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Abstract

We analyze a Bewley-Huggett-Aiyagari incomplete-markets model with labor-market fric-

tions and aggregate shocks. Consumers are subject to idiosyncratic employment shocks against

which they cannot insure directly. However, there is a complete set of assets for insuring against

aggregate risk, and consumers use these as vehicles for precautionary saving. There are aggre-

gate productivity shocks, and all firms are alike. The labor market has a Diamond-Mortensen-

Pissarides structure: firms enter by posting vacancies and match with workers bilaterally, with

match probabilities given by an aggregate matching function. Wages are determined through

Nash bargaining. The resulting model is shown to be remarkably similar to the Diamond-

Mortensen-Pissarides model, and yet it inherits the aggregate features of consumption and

investment of typical real-business-cycle models. Aggregate fluctuations in employment and

vacancies and in real wages depend crucially on the monetary value of being unemployed.
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1 Introduction

In this paper we build a model of the aggregate economy with two frictions that are becoming

broadly viewed as central: labor markets involve search-matching costs, and consumers are risk-

averse but cannot insure fully against idiosyncratic shocks. These features have each been studied

in detail in previous work. Costs of search and matching have been argued to be crucial for labor

markets and for business cycles: fluctuations in employment to a large extent involve the extensive

margin and, arguably, an important fraction of these movements are of the “involuntary” kind, i.e.,

due to the frictions. There is also a widespread view that consumer risk aversion, and the implied

desire to smooth consumption, is a key reason behind why investment fluctuates so much while

consumption does not. On the individual level, moreover, studies of consumption strongly indicate

that there is less than perfect individual consumption insurance, in particular against idiosyncratic

shocks.

The development of a model with these features amounts to a merging of the two arguably

most central workhorses of modern macroeconomic theory: the Bewley-Huggett-Aiyagari (B-H-

A) setting (Bewley (undated), Huggett (1993), and Aiyagari (1994)), which models a neoclassical

growth economy with idiosyncratic, partially uninsurable risk for consumers, and the Diamond-

Mortensen-Pissarides (D-M-P) search/matching framework of the labor market (Diamond (1981),

Pissarides (1985), and Mortensen and Pissarides (1994)). We motivate this model merging in two

separate ways. The first of these is methodological : for a variety of questions, both normative

and positive, it is really necessary to develop a model of this sort. For example, if one wishes

to evaluate the quantitative welfare consequences of labor-market policy where risk is believed to

be an important component, such as unemployment benefits, it is necessary to depart from the

standard D-M-P setting with risk neutrality.1 One might alternatively wonder how the removal

1For example, Diamond (1981), Marimon and Zilibotti (1999), and Acemoglu (2001) analyze the effect of unem-

ployment insurance on output and welfare in a model with linear utility. Acemoglu and Shimer (2000) indeed show

that a different effect will be at work when risk aversion and market incompleteness are assumed. It is also possible

to study models where workers are risk-averse but do not have any access to any asset or insurance markets; see,

e.g., Wright (1986). However, such settings, when applied to the studies of the quantitative welfare consequences of

labor-market policies, are likely to vastly exaggerate the welfare effects through risk channels.
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of business-cycle shocks (using stabilization policy or through other means) would influence the

idiosyncratic wage and employment shocks consumers face. Since the standard B-H-A model treats

any idiosyncratic risks as exogenous, it cannot be used to answer these questions.2 The development

of the model here thus makes such analyses feasible.

The second motivation is robustness vis-à-vis the two workhorse models: does the D-M-P

model behave similarly with risk-averse consumers (who can save), and does the B-H-A model

retain its main features even when the wage process is endogenized using standard labor-market

modeling? On the first of these questions, several recent papers argue that incorporating risk into

search/matching models could change the implications for unemployment and vacancy fluctuations

in a quantitatively significant way (see, e.g., Bils, Chang, and Kim, 2007 or Nakajima, 2007). We

show in this paper that in fact it does not. New mechanisms are indeed introduced when workers

are risk-averse. One comes through wage setting, since individual wages now will reflect workers’

asset holdings. Thus, over the cycle, both average asset holdings and the distribution of asset

holdings among workers move, potentially changing the cyclicality of wages. Another new element

is the transitional dynamics for labor-market tightness: unlike in the setting with risk neutrality,

this variable does not jump in response to aggregate shocks but changes slowly due to consumption

smoothing. Our quantitative findings, thus, mean that these new channels amount to only minor

changes in aggregate dynamics. In conclusion, the merging of the two workhorse models delivers

robustness in both directions: one obtains a setting which inherits aggregates that, on the labor-

market side, behave (almost) like in the D-M-P structure and, on the consumption-investment side,

behave like in a standard real-business-cycle model. Thus, different aggregate movements, say, in

unemployment, would only arise due to the incorporation of other channels.3

2See, e.g., İmrohoroğlu (1989) and the review discussion in Lucas (2003); a theme here is that business cycles may

influence different consumers differently; consumers with very low wealth may prefer a stable economic environment

more than do consumers with high wealth, since the former are more vulnerable to risk. Some papers in this literature

explicitly point to how the effects of aggregate stabilization on the nature of idiosyncratic shocks matters for welfare;

see Atkeson and Phelan (1994), Krusell and Smith (1999, 2002), Krebs (2006), and Mukoyama and Şahin (2006).
3In the cases mentioned above, important such channels might include endogenous separation or valued leisure.

Other studies, such as Hall (2005) and Gertler and Trigari (2006), argue for real-wage rigidity.
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The main analytical challenge in solving models with the aforementioned two frictions has been

the interaction of two elements. First, there is a nontrivial and evolving distribution of wealth

among consumers, which influences prices and aggregate quantities; and second, unlike in the

one-firm neoclassical model, there is a distribution of wage outcomes influencing worker and firm

decisions. Relative to previous work on the topic, this paper thus carefully addresses, in the context

of an economy with aggregate fluctuations, both (i) how rational firm-worker pairs bargain over

wages when worker utility depends on their wealth and (ii) how firms are valued in a context where

there are missing markets against idiosyncratic risks. As aggregate productivity fluctuates, wages

change not only due to changes in marginal productivity, but because workers’ wealth levels—both

in absolute and relative terms—change. For the same reason, different workers have different de-

facto evaluations of risk, so how do the dispersion of attitudes toward risk then matter for the

pricing of firms and for the opening up of new vacancies and, thus, job creation? We build answers

to these questions from first principles.

In somewhat more detail, we consider a model similar to that in Krusell and Smith (1998):

consumers can only use a safe asset to insure against unemployment risk, subject to a no-borrowing

(or no-short-sales) constraint, and firms operate neoclassical production functions. However, they

operate in the context of a labor market with frictions: although they sell their output, and rent

their capital, in perfectly competitive markets, they face costs in matching with workers. The

labor-market setting is very similar to the Pissarides (1985) model, where firms and workers match

in pairs and there is an aggregate matching function determining how many matches result for a

given number of searching firms and workers. Wages are determined, period by period and without

commitment, using Nash bargaining within each worker-firm pair: the wage maximizes a Cobb-

Douglas function of the inside minus the outside indirect (present-value) utility of the worker and

the equivalent measure for the firm.4 Firms enter at zero cost, but need to post vacancies at a cost

in order to attract workers.

