Correction - Problem Set #1, Q4.b)

We are asked to proof that mean independence of two random variables, E(x|y) = E(x), implies that they are uncorrelated.

For the proof we first need to show that

$$cov(x,y) \equiv E(x - E(x)) \cdot (y - E(y)) = E(x \cdot y) - E(x) \cdot E(y) = 0$$

which then implies that corr(x, y) = 0.

To show the above it is sufficient to show that under mean independence $E(x \cdot y) = E(x) \cdot E(y)$. We start out by rewriting $E(x \cdot y)$

$$E(x \cdot y) = \int \int x \cdot y \cdot f(x, y) dx dy$$
(1)
$$= \int \int \int x \cdot y \cdot f(x|y) \cdot f_Y(y) dx dy$$

$$= \int y \cdot f_Y(y) \underbrace{\int x \cdot f(x|y) dx}_{E(x|y)} dy$$

Now, under mean independence E(x|y) = E(x) holds. But E(x) is a constant is the integration over y and can hence be taken out of the integral.¹ Then

$$E(x \cdot y) = E(x) \int y \cdot f_Y(y) dy$$

$$= E(x) \cdot E(y)$$
(2)

which concludes the proof.

¹Thanks to Sibylle for pointing this out.