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CONSUMPTION-SAVINGS DECISIONS
WITH QUASI-GEOMETRIC DISCOUNTING

By Per Krusell and Anthony A. Smith, Jr.
1

1� introduction

The purpose of this paper is to study how an infinitely-lived consumer with “quasi-
geometric” discounting—thought of as represented by a sequence of “selves” with conflict-
ing preferences—would make consumption and savings decisions. In light of experimental
evidence suggesting that individuals do not have geometric discount functions (see, for
example, Ainslie (1992) and Kirby and Herrnstein (1995)), it is important to understand
how departures from geometric discounting affect an individual’s consumption-saving
decisions.2

We assume that time is discrete and that the consumer cannot commit to future actions.
We assume that the consumer is rational in that he is able to forecast correctly his future
actions: a solution to the decision problem is required to take the form of a subgame-
perfect equilibrium of a game where the players are the consumer and his future selves.
We restrict attention to equilibria that are stationary: they are Markov in current wealth;
that is, current savings cannot depend either on time or on any other history than that
summarized by current wealth.

The consumption-savings problem is of the simplest possible kind: there is no uncer-
tainty, and current resources simply have to be divided into current consumption and
savings. The period utility function is strictly concave, and the consumer operates a tech-
nology for saving that has (weakly) decreasing returns. A special case is that of an affine
production function; this special case can be interpreted as one with a price-taking con-
sumer who has a constant stream of labor income and can save at an exogenous interest
rate.

Our main finding is one of indeterminacy of Markov equilibrium savings rules: there is
a continuum of such rules. These rules differ both in their stationary points and in their
implied dynamics. First, there is a continuum of implied stationary points to which the
consumer’s asset holdings may converge over time. Second, associated with each stationary
point is a continuum of savings rules, implying that there is a continuum of dynamic
paths converging to each stationary point. We construct these equilibria explicitly—the
savings rules are step functions. The discontinuities in the step functions are key: payoff
functions with jumps can be optimal precisely because the different selves have conflicting

1 We would like to thank John H. Boyd III, Gino Gancia, Faruk Gul, Bård Harstad, Wolfgang
Pesendorfer, three anonymous referees, and seminar participants at the NBER Summer Institute,
Stanford University, and the University of Rochester for helpful comments. Both authors acknowl-
edge financial support from the National Science Foundation.

2 The idea that consumers do not discount the future geometrically, and, more generally, exhibit
“time inconsistencies,” originates with Strotz (1956). Pollak (1968), Phelps and Pollak (1968), Laibson
(1994, 1997), and others have elaborated on this idea.
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preferences, and depending on how the jumps are structured they can make one self
behave more in the interest of another self or vice versa.

The indeterminacy in Markov strategies that we document in this paper is a new find-
ing in the literature on consumption-savings decisions with quasi-geometric discounting.3

There is also a related literature on differential Markov games, e.g., in applications to
models with imperfect altruism (see, e.g., Leininger (1986) and Bernheim and Ray (1987))
and resource extraction (see, e.g., Fudenberg and Tirole (1991)), where existence prob-
lems as well as multiplicity have been noted. That literature, however, did not uncover
indeterminacy results. Moreover, our equilibrium construction here—whose key elements
are discontinuities in decision rules and conflicting objective functions of the players at
different points in time—actually suggests that indeterminacy of Markov equilibria can
be present in a much larger class of problems than those we study here, including, e.g.,
optimal fiscal and monetary policy problems where the policy makers at different points
in time have conflicting objectives and cannot commit to future policies.

We describe our model in Section 2. In Section 3 we provide the key elements of
our equilibrium construction and state a formal theorem summarizing our indeterminacy
result. Section 4 provides intuition for our result and Section 5 provides the proof of the
theorem.