We allow a complete set of assets for insurance against aggregate shocks; since we have a two-

4See Pissarides (2000, Section 1.6).

4



state process for aggregate productivity, this means that we need two types of assets. As in the

typical decentralization of the stochastic closed-economy growth model, we let consumers hold the

capital (and rent it to firms), but here we have “equity” as well: equity is the claim to profits net of

payments to capital and labor, and thus it is the return to the vacancy-posting costs. As mentioned

above, because market incompleteness makes individuals evaluate the future differently, it may not

be a priori clear how to price the firm, or what should guide firms’ decisions; recall that firms’

decisions are forward-looking since their wage bargaining involves the dynamic impact on future

profits. Here, however, since there is no aggregate risk in our economy from period to period aside

from that contingent on aggregate productivity, our assumption of complete markets for this risk

implies that any consumer with positive asset holdings (who, thus, are not constrained) do agree

on profit flows. Thus, the price of equity as well as the firm decisions are well-defined. This insight

is closely related to those in recent work by Carceles-Poveda and Coen-Pirani (2005).

There have not been many quantitative studies of the D-M-P matching model with risk-averse

workers and savings. The early and notable exceptions are Andolfatto (1996) and Merz (1995),

and later Den Haan, Ramey, and Watson (2000), who study quantitative implications of this type

of model in a setting with complete consumption insurance for workers.5 Relative to these papers,

thus, we provide a quantitative evaluation of a model with incomplete markets, with all its implica-

tions for consumer heterogeneity, wage setting, and so on. In particular, we maintain the emphasis

on bilateral bargaining and maintain the assumption that all consumers are identical ex ante.6

Further, recent quantitative studies of the labor-market model with frictions (see Hall (2005) and

Shimer (2005)) conclude that calibration to labor-market flows and steady-state statistics implies

insufficient movements in vacancies and unemployment relative to what we observe in the U.S.

and in other economies, unless (real) wages are exogenously restricted to be rigid. Subsequently,

Hagedorn and Manovskii (2006) pointed to an alternative calibration without these problems, and

5For recent studies incorporating wage rigidity as well as other frictions, see Gertler and Trigari (2006) and

Christiano, Ilut, Motto, and Rostagno (2007).
6For interesting analyses with other forms of bargaining and/or a heterogeneous-type approach to the valuation of

firms see, e.g., Valdivia (1996), Costain and Reiter (2005), Kallock (2006), Bils, Chang, and Kim (2007), Nakajima

(2007), and Shao and Silos (2007).

5



it is an open question how to judge these different views on how to choose parameters. We consider

both here, and we find that the conclusions from the risk-neutral setting carries over: labor-market

fluctuations still depend crucially on the same parameters.

In Section 2, we first set up a B-H-A dynamic general equilibrium model without aggregate

fluctuations. We solve for and carefully discuss the steady state of this model, which is significantly

different from the Aiyagari (1994) model. The reason is that workers’ wages, due to the assumption

of Nash bargaining, must depend on their asset holdings. With our calibration, wages are increasing

in the asset holdings: rich workers have a higher outside option, since they can bear unemployment

more easily with more saved resources to consume from. As a result, consumers see an additional

return from saving: it will raise their future wage when employed. We show, however, that except

for the very poorest workers, this channel is very weak quantitatively, which may be reassuring,

since the effect of individual wealth on wages has not been argued to be large in the empirical

literature.

In Section 3, we extend our model to incorporate aggregate uncertainty. Now, the distribution

of asset and employment moves around endogenously, responding to aggregate shocks. When

consumers optimize, they have to take the change in this distribution into account. This creates

a computational complexity when solving the model’s equilibrium. We extend the “approximate

aggregation” result and associated computational algorithm, originally developed by Krusell and

Smith (1998, 1997), for our model and its numerical characterization, with reassuring results:

approximate aggregation obtains, despite the presence of several nontrivially determined aggregate

equilibrium objects, such as labor-market tightness and asset prices. The results in this section,

moreover, show that, as in the recent discussion of fluctuations in employment and vacancies in

the context of the model with risk-neutral consumers, the calibration is key: fluctuations in the

labor-market variables are large if and only if Hagedorn and Manovskii’s calibration is adopted.

Section 4 concludes, and the Appendix contains a series of theoretical results as well as details

on the numerical algorithms we used.
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2 The model without aggregate shocks

In this section, we develop a model without aggregate shocks, and our focus is on a stationary

equilibrium. The stationary version of the model is of independent interest, in part because it

can be used for interesting comparative-statics exercises: it is possible to examine the effects on

vacancies and unemployment of, say, a change in productivity. In addition, on a methodological

level, it is also a challenging model to analyze due to the endogeneity of the wage function. As

we show in this section, however, that challenge can be overcome to a large extent, and this is

important for the computational feasibility of the model with aggregate shocks.

We first describe the matching technology and the asset structure. We then state the maxi-

mization problems of the different agents and describe the wage determination mechanism, which

is based on bargaining within each worker-firm pair. After formally defining our stationary equilib-

rium we briefly discuss computation and finally present our results. Lastly, as a robustness check,

we consider a slightly different version of this model designed to generate large wealth dispersion.7

2.1 Matching

There is a continuum of consumers, with measure 1, in the economy. A consumer is either employed

or unemployed. There are many firms, each of which operates with one “job” (position for a

worker). The total value of the firms is represented by p.8 Each job is filled by one worker and

has a production function zF (k). Here, z represents the aggregate productivity level (constant in

this section), F (·) is an increasing and strictly concave production function, and k is the amount

of capital stock employed in that job. Note that since z and F (·) are common across the firms

(who act competitively in the market for capital stock), in equilibrium the same amount of k is

employed at each filled job. Vacant jobs and unemployed workers are randomly matched each

period according to an aggregate matching function. The aggregate matching function, M(u, v),

represents the number of matches in a period when there are u unemployed workers and v vacancies,

7The previous literature, including Huggett (1996) and Krusell and Smith (1998), discuss the importance of, and

the difficulties in, generating realistic wealth heterogeneity in models with realistic income/employment processes.
8Alternatively, we can interpret that there is one “representative firm,” whose value is represented by p.
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and is specified as

M(u, v) = χuηv1−η.

In addition, M(u, v) ≤ v and M(u, v) ≤ u have to hold. Note that this aggregate matching function

exhibits constant-returns-to-scale. The probability of a vacant job to be filled at the current period,

λf , is

λf ≡M(u, v)/v = M(u/v, 1) = χ(v/u)−η = χθ−η, (1)

where θ ≡ v/u is the vacancy-unemployment ratio. The probability of an unemployed worker to

be employed at the current period, λw, is

λw ≡M(u, v)/u = (v/u)M(u/v, 1) = θλf . (2)

Therefore, λf and λw are functions of θ. We assume that a match is separated with probability σ in

each period. The assumption of a constant and exogenous separation rate is made for convenience.

