monte Carlo experiment - Results

Simulated bias:

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

bias1 | 1000 -.0107294 .0088402 -.0644693 .0048755

bias2 | 1000 -.0073681 .0202228 -.0947172 .0462514

bias3 | 1000 -.003086 .0389725 -.1618057 .1083517



Question 2
Monte Carlo experiment - Results

Simulated distribution of OLS estimator:

(a) β = 1.0 (b) β = 0.9 (c) β = 0.5



Question 2
Monte Carlo experiment - Results

Simulated distribution of the t-statistic:

(a) β = 1.0 (b) β = 0.9 (c) β = 0.5
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