2� the model

Time is discrete and infinite and begins at time 0. There is no uncertainty. An infinitely-
lived consumer derives utility from a stream of consumption at different dates. We assume
that the consumer’s self at time t ranks consumption sequences according to

ut +�
(
�ut+1+�2ut+2+�3ut+3+· · · )�

where the variable ut denotes the number of utils at time t; these utils are derived from
a felicity function u�ct�, where ct is consumption at time t. In other words, discounting is
quasi-geometric: it is geometric across all dates except the current date. We assume that
� < 1 and �< 1.4 This formulation embodies an assumption of stationarity: discounting at
any point in time has the form 1������2� � � � . It follows that there is a conflict between
selves whenever � �= 1; e.g., self t compares consumption at t+1 and t+2 differently than
does self t+1.

We assume that the period utility function u�c� is strictly increasing, strictly concave,
and continuously differentiable. The consumer’s resource constraint is: c+ k′ = f �k�,
where k is current and k′ next period’s capital holdings, f is a strictly increasing, (weakly)
concave, and continuously differentiable production function.

3 Laibson (1994) and Bernheim, Ray, and Yeltekin (1999) find indeterminacy using history-
dependent (“trigger”) strategies. Harris and Laibson (2000a) provide an existence proof for a
consumption-savings problem with uncertainty that does not nest ours. They also show uniqueness
when the departure from geometric discounting is sufficiently small. Harris and Laibson (2000b) pro-
vide a uniqueness result for a deterministic continuous-time consumption-savings model with “instan-
taneous gratification” (i.e., the consumer’s departure from geometric discounting occurs only in the
instantaneous present). Discussions of existence and uniqueness can also be found in Morris (2000)
and in Morris and Postlewaite (1997).

4 Our theorem could alternatively be stated also to include � > 1, since indeterminacy applies in
that case too; see footnote 5 below.
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We use recursive methods to study Markov equilibria of the dynamic game between
the consumer’s different selves. This means that the consumer perceives future savings
decisions to be given by a function g�k�� kt+l = g�kt�. The Markov assumption is reflected
in g being time-independent and having current capital as its only argument. The current
self thus solves the “first-stage” problem

max
k′

u�f �k�−k′�+��V �k′��(1)

where V is an “indirect” utility function: it must satisfy the “second-stage” functional
equation

V �k�= u�f �k�−g�k��+�V �g�k���(2)

This equation incorporates the assumption that each of the consumer’s future selves uses
the same savings decision rule g. A Markov equilibrium obtains if g�k� also solves the
consumer’s first-stage problem for all k.

3� the step-function equilibrium

In this section, we describe the key elements of our equilibrium construction and state
a formal theorem summarizing our indeterminacy result. We also discuss the implications
of our indeterminacy result for equilibrium savings paths. Section 4 provides intuition for
our result and Section 5 provides a proof of the theorem.

To construct a decision rule, select an arbitrary stationary point for the individual’s
capital holdings, k̄ (we will see that, for some production functions, one needs to restrict
the choice of k̄ to a bounded range). We will now support k̄ as a long-run outcome with
a decision rule g�k� which, for k < k̄, is a step function with a countable number of steps.
Figure 1 illustrates a typical equilibrium step function g.5�6

The step function is defined by a countably infinite number of steps at the points
	sn


�
n=0. This sequence is strictly increasing and converges to the stationary point k̄. Given

a sequence 	sn

�
n=0, the step function g for savings is thus defined by

g�k�=
{
sn+1 if k ∈ �sn� sn+1� for n ∈ 	0�1�2� � � � 
�

k̄ if k ∈ �k̄� ¯̄k��(3)

where ¯̄k is a constant greater than k̄. Given an initial value k0 ∈ �sm� sm+1� for some
m ≥ 0 and a decision rule g�k�, the equilibrium time path of savings levels is then
	k0�k1�k2� � � � 
= 	k0� sm+1� sm+2� � � � 
. In other words, with the possible exception of the
initial value k0, the time path for savings coincides with the step points that define g.