It is potentially an important source, or propagator, of fluctuations. However, it is arguably not

likely to be the most important one, at least not for generating the negative correlation between

unemployment and vacancies.9

From the above assumptions, the transition of the unemployment rate u can be described by

u′ = (1 − λw)u+ σ(1 − u),

where a next period variable is denoted by a prime (′).

2.2 Asset structure

The consumers face idiosyncratic employment shocks, but we assume that there are no insurance

markets for these idiosyncratic shocks. The consumers can hold only two kinds of asset—capital

k, which is used as an input for production, and equity x, which is a claim for the firm’s profit.

It is assumed that the consumers are not allowed to hold the claims to the profit of individual

9A temporary increase in the separation rate increases unemployment in a direct way but its impact on vacancies

is less powerful than that resulting from increases in productivity or in “firm product demand”.
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jobs—they can only hold the claim for the aggregate profit.10 Let r be the return to capital and

d be the dividend paid to the holders of equity. We normalize the total amount of equities to one.

Since we focus on the steady-state, there is only one aggregate state. The equity price p has to

satisfy the following equation:

p =
d+ p

1 + r − δ
, (3)

where δ is the depreciation rate of capital. This comes from no-arbitrage: one unit of capital

generates 1 + r − δ unit of return next period, and one unit of equity generates (d + p)/p unit of

return (note that both assets are riskless).

Since the capital and the equity are essentially the same asset (both are riskless and provide

same return) from the consumer’s viewpoint, we do not have to keep track of the asset composition

of the consumers. In the following, we define

a ≡ (1 + r − δ)k + (p+ d)x

and use a as the state variable for a consumer. Note that from (3),

a = (1 + r − δ)(k + px)

holds.

2.3 Consumers

2.3.1 Employed consumers

The budget constraint for an employed consumer is

c+ k′ + px′ = a+ w, (4)

where c is consumption and w is the wage rate. The wage is determined through Nash bargaining

between the firm and the worker every period, and it turns out that the wage depends on the

worker’s asset level. The details of Nash bargaining are motivated and explained later.

10If the consumers are allowed to hold the claims to the individual jobs’ profit, there is an incentive for an employed

consumer to hold a short position on its own match to hedge the risk of separation.
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For a given wage w, employed consumers choose their capital and equity holdings subject to

(4) and the borrowing constraint a:

W̃ (w, a) = max
k′,x′

u(c) + β
[

σU(a′) + (1 − σ)W (a′)
]

(5)

subject to

c+ k′ + px′ = a+ w,

a′ = (1 + r − δ)k′ + (p+ d)x′,

and

a′ ≥ a.

Here, u(·) is an increasing and concave utility function, β is the discount factor, U(·) is the value

function of an unemployed worker, and W (·) is the value function of an employed worker, taking

into account that the wage is renegotiated next period (defined later). Let the decision rule for

a′ for employed workers be a′ = ψ̃e(w, a). Denote the wage resulting from the Nash bargaining

(detailed later) as

w = ω(a).

W (a) is formally defined as

W (a) ≡ W̃ (ω(a), a). (6)

Also define

ψe(a) ≡ ψ̃e(ω(a), a). (7)

2.3.2 Unemployed consumers

The budget constraint for an unemployed consumer is

c+ k′ + px′ = a+ h, (8)

where h is the income for an unemployed worker. h can be thought as household production. This

assumption is made so that an agent can earn some labor income even when she is unemployed.
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Alternatively, we can introduce an unemployment insurance system (such as the one in Hansen

and İmrohoroğlu (1992)). In that case, a government and its budget constraint would need to be

incorporated into our setup.

Unemployed consumers’ optimization problem is:

U(a) = max
k′,x′

u(c) + β
[

(1 − λw)U(a′) + λwW (a′)
]

(9)

subject to

c+ k′ + px′ = a+ h,

a′ = (1 + r − δ)k′ + (p+ d)x′,

and

a′ ≥ a.

Let the decision rule for a′ for unemployed workers be a′ = ψu(a).

2.4 Firms

To create a job, a firm first posts a vacancy. We assume that there is a flow cost of posting a

vacancy and denote it by ξ. The value of posting a vacancy, V , is

V = −ξ +
1

1 + r − δ

[

(1 − λf )V + λf

∫

J(ψu(a))
fu(a)

u
da

]

. (10)

Since the equity price is discounted at the rate 1 + r − δ, the firm discounts the future at the rate

1 + r− δ. With probability 1− λf , the vacancy remains unfilled. With probability λf , the vacancy

is filled by a worker. J(a) is the value of a job filled by a worker whose asset level is a. Since

the matching process is random, the firm can be matched with any worker in the current period

unemployment pool. fu(a) is the population of unemployed workers with the current asset level a.

Thus fu(a)/u is the density function of the unemployed workers over a, and an unemployed worker

with the current asset level a will have the next-period asset level ψu(a). The integral calculates

the expected value. In equilibrium, the firm will post the vacancy until V = 0.
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The value of a filled job, given the wage w, is

J̃(w, a) = max
k

zF (k) − rk − w +
1

1 + r − δ

[

σV + (1 − σ)J(ψ̃e(w, a))
]

, (11)

Note that J̃ depends on a since with probability (1−σ) the firm continues to be matched with the

same worker, whose next-period asset level depends on a. J̃ and J are related by

J(a) ≡ J̃(ω(a), a). (12)

The firm’s first-order condition implies that

r = zF ′(k)

holds.

In equilibrium, the period profit is equal to

π(a) = zF (k̃) − rk̃ − ω(a), (13)

with

k̃ =
k̄

1 − u
,

where k̄ is aggregate capital stock. k̃ is the amount of capital stock for each job: from symmetry,

capital is distributed evenly across jobs.

The dividend is paid out as the sum of profit minus the total vacancy cost:

d =

∫

π(a)fe(a)da− ξv, (14)

where fe(a) is the population of the matched workers with wealth level a. Appendix A shows that

with this dividend and the asset pricing formula (3), p+ d is equal to the sum of J(a).

2.5 Wage determination

The wage is determined by the (generalized) Nash bargaining. The Nash bargaining solution solves

the problem

max
w

(

W̃ (w, a) − U(a)
)γ (

J̃(w, a) − V
)1−γ

. (15)
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γ ∈ (0, 1) is a parameter that represents the bargaining power of the worker. The solution of this

is w = ω(a). It is clear that the dependence of w on a stems from W̃ (w, a)−U(a) being a function

of a.