Define the interval

I ≡
(
1+ 1−�

��
�
1
��

)
�

5 When � > 1, the steps are to the right of k̄.
6 The figure depicts g on the interval �s0� s3� and on the interval �k̄� ¯̄k�. The three dots between

s3 and k̄ (above the 45� line) indicate that there is an infinite sequence of smaller and smaller steps
converging to k̄.
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Figure 1

I is a nontrivial interval so long as �< 1 (as � goes to 1, the interval shrinks to one point).
The following theorem summarizes our indeterminacy result:

Theorem: Consider any k̄ such that f ′�k̄� ∈ I . Then there exists a left-neighborhood N
of k̄ such that, for any x ∈N , there is a decision rule g—defined by a step sequence 	st


�
t=0

according to (3)—with s0 = x that constitutes an equilibrium of the multiple-selves game on
the interval �x� ¯̄k�. Moreover, different values for x imply different step sequences 	st
�t=1.

The theorem is stated in terms of indeterminacy of decision rules g and not in terms
of time paths for equilibrium savings, 	kt


�
t=0. However, there are three immediate impli-

cations for these time paths. First, for any k̄ in I , there are initial values k0 in its
neighborhood (selected as x in the theorem) with associated savings paths 	kt


�
t=0, each

converging to k̄. This implication emphasizes indeterminacy of stationary points: many
levels of capital can be obtained as long-run outcomes.

Second, for any k0 ∈ I , there are equilibrium savings paths starting at k0 and converging
to different stationary points. This result follows from the theorem by choosing different
stationary points near k0 with associated overlapping neighborhoods. It emphasizes inde-
terminacy of equilibrium stationary points from a given initial capital stock.

Third, for any stationary point k̄ and any initial k0 in its neighborhood, there is a
continuum of paths starting at k0 and converging to k̄. This property follows from the
fact that x in the theorem can be chosen freely and that the step functions resulting
from different values for x are distinct (the last statement in the theorem). It emphasizes
indeterminacy in dynamics: it shows that a given stationary point can be reached in many
ways from a given starting value.

To construct an equilibrium sequence of step points 	sn
�n=0 given an initial step point
s0 in a left-neighborhood of k̄, begin by specifying a sequence 	vn


�
n=0 of values on the

steps: vn = V �kn�; recall that ��V �k′� is the indirect utility, appropriate for the current
self, of saving k′. By definition, thus, the sequence 	vn


�
n=0 satisfies

vn = u�f �sn�−sn+1�+�vn+1 �n= 0�1�2� � � � ��(4)
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The complete specification of V on the domain �s0�
¯̄k� therefore is as follows:

V �k�=



u�f �k�− sn+1�+�vn+1 if k ∈ �sn� sn+1�

for some n ∈ 	0�1�2� � � � 
�

u�f �k�− k̄�+ �u�f �k̄�− k̄�

1−�
if k ∈ �k̄� ¯̄k��

(5)

Now the step-function construction requires indifference on the steps: 	sn
�n=0 needs to
satisfy

u�f �sn�− sn�+��vn = u�f �sn�− sn+1�+��vn+1(6)

for n= 0�1�2� � � � . Thus, at sn the consumer saves sn+1 for next period, but is indifferent
between this choice and saving sn.

The restrictions on 	sn

�
n=0 can thus be stated as follows: it needs to be strictly increasing

and to converge to k̄ and there has to exist a sequence 	vn

�
n=0 such that the two sequences

satisfy the dynamic system given by equations (4) and (6). The indifference requirement
formally amounts to a second-order difference equation in the step sequence 	sn


�
n=0. The

construction of the step sequence thus involves solving this difference equation given an
initial condition s0 and a requirement of convergence to k̄. We display this difference
equation and discuss it in more detail in Section 4.

4� intuition and discussion

To show that g prescribes optimal behavior given the perception that g is used in the
future, one needs to check all possible one-period deviations. The key elements in the
argument, however, can be illustrated with one example: we will argue why it is locally
optimal at sn to choose sn+1, i.e., why self n, if given sn, will leave self n+1 with sn+1, as
opposed to slightly higher or lower saving.

First, consider the possibility of saving slightly more, sn+1 + , where  is small and
positive. According to the perceived step-function behavior of future selves, this deviation
increases the consumption of self n+1 by the entire amount  including its return, while
at the same time leaving the future capital stocks unaltered. Thus, by this alternative
choice, self n would lower his consumption, increase the consumption of self n+ 1, and
leave the consumption of all subsequent selves unaltered (consult Figure 1 again to see
this). In terms of future capital stocks, we are thus comparing the equilibrium sequence
�sn� sn+1� sn+2� sn+3� � � � � to the deviation �sn� sn+1 + � sn+2� sn+3� � � � �. Because we are in
the neighborhood of a stationary point, consumption in the current and in the next period
(along with their associated period marginal utilities) are the same, so it suffices to ensure
that the extra  saved gives rise to less than ��f ′ units of income next period. This is
true if ��f ′�k̄� < 1. This condition is met by our above restrictions and is central to the
proof of Lemma 1 in Section 5.

Second, consider the possibility of slightly lower saving. We will see here how time-
inconsistency is a necessary ingredient in supporting the step-function equilibrium.
So suppose instead that  is arbitrarily small but negative. This deviation causes next
period’s saving to fall discontinuously from sn+1 to sn (again, imagine the deviation
in Figure 1). Thus, all future consumption levels are affected, since we fall “one
step behind” relative to when  = 0: we are now comparing the equilibrium sequence
�sn� sn+1� sn+2� sn+3� � � � � to the deviation �sn� sn+1 − � sn+1� sn+2� � � � �. Since current
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Figure 2

consumption is (almost) unaffected, we must decide whether a discontinuous increase in
consumption in the next period (and a resulting fall in consumption in the periods after
that) is a good deviation. It is not: on the equilibrium path, we have ensured that next
period’s self is indifferent between remaining on the current step and jumping up one step
in saving. The current period’s self, however, disagrees with this. He values saving strictly
more, so long as � < 1, since his discount rate between next period and the period after
that is �, not ��, which is the rate used by his next self. Thus, stepping down in saving next
period is a move in the wrong direction. This kind of argument, together with concavity
of the felicity function u, is central to the proofs of Lemmas 2, 3, and 4 in Section 5.

The previous arguments are also illustrated in Figure 2 where we plot the utility, as
a function of the chosen savings k′, for the current self who is endowed with k = sn.
The features that are worth noting are: (i) the individual always chooses a “corner”:
choosing the left end point of any flat section always dominates choosing an interior
point, because ��f ′�k̄� < 1, and moving further left would cause a discontinuous drop in
utility; (ii) sn gives the same utility as sn+1 (by construction); and (iii) all the other step
points are dominated (this can be shown using strict concavity of u). Similar figures can
be constructed if the individual starts at intermediate values for current capital. For an
initial k slightly above sn, the values in the figure change so that saving sn+1 now strictly
dominates saving sn (and vice versa for initial values of k slightly below sn: now sn is a
strictly better choice).

Finally, one can easily extend the step function to the right of k̄ with a flat section
(thus implying convergence within one period) over a range. The idea here is the same:
the individual goes to a corner in the range �k̄� ¯̄k�, where ¯̄k > k̄ solves u′�f � ¯̄k�− k̄� =
��u′�f �k̄�− k̄�f ′�k̄�.

The previous arguments are all straightforward to make in formal detail; we save this
for the proof. Moreover, the arguments are of a rather general nature; their essential
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ingredient is how a disagreement between the two consecutive selves is used to support the
discontinuous behavioral rule. This is why we suspect that this equilibrium construction
can be used in a larger class of models.