The assumption of Nash bargaining requires brief discussion. First, does the idea that a worker’s

wealth can influence his wage “ring true”? Though the evidence is inconclusive, it is a logical im-

plication of the assumption that there is no commitment to wages in advance (by workers or firms)

and of worker rationality: if one’s outside option is strong (for whatever reason, but high wealth

is one such reason), why not bargain for a higher wage? Second, we could have considered a

setting where firms can precommit to a wage before searching for workers (and before knowing

whether they find a rich or a poor worker). Though this is certainly an interesting alternative to

the assumption used here, we are not sure that commitment (especially many periods ahead) is

a realistic assumption.11 Moreover, if commitment is introduced without allowing firms to post

different wages, and workers to direct search to different wages, then it gives firms more bargaining

power than one might consider realistic: it amounts to letting firms make take-it-or-leave-it offers

(and would lead wages to equal the exogenous unemployment value). If instead firms can post

wages, and consumers can choose which job to apply for (so that they would be indifferent between

a high-probability/low-wage outcome and a low-probability/high-wage outcome), firms would in-

deed compete and workers would obtain some surplus, but here the analysis is likely not simpler

than for the present setting (without as well as with aggregate shocks), especially since we show

below that the Nash bargaining case is much easier to solve than expected. Third and finally, for

comparison with the earlier literature, the results under Nash bargaining ought to be known, since

Nash bargaining is the most commonly used assumption under risk neutrality.

2.6 Recursive stationary equilibrium

We define our object of study as follows.

Definition 1 (Recursive stationary equilibrium) The recursive stationary equilibrium con-

11In the presence of aggregate shocks, precommitment introduces an additional issue: firms would need to consider

changes in wages due to these shocks. See Rudanko (2006a,b) for different approaches.
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sists of a set of value functions {W̃ (w, a), J̃(w, a), W (a), J(a), U(a), V }, a set of decision rules for

asset holdings {ψ̃e(w, a), ψe(a), ψu(a)}, prices {r, p, ω(a)}, vacancy v, matching probabilities λf

and λw, dividend d, and the distribution of employment and asset µ (which contains the information

of fe(a), fu(a), and the unemployment rate u) which satisfy

1. Consumer optimization:

Given the job-finding probability λw, prices {r, p}, and wage w, the individual decision rules

ψ̃e(w, a) and ψu(a) solve the optimization problems (5) and (9), with the value functions

W̃ (w, a) and U(a). Given the wage function ω(a), W (a) and ψe(a) satisfy (6) and (7).

2. Firm optimization:

Given prices r and w, distribution µ, and the employed consumer’s decision rule ψ̃e(w, a), the

firm solves the optimization problem (11), with the value function J̃(w, a). Given the wage

function ω(a), J(a) satisfies (12). Given the worker-finding probability λf , r, the unemployed

consumer’s decision rule ψu(a), and µ, V satisfies (10).

3. Free entry:

The number of vacancy posted, v, is consistent with the firm free-entry: V = 0.

4. Asset market:

The asset-market equilibrium condition

∫

ψe(a)fe(a)da+

∫

ψu(a)fu(a)da = (1 − δ + r)k̄ + p+ d

holds: the left hand side is the total asset supply and the right hand side is the total asset

demand. The no-arbitrage condition (3) holds. Dividend d satisfies (14). k̄ satisfies k̃ =

k̄/(1 − u), where k̃ satisfies the firm’s first-order condition: r = zF ′(k̃) for given r.

5. Matching:

λf and λw are functions of v and u as in (1) and (2).
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6. Nash bargaining:

The wage function ω(a) is determined through Nash bargaining between the firms and the

consumers by solving (15).

7. Consistency:

µ is the invariant distribution generated by λw, σ, and the consumer’s decision rules.

2.7 Computation

In the standard B-H-A setting, computation of a steady state reduces to a one-dimensional fixed

point problem in the value of the capital stock. An efficient algorithm for that model is to (i)

guess on a value for the capital stock; (ii) obtain the prices (the wage and the rental rate) from the

firm’s first-order conditions for inputs (price equals marginal product); (iii) solve the consumer’s

dynamic-programming problem globally using nonlinear methods; (iv) simulate an agent’s capital

accumulation path for a large number of periods; and finally (v) compare the average capital stock

held by the agent with the initial guess, and update. A key feature of this simple algorithm is that

the distribution of capital across agents in a steady state need not be used in the computation,

though upon convergence it is straightforward to compute it using, say, the method described in

Huggett (1993).12 The reason why the distribution is not needed in the computation of the steady-

state prices is that consumers do not need to know it: they only need to know the two prices (which

can be summarized by one number, the capital stock) to perform their utility maximization. The

functional fixed-point problem that does need to be confronted in step (iii), finally, is computa-

tionally straightforward since it is a contraction mapping (and fast to solve, since it has only one

endogenous state variable).

The present model cannot be computed with an algorithm that reduces to a one-dimensional

fixed-point problem; instead one needs to solve a functional fixed-point problem. The reason is that

the consumer needs to know not just two prices but the entire wage function, ω(a), to maximize

12The reason why only one agent’s capital accumulation needs to be simulated is that the consumer’s process for

capital accumulation is ergodic under rather general conditions: the cross-section of capital holdings is in one-to-one

correspondence with the time-series process for capital of any given agent.
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utility. Thus, the algorithm we use works as follows: (i) guess on ω(a), along with r and θ; (ii)

using the matching function and the given θ, compute the probability of finding a job; (iii)–(iv) as

above, which also involves a straightforward contraction mapping and can be used to obtain the

distributions of employed and unemployed consumers across capital holdings; (v) given the latter,

obtain firm values by iterating on the firm’s value function (this involves no maximization and is a

contraction mapping); and (vi) given all value functions, perform the Nash bargaining. Now note

that (vi) delivers an update for the wage function; (iv) an average total capital stock, which since

that unemployment can be computed from θ allows us to find the per-firm capital stock, and hence

we can obtain an update for r from the firm’s capital rental decision; and (v) gives a value of entry,

which should be zero, and hence leads us to adjust the guess for θ. The fixed-point problem in

(ω, r, θ) could in principle be a very difficult one, but fortunately it turns out that it is easy to solve

for this model, and arguably so for a large range of parameter values. The reason for this is that

the ω function is mostly flat and that few agents have capital holdings over the range where it is

not flat; see the results in Section 2.9 below. The detailed computational procedure can be found

in Appendix B.

2.8 Calibration

One period is considered to be six weeks. Following the standard real business cycles literature, we

choose δ = 0.0125 and the value of β as 0.995. The household production parameter h is assumed to

be 1.4. This figure turns out to be about 40% of the average equilibrium wage, similarly to Shimer’s

(2005) calibration. The borrowing constraint a is set at 0. The production function is zF (k) = zkα

with α = 0.36. We use the utility function u(c) = log(c) and also consider the u(c) = c1−ζ/(1 − ζ)

with ζ = 5. Matching-related parameters are calibrated following Shimer (2005). The separation

rate (σ) is set to 0.05 based on the observation that jobs last about two and a half years on average.

We set χ = 0.675 to match the monthly job finding rate of 0.45. Shimer estimates the elasticity of

the matching function as 0.72, and we set the corresponding parameter η = 0.72. We target the

value of θ to be 1 following Shimer’s procedure. The cost of posting a vacancy is set to ξ = 0.7368

so that V becomes zero with this target value of θ. Shimer sets the bargaining parameter γ = 0.72
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by following the Hosios efficiency condition. We set the bargaining parameter to γ = 0.72 as well.

In the benchmark, z is set to 1.00.

2.9 Results

In this section, we examine our model’s comparative statics, i.e., how steady states are affected

by various model primitives. We examine the role of preferences in order to see how important

consumption smoothing is. We look at the effects of productivity, as does much of the literature.

We also examine the effects of those parameters over which the literature has not arrived at a

consensus, such as the (monetary) value of unemployment and the Nash bargaining share. Finally,

we introduce consumer heterogeneity in order to allow substantial wealth dispersion in steady state.

First, however, we briefly remark on how the comparative statics can be interpreted.

2.9.1 Long-run effects vs. short-run effects

The comparative statics in the model with risk neutrality, which can be computed analytically,

are useful also for understanding short-run effects of productivity shocks, because θ (labor-market

tightness) jumps immediately to its new long-run value in response to a permanent (unexpected)

shock; unemployment then follows a constant law of motion to its new long-run value, and vacancies

follow. This result comes from the assumption that θ is a “jump” variable: vacancy flows are not

associated with any adjustment costs, and they react immediately so as to maintain the profit

from entering at zero. The result also involves an immediate jump in the capital stock (in the

version of the model with capital) to its new long-run value, and this result requires risk neutrality.

In the model with risk aversion, the comparative statics also involve a jump in θ, but not to its

new long-run value, since capital must adjust slowly in order to allow consumption smoothing.

Thus, the long-run effect on θ is different—e.g., in the case of comparative statics with respect to

productivity, it is larger—than the short-run effect.
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2.9.2 Different preferences

Table 1 presents the summary statistics for different utility functions. One is log utility, and the

other is u(c) = c1−ζ/(1 − ζ) with ζ = 5 (we kept the other parameters constant). Larger ζ is

associated with higher precautionary savings and thus with higher k̄. Higher k̄ leads to larger

profitability of each vacancy: v increases, θ increases, and u decreases. Naturally, p and d increase.

ξ θ u v k̄ p d w

log utility 0.7368 1.00 6.90% 0.069 104.74 1.02 0.0051 3.44

ζ = 5 0.7447 1.00 6.90% 0.069 104.94 1.04 0.0052 3.45

Table 1: Summary statistics for the model without aggregate shocks. w is the average wage in the

economy.
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Figure 1: Wages for log utility and u(c) = c1−ζ/(1 − ζ) with ζ = 5.

Figure 1 shows the wage as a function of asset holdings. The observed concavity of ω(a) follows,

intuitively, from two features: (i) the function being increasing, which is due to the outside option

being worse for consumers with a low stock of assets (since their buffer against unemployment
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shocks is lower), and (ii) a natural upper bound, which is given by that value which a risk-neutral

agent would obtain in the bargaining (as in the D-M-P model), and this value is approached here

for consumers with infinite asset holdings since they are “perfectly insured”.13 It turns out that

with our parametrization, the wages are only increasing significantly for the as that are very close

to the borrowing constraint. Figure 1 compares the wage functions across different utility functions

(log and ζ = 5). The change in wages close to the borrowing constraint is larger with ζ = 5. This

is because the outside option U(a) is very low for a nearly constrained worker, when the utility

function has a large curvature.

The average wage in the economy is 3.44 and the minimum wage is 3.38. The mean-min wage

ratio is 1.018. This means that the model generates only 1.8% wage differential between the average

wage and the lowest wage paid in the labor market.14 We find that wage differentials created by

the heterogeneity of asset and Nash bargaining are small.
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Figure 2: Asset distributions for log utility.

13Acemoglu and Shimer (2000) build a model of risk-averse workers searching for different types of jobs. They

assume that high-paying jobs are more difficult to find. With the assumption of CRRA utility, wealthier workers are

less risk-averse and they tend to apply for higher-paying jobs. As a result, there is a positive association between

wealth and wages through a different mechanism than ours.
14See Hornstein, Krusell, and Violante (2006) for a study that utilizes this measure to analyze inequality in a

matching model.
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Figure 2 plots the asset holding densities fe(a) and fu(a) for the log utility case. (Asset distribu-

tions are similar for ζ = 5 case.) As can be seen from the asset distribution, consumers avoid to be

at the very lower tail of the asset distribution. This is due to the additional savings incentive that

arises in our model. The wealth distribution here, clearly, is not realistic, but this is probably not

a major shortcoming; in the present setting, the only source of wealth inequality is unemployment

shocks (there is no ex-ante consumer/worker heterogeneity, and there are no other shocks, such as

wage shocks).

The additional incentive for saving can be seen easily from the Euler equations of the con-

sumers.15 For employed consumers, the Euler equation is (when they are not borrowing-constrained)

u′(ct) = β(1 + r − δ)
[

σu′(cut+1) + (1 − σ)(1 + ω′(at+1))u
′(cet+1)

]

,

where ct is the current consumption and cut+1 is the future consumption in the case of unemployment,

cet+1 is the future consumption in the case of employment. For unemployed consumers, the Euler

equation is

u′(ct) = β(1 + r − δ)
[

(1 − λw)u′(cut+1) + λw(1 + ω′(at+1))u
′(cet+1)

]

.

These Euler equations are standard except for ω′(at+1), which turns out to be positive in our

calibration.

Figure 3 plots ω′(at+1) for the log utility case and ζ = 5 case. ω′(at+1) is large for the consumers

with low asset holdings. Consumers with low asset holdings cannot insure themselves from being

unemployed—since they have no other resources to consume (they are constrained by the borrowing

limit), they suffer from low consumption when they are unemployed. This makes their bargaining

position weaker. As the asset level increases, the consumers are better insured, and their value

function becomes closer to linear. As a consequence, ω(a) becomes flatter. Note that when the

utility function is linear (as in standard D-M-P model), the wage doesn’t depend on a. We will see

later that the aggregate behavior of our model is very similar to the linear utility model.

15For the purposes of illustration, we assume that the wage function ω(a) is differentiable. In the numerical

calculations below, we do not make this assumption.

20



0 50 100 150 200

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

a

ω
’(a

)

ζ=5

log utility

Figure 3: Derivative of the wage function for log utility and u(c) = c1−ζ/(1 − ζ) with ζ = 5.

In this model, a positive ω′(at+1) provides an extra incentive to save. Figure 4 shows the bench-

mark asset distributions compared with the asset distributions when the wage is given exogenously

and independently from the asset level (at the mean value of the benchmark). As can be seen in

these figures, if we shut down the ω′(at+1) channel by assuming that the wage is fixed exogenously,

the stationary wealth distributions look different. In particular, there is a larger mass of consumers

at the left tail of the wealth distribution. When the wage is Nash bargained, the consumers try

to escape from the low asset holding level. As a result, most of the populations stay in the part

where ω(a) is flat. Thus, the homogeneity of the wages across the population is generated by the

endogenous choice of asset by the consumers.

2.9.3 Different aggregate productivity

As a prelude to the analysis with aggregate shocks, we computed the equilibrium with different

values of z. Table 2 presents the summary statics for different z values.