We turn now to a discussion of the admissible interval of stationary points. The two
conditions (4) and (6) underlying our step-function equilibrium imply that the sequence
of step points must satisfy the following second-order difference equation:

u�f �sn�− sn�−u�f �sn�− sn+1�

sn+1− sn

= ��

{
u�f �sn+1�− sn+1�−u�f �sn�− sn+1�

f �sn+1�− f �sn�

(
f �sn+1�− f �sn�

sn+1− sn

)

+
(
1
�
−1

)
u�f �sn+1�− sn+1�−u�f �sn+1�− sn+2�

sn+2− sn+1

(
sn+2− sn+1

sn+1− sn

)}
�

This difference equation is similar in structure to the “generalized Euler equation” that
Krusell, Kuruşçu, and Smith (2001) use to study differentiable solutions to the multiple-
selves game. Defining cn ≡ f �sn�− sn+1, it says approximately that

u′�cn�= ��

{
u′�cn�f

′�sn�+
(
1
�
−1

)
u′�cn+1��n

}
�

where �n ≡ �sn+2 − sn+1�/�sn+1 − sn� can be viewed as the “marginal” propensity to save
along an equilibrium savings path (recall that, with the possible exception of the first
period, an equilibrium savings path consists of a subsequence of step points). In other
words, the current disutility of saving more has to equal the discounted gain from
increased production next period (the first term on the right-hand side) and increased sav-
ing next period (the second term on the right-hand side). As n gets large, sn approaches
the stationary point k̄: consequently, the three occurrences of u′ in this equation cancel in
the limit. For the local dynamics of the system (4) and (6) to be monotone and stable, we
require that the marginal propensity to save at k̄ (i.e., the limit of �n) lie in the interval
(0,1). It then follows from this equation that f ′�k̄� has to lie somewhere in the range

(
1
��

− 1−�

�
�
1
��

)
�

This is exactly the range for which we can construct step-function equilibria.
If f is affine, we are in fact considering a consumer who can save at a gross rate R

and has exogenous (perhaps labor) income w. In that case, our theorem applies so long
as R ∈ I . If it is, then any value for capital is a stationary point. Thus, the indeterminacy
in steady states that obtains in the standard model when the interest rate exactly equals
the discount rate obtains here for a range of interest rates.

In a representative-agent, general-equilibrium economy, the condition f ′�k̄� ∈ I speci-
fies a range of steady-state capital stocks. Suppose that capital is in this range, thus deliv-
ering an interest rate R in this range. Then it is optimal for the agent to choose any capital
stock, in particular the selected one, so we indeed have a steady-state general equilibrium.
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5� proof of the theorem

To construct the sequences 	sn

�
n=0 and 	vn


�
n=0, let v̄ be the stationary point implied

by k̄ being the stationary point of the dynamic system given by equations (4) and (6):

v̄ = u�f �k̄�− k̄�

1−�
�

The dynamic system (4) and (6) has to involve convergence to �k̄� v̄�, and the conver-
gence for capital has to be monotone increasing. Equations (4) and (6) define an implicit
function that maps �sn� vn� into �sn+1� vn+1� whose Jacobian matrix of first derivatives,
evaluated at a stationary point �k̄� v̄�, has one eigenvalue equal to 1 and one eigenvalue
equal to

1−��f ′�k̄�
��1−��

�

This eigenvalue is between 0 and 1 provided that

1+ 1−�

��
< f ′�k̄� <

1
��

�

This condition is satisfied by the assumption in the theorem. Under this condition, it
is straightforward to modify standard results concerning the local stability of nonlinear
difference equations (see, e.g., Scheinkman (1973)) to show that the dynamic system given
by (4) and (6) has a one-dimensional stable manifold characterized by a continuously
differentiable function ��s0� v0�. In other words, given a stationary point �k̄� v̄�, there
exists a neighborhood N of this point such that the dynamic system (4) and (6) converges,
monotonically, to the stationary point for any initial value �s0� v0�∈N satisfying ��s0� v0�=
0. We can, therefore, construct a continuum of sequences 	�sn� vn�
 that converge to a
given stationary point. Each of these sequences determines a decision rule and a value
function that satisfy the equilibrium conditions in Section 2.

As described in Section 3, given the decision rule g defined by equation (3), the value
function V defined by equation (5) satisfies the second-stage functional equation (2) by
construction. To check that g solves the first-stage problem (1) given V , four lemmas
will be stated and proved. Each lemma considers a specific kind of deviation from the
proposed decision rule.