In the table (and all the following tables that involves the comparison across different z), all the

results are shown as the % deviation from the z = 1.00 case, except for u. u is shown in the absolute

level. Aggregate capital increases with z, k̄ = 103.06 for z = 0.99, k̄ = 104.74 for z = 1.00 and
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Figure 4: Asset distributions for the employed and the unemployed

u v θ k̄ p d w

z = 0.99 6.95% −2.0% −2.7% −1.6% −2.2% −2.2% −1.6%

z = 1.01 6.85% +2.0% +2.7% +1.6% +1.9% +1.9% +1.6%

Table 2: Summary statistics for the model without aggregate shocks for different z values. All in

% deviations from z = 1.00 case, except for u.

k̄ = 106.44 for z = 1.01. The vacancy-to-unemployment ratio (θ) increases with z as well. Similarly,

unemployment rate is negatively correlated with the aggregate productivity shocks. Both equity

prices and dividends are higher for higher z values. Note that quantitatively, the differences in u is

very small compared to what we see in the business cycle data. This echoes with Shimer’s (2005)

finding that the D-M-P model with linear utility generates very small unemployment and vacancy

fluctuations. Figure 5 shows the wage functions for different values of z and assets. Wages move

together with z.
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Figure 5: Wages for different z, Shimer calibration

We repeat the same exercise for the case of ζ = 5. We re-calibrated ξ to make the free-entry

condition hold with θ = 1 when z = 1.00. This results in setting ξ = 0.7447. Table 3 summarizes

the results. The response of the economy to the change in z is quite similar to that in the log utility

case.

u v θ k̄ p d w

z = 0.99 6.94% −1.9% −2.6% −1.6% −3.1% −3.1% −1.6%

z = 1.01 6.85% +2.1% +2.8% +1.6% +0.9% +0.9% +1.6%

Table 3: Different z: ζ = 5 case. All in % deviations from z = 1.00 case, except for u.

2.9.4 An alternative calibration: Hagedorn-Manovskii (2006)

Hagedorn and Manovskii (2006) (HM henceforth) suggests that when the parameter values are

calibrated differently from Shimer (2005), the D-M-P model exhibits much larger labor market

fluctuations in response to changes in z. HM demonstrated this in a model with linear utility. In

this section, we re-calibrate our model similarly to HM and check whether their results hold in our

model.
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We change the values of three parameters. The home production (unemployment insurance)

h and the Nash bargaining parameter γ are set as following. The home production parameter is

raised to h = 3.33, which is about 98% of the equilibrium average wage. The Nash bargaining

parameter is lowered to γ = 0.05. As a result of these changes, the worker takes about 97% of

zF (k̃) − rk̃ in equilibrium. After these parameters are changed, we set ξ so that the free entry

condition V = 0 holds with θ = 1 when z = 1.00. This results in setting ξ = 1.255.

Table 4 shows the response of aggregate variables when z is changed.

u v θ k̄ p d w

z = 0.99 7.77% −28.8% −36.7% −2.5% −28.9% −28.9% −0.8%

z = 1.01 6.32% +27.7% +39.3% +2.2% +27.3% +27.3% +0.8%

Table 4: Different z, HM Calibration. All in % deviations from z = 1.00 case, except for u.

As in the HM paper (where they used a linear utility function), the response of unemployment and

vacancy is much larger with this calibration, and now comparable to the business cycle data. The

profit of the firm changes more with z, and this leads to the larger change in θ and therefore v,

resulting in a large response in u. When u changes substantially, the marginal product of capital

changes and as a result, k̄ also changes.
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Figure 6: Wages for different z, HM Calibration
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Figure 6 shows the change in wages. First, note that the wage functions (as functions of a)

are flatter than the benchmark wage functions. Second, here the wage responds somewhat less to

the change in z, compared to the benchmark case. A smaller response in the wage implies a larger

response in the firm’s profit, contributing to a larger change in θ.

To analyze which element is important in generating large sensitivity of vacancy and unemploy-

ment in z, we repeat the same experiment for two additional cases.16 First, h is kept at 3.33 and

γ is changed to the Shimer parameter value, 0.72. The result is in Table 5.

u v θ k̄ p d w

z = 0.99 7.63% −25.0% −32.2% −2.3% −25.9% −25.9% −1.5%

z = 1.01 6.41% +23.2% +32.6% +2.1% +22.7% +22.7% +1.5%

Table 5: Different z: Effect of higher γ (h = 3.33 and γ = 0.72). All in % deviations from z = 1.00

case, except for u.

We can see that the response of u and v are a little smaller but quite similar to the HM calibration

case. Thus, the calibration of γ is not crucial to the large response of u and v to the change in

z. This is true despite a large change in the sensitivity of the wage to aggregate productivity: the

wage responds much more now, quite like under the Shimer calibration.

Second, we kept γ = 0.05 and lowered h to 1.40. Table 6 shows the result.

u v θ k̄ p d w

z = 0.99 6.95% −2.3% −3.1% −1.6% −2.4% −2.4% −1.2%

z = 1.01 6.84% +2.3% +3.2% +1.6% +2.4% +2.4% +1.2%

Table 6: Different z: Effect of lower h (h = 1.40 and γ = 0.05). All in % deviations from z = 1.00

case, except for u.

The responses of u and v to z are muted substantially. This demonstrates that the value of h is

crucial in determining the response of u and v to the change in z.

16Again, ξ is re-calibrated in each experiment, so that V = 0 with θ = 1 when z = 1.00. The value of ξ is 0.06077

in Table 5 and 15.207 in Table 6.
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2.9.5 Comparison to the linear utility model

In this section, we compare our result to the linear D-M-P model with a linear utility function. In

Appendix C, we show that

y − h

r − δ + σ + γχθ1−η
=

ξ

(1 − γ)χθ−η
, (16)

where y is defined as

y = arg max
k̃

zk̃α − rk̃

that is,

y = z
( r

αz

)
α

α−1

− r
( r

αz

)
1

α−1

(17)

since

k̃ =
( r

αz

)
1

α−1

. (18)

Our experiment is the following. Set all the parameters except for ξ the same as in our original

models (with the benchmark Shimer calibration and the HM calibration). First, let z = 1.00 and

set ξ so that (16) holds with θ = 1.17 Note that y is defined in (17) and r = 1/β − 1 + δ. The

steady-state condition for u

u =
σ

σ + χθ1−η
(19)

can be solved for u, from θ = 1. From (18) and k̃ = k̄/(1− u), we can obtain the aggregate capital

k̄:

k̄

1 − u
=

( r

αz

)
1

α−1

. (20)

Now, we change z. (16) can be solved for θ (note that the value of y is different for each z),

then (19) can be solved for u, and finally (20) can be solved for k̄. Table 7 summarizes the result.

The results are remarkably similar to those in our original incomplete market model with log utility

(reproduced here from Tables 2 and 4).