Lemma 1: For any k ∈ �s0�
¯̄k�, any choice k′ ∈ �sn� sn+1�, for some n, or k′ ∈ �k̄� ¯̄k�, can

be improved upon.

Proof: Given that ��f ′�k̄� < 1, it is always strictly better to be at the left endpoint of
an interval than in the interior. For k ∈ �k̄� ¯̄k�, the proof of this statement is immediate.
For k ∈ �s0� k̄�, we use the fact that ��f ′�k� < 1 when k is sufficiently close to k̄. Q.E.D.

Lemma 2: For k ∈ �k̄� ¯̄k�, k′ = k̄ dominates k′ = sn for all n.

Proof: We need to prove that u�f �k�− k̄�−u�f �k�− sn�≥ ���vn− v̄�. The left-hand
side of this expression can be written

N∑
s=0

[
u�f �k�− sn+s+1�−u�f �k�− sn+s�

]+u�f �k�− k̄�−u�f �k�− sn+N+1�
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which, since the last two terms cancel as N goes to �, equals

�∑
s=0

[
u�f �k�− sn+s+1�−u�f �k�− sn+s�

]
�

The right-hand side of the expression, in turn, can be rewritten as ��
∑�

s=0�vn+s −vn+s+1�,
since vn goes to v̄ as n goes to �. Using indifference on the steps, this expression becomes

�∑
s=0

[
u�f �sn+s�− sn+s+1�−u�f �sn+s�− sn+s�

]
�

It is now clear that the left-hand side is no less than the right-hand side if

u�f �sn+s�− sn+s�−u�f �sn+s�− sn+s+1�

≥ u�f �k�− sn+s�−u�f �k�− sn+s+1��

for each s ≥ 0. But from the strict concavity of u these inequalities are all met (strictly),
since k > sn+s and 	sn
 is a strictly increasing sequence. Q.E.D.

Lemma 3: For all n, for k ∈ �sn� sn+1�, k′ = sn+s for any s > 1 or s < 0 is dominated by
k′ = sn+1.

Proof: We start with s > 1. We need to show that

u�f �k�− sn+1�−u�f �k�− sn+s�≥ ���vn+s −vn+1��

The left-hand side of this expression can be written

s−1∑
v=1

[
u�f �k�− sn+v�−u�f �k�− sn+v+1�

]

and the right-hand side can be written ��
∑s−1

v=1�vn+v+1−vn+v�, which from indifference at
steps equals

s−1∑
v=1

[
u�f �sn+v�− sn+v�−u�f �sn+v�− sn+v+1�

]
�

Due to strict concavity of u and the sequence 	sn
 being strictly increasing,

u�f �k�− sn+v�−u�f �k�− sn+v+1�

> u�f �sn+v�− sn+v�−u�f �sn+v�− sn+v+1�
]

for each v> 0. This implies that the left-hand side exceeds the right-hand side. When s < 0,
by indifference at the initial step, it suffices to show that u�f �k�− sn�−u�f �k�− sn−s� ≥
���vn−s −vn�. Now form the same type of sums as for the s > 1 case, but from � = 0 to
s−1, and proceed with an analogous argument. Q.E.D.

Lemma 4: For all n, for k ∈ �sn� sn+1�, k′ = k̄ is dominated by k′ = sn+1.
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Proof: Noting that

u�f �sn�− sn+1�−u�f �sn�− k̄�=
�∑
s=1

[
u�f �sn�− sn+s�−u�f �sn�− sn+s+1�

]

and that

���v̄−vn+1�=
�∑
s=1

�vn+s+1−vn+s�

=
�∑
s=1

[
u�f �sn+s�− sn+s�−u�f �sn�− sn+s+1�

]
�

the result again follows, using concavity and 	sn
 being an increasing sequence: this results
in term-by-term domination. Q.E.D.

Lemmas 1–4 suffice to support optimality of the constructed function g on all of its
domain. Q.E.D.
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