17This results in ξ = 0.735 in the benchmark calibration. If we set ξ to its value in the incomplete markets model

(ξ = 0.7349), we obtain a slightly lower vacancy-unemployment ration, in particular θ = 0.9974. The value of ξ is

the same for the HM calibration for both the incomplete markets model and the linear model.
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y u v θ k̄

Shimer calibration
z = 0.99-linear −1.6% 6.95% −2.0% −2.7% −1.6%

z = 0.99-incomplete −1.6% 6.95% −2.0% −2.7% −1.6%

z = 1.01-linear +1.6% 6.85% +2.0% +2.7% +1.6%

z = 1.01-incomplete +1.6% 6.85% +2.0% +2.7% +1.6%

HM calibration
z = 0.99-linear −1.6% 7.77% −28.8% −36.8% −2.5%

z = 0.99-incomplete −2.2% 7.77% −28.8% −36.7% −2.5%

z = 1.01-linear +1.6% 6.32% +27.6% +39.2% +2.2%

z = 1.01-incomplete +2.0% 6.32% +27.7% +39.3% +2.2%

Table 7: Summary statistics for the linear model and for the incomplete markets model. All in %

deviations from z = 1.00 case, except for u.

2.9.6 The role of wealth dispersion

In this subsection we look at a slightly different model in order to be able to accommodate more

larger dispersion in wealth. In particular, we generate wealth dispersion that is such that a much

larger fraction of workers are in the upward-sloping part of the wage curve. To do this, we employ

a very simple version of the setting with heterogeneity in patience studied in Krusell and Smith

(1998).18 We assume that there are two types of agents with permanently different discount factors:

one group has βh = 0.997 and the other βl = 0.995. For simplicity, we moreover assume that patient

agents do not have labor income (which would be a small part of their earnings anyway, given

that they will accumulate large amounts of wealth). Thus, their income is perfectly deterministic

and their equilibrium consumption in steady state will be constant, implying that the equilibrium

interest rate in steady state must be given by r = 1/βh−1+δ. We solve and compare three different

models: the linear model, the incomplete markets model with log utility and the incomplete markets

model with ζ = 5. We calibrate the vacancy cost to ξ = 0.885 (constant across economies) by

targeting θ = 1 in the incomplete markets model with logarithmic utility. For the linear model, we

use the same discount rate for the firm and for the consumers.

Figure 7 shows the wage function and asset distributions for the log utility and for ζ = 5 cases.

18One could also pursue the possibility that wages are highly dispersed, and random; see Castañeda, Dı́az-Giménez

and Ŕıos-Rull (2003). The approach taken here was guided merely by ease of computation.
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As can be seen from the asset distributions, there is now a much larger mass of agents in the curved

part of the wage distributions.
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Figure 7: Wage functions (upper panels) and asset distributions for the employed (solid lines, lower

panels) and the unemployed (dashed lines, lower panels) with log utility and ζ = 5.

Table 8 shows the summary statistics for all three models. In short, these do not differ much,

despite the larger wealth dispersion. The vacancy-unemployment ratio is higher for high values of

risk aversion due to two effects: first, there is a higher amount of capital in the economy with high

risk aversion due to precautionary savings; second, the average wage is lower when risk aversion is

higher.

θ u v k̄ w

Linear model 0.93 7.03% 0.065 126.56 3.6837

Log utility 1.00 6.90% 0.069 126.74 3.6836

ζ = 5 1.04 6.82% 0.071 126.84 3.6816

Table 8: Summary statistics (w is the average wage).

Table 9 presents the comparative statics with respect to productivity (z) for all three specifica-
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tions. Though the unemployment levels differ between three models, the responses of the economy

to changes in z are remarkably similar.

y u v θ k̄

z = 0.99-linear −1.6% 7.07% −1.9% −2.6% −1.6%

z = 0.99-log utility −1.6% 6.94% −1.8% −2.4% −1.6%

z = 0.99-ζ = 5 −1.6% 6.87% −1.9% −2.6% −1.6%

z = 1.01-linear +1.6% 6.90% +1.9% +2.6% +1.6%

z = 1.01-log utility +1.6% 6.85% +2.1% +2.8% +1.6%

z = 1.01-ζ = 5 +1.6% 6.78% +1.8% +2.5% +1.6%

Table 9: Comparative statics for the linear model and for the incomplete-markets model with log

utility and with ζ = 5, all in % deviations from the z = 1.00 case, except for u.

3 The model with aggregate shocks

We now incorporate aggregate uncertainty: aggregate productivity shocks. There are two broad

reasons for introducing aggregate shocks. One is substantive: the steady-state analysis above only

gives an indication of aggregate dynamics, since a model with capital and consumption smoothing

implies that labor-market tightness will have nontrivial short-run dynamics. Indeed, as indicated

above, the model will generate stochastic processes for aggregates that, at least under some pa-

rameter configurations, are broadly in line with available U.S. data. The second reason for looking

at the model with aggregate shocks is methodological: it provides a “how-to” for what we believe

is a range of potentially very interesting applications. There are two methodological issues of im-

portance: the evaluation of firm profits (how are they priced, and how are dynamic firm decisions

made?) and the numerical implementation, which is significantly more involved than that in Krusell

and Smith (1998, 1997).

Like in Krusell and Smith (1998), we assume that the aggregate productivity z is either good

(z = g) or bad (z = b), with g > b, and follows a first-order Markov process, with the probability of

moving from state z to state z′ denoted by πzz′ . Unlike in Krusell and Smith, however, we do not

need to make additional assumptions about individual employment shocks (and their correlation
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with aggregates) since they are endogenous here.19

3.1 Asset structure

Again, we assume that there are no insurance markets for the idiosyncratic shocks. Agents can

hold only two kinds of asset—capital k and equity x. Here, again, the equity x is the claim for

the aggregate profit. We continue to assume that the consumers are not allowed to hold claims to

the profits from individual jobs. Now, the difference from the previous section is that capital and

equity have different return structures, so the consumers face a portfolio choice problem.

Let S be the joint distribution of asset and employment across the consumers. Then the

aggregate state at any given period can be described by (z, S).

The distribution of assets across the consumers in the next period is determined in the current

period, since it depends on the consumers’ asset accumulation and portfolio choice decisions, which

are governed by the current state (z, S). The distribution of the employment states at the aggregate

level in the next period is determined in the current period by the amount of vacancy (the firm’s

decision) and unemployment, which are also governed by (z, S). Thus, the next period state S′ is

determined by (z, S). Let’s write this dependence as S′ = Ω(z, S). It is important to note that

even though S′ is already determined by the current state, the employment state of each individual

in the next period is still uncertain.

By above argument, there are only two uncertain aggregate states in the next period, that is,

(g, S′) and (b, S′). We can span these states by two “aggregate” assets that we have—capital and

equity. Note that the asset markets are still incomplete, since there are no assets to insure against

the idiosyncratic risk.

Below, when we consider the consumer’s decisions, we will work on the portfolio choice between

two “Arrow securities”—securities that provides one unit of consumption good at each aggregate

state.20 This is without loss of generality, since we can create these securities by combining the

19We do not look at a version with larger wealth dispersion for the aggregate-uncertainty economy, since the

steady-state analysis suggests that the aggregate results would not change much.
20Krusell and Smith (1997) also have two assets but do not use contingent claims in the implementation.
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capital and equity. For the ease of exposition, below we introduce an entity, called an “investment

firm,” who conducts this transformation.

Suppose that the current state is (z, S). Let Qz′(z, S) be the price of an Arrow-security that

pays out one unit of consumption good when the next-period state is z′. Let the interest rate

r(z, S) and the equity price p(z, S). Then, from no-arbitrage, the asset prices have to satisfy

Qg(z, S)(1 − δ + r(g, S′)) +Qb(z, S)(1 − δ + r(b, S′)) = 1 (21)

and

p(z, S) = Qg(z, S)[p(g, S′) + d(g, S′)] +Qb(z, S)[p(b, S′) + d(b, S′)] (22)

where d(z, S) is the dividend. (21) and (22) show that there is a one-to-one mapping between

{r(z, S), p(z, S)} and {Qg(z, S), Qb(z, S)} for a given d(z, S).

3.2 Consumers

Consumers in the economy choose their demand for Arrow securities subject to a budget constraint.

Again, we impose an exogenous borrowing constraint for each contingent claim at a. Consumers

in the economy differ in their employment status and asset holdings.

3.2.1 Employed consumers

Let a′z′ be the demand of an Arrow security that pays out one unit of consumption good in the

next period if the next period state is z′. The budget constraint for an employed consumer is

c+Qg(z, S)a′g +Qb(z, S)a′b = a+ w

where c is consumption and w is the wage rate.

Let W̃ (w, a; z, S) be the value of being an employed consumer, given the wage w. An employed

worker’s optimization problem is

W (a; z, S) = max
a′g≥a,a

′
b
≥a

u(c) + β[ πzg(σU(a′g; g, S
′) + (1 − σ)W (a′g; g, S

′))

+πzb(σU(a′b; b, S
′) + (1 − σ)W (a′b; b, S

′))]
(23)
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subject to

c+Qg(z, S)a′g +Qb(z, S)a′b = a+ w

and

S′ = Ω(z, S).

Let the decision rule for a′z′ be ψ̃z
′

e (w, a; z, S). Here, U(a; z, S) is the value of being an unemployed

consumer with asset holding a and W (a; z, S) is the value of being an employed consumer, taking

into account that the wage depends on a and (z, S) through Nash bargaining. More formally,

denoting the wage function as

w = ω(a; z, S),

W (a; z, S) is defined as

W (a; z, S) = W̃ (ω(a; z, S), a; z, S) (24)

and we define the decision rule ψe(a; z, S) as

ψe(a; z, S) = ψ̃e(ω(a; z, S), a; z, S). (25)

3.2.2 Unemployed consumers

The budget constraint for the unemployed consumers is

c+Qg(z, S)a′g +Qb(z, S)a′b = a+ h

where h is the income that the consumer receives when she is unemployed.

The unemployed worker’s optimization problem is

U(a; z, S) = max
a′g≥a,a

′
b
≥a

u(c) + β[ πzg((1 − λw(z, S))U(a′g ; g, S
′) + λw(z, S)W (a′g ; g, S

′))

+πzb((1 − λw(z, S))U(a′b; b, S
′) + λw(z, S)W (a′b; b, S

′))]
(26)

subject to

c+Qg(z, S)a′g +Qb(z, S)a′b = a+ h

and

S′ = Ω(z, S).

The job-finding probability λw(z, S) is defined by (2). Let the decision rule for a′z′ be ψz
′

u (a; z, S).
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3.3 Firms

Again, we consider a representative firm which holds many jobs. In order to be able to get matched

with a worker and produce, the firm posts a vacancy. Let the vacancy cost be ξ. The value of a

vacancy V (z, S) is

V (z, S) = −ξ +Qg(z, S)((1 − λf (z, S))V (g, S′) + λf (z, S)
∫

J(ψgu(a; z, S); g, S′)[fu(a;S)/u]da)

+Qb(z, S)((1 − λf (z, S))V (b, S′) + λf (z, S)
∫

J(ψbu(a; z, S); b, S′)[fu(a;S)/u]da)
(27)

where J(a; z, S) is the value of a matched job (taking into account the wage bargaining) and fu(a;S)

is the population of unemployed workers with asset a. The worker-finding probability λf (z, S) is

defined by (1). The firm will post vacancies v(z, S) until V (z, S) = 0.

Let us consider a job matched with a worker with asset holdings a. The firm rents capital

from the consumers at a rental rate of r(z, S) and pays the worker a wage of ω(a; z, S). The

output is determined by the production function zF (k). The value of a filled job given the wage

w, J̃(w, a; z, S), is

J̃(w, a; z, S) = π̃(w; z, S) +Qg(z, S)(σV (g, S′) + (1 − σ)J(ψ̃ge (w, a; z, S); g, S′))

+Qb(z, S)(σV (b, S′) + (1 − σ)J(ψ̃be(w, a; z, S); b, S′)),
(28)

where the flow profit π̃(w; z, S) is defined as

π̃(w; z, S) = max
k

zF (k) − r(z, S)k − w. (29)

From the first-order condition,

r(z, S) = zF ′(k)

holds. In equilibrium, the capital stock per job is k̃ = k̄/(1 − u), where k̄ is the aggregate capital

stock. Thus, the equilibrium profit is

π(a; z, S) = zF (k̃) − r(z, S)k̃ − ω(a; z, S).

J̃ and J are related by

J(a; z, S) = J̃(ω(a; z, S), a; z, S). (30)
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The dividend is determined by aggregating the profits of all matched firms in the economy as

d(z, S) =

∫

π(a; z, S)fe(a;S)da− ξv, (31)

where fe(a;S) is the population of employed workers with asset a. Note that since wages paid by

firms depend on the asset positions of the workers that they are matched with, dividends depend

on the wealth distribution of the employed consumers in the economy.

3.4 Wage determination

Vacant jobs and unemployed workers are randomly matched each period according to the aggregate

matching function M(u, v), which is identical to the one we defined in the previous section. A

realized match produces some pure economic rent that is shared by the firm and the worker through

Nash bargaining. The wage that the firm pays a worker with asset holdings a is determined by

max
w

(

W̃ (w, a; z, S) − U(a; z, S)
)γ (

J̃(w, a; z, S) − V (z, S)
)1−γ

. (32)

3.5 Investment firms

There are competitive investment firms who sell contingency claims to consumers by rearranging

capital and equities. For the asset market equilibrium, the following has to hold for each z′.

∫

ψz
′

e (a; z, S)fe(a;S)da+

∫

ψz
′

u (a; z, S)fu(a;S)da = (1−δ+r(z′, S′))k̄′ +p(z′, S′)+d(z′, S′). (33)

Note that for the asset prices (21) and (22) have to hold.

3.6 Recursive equilibrium

The following defines the recursive equilibrium of the model. Appendix D shows that when the

below conditions are satisfied, the resource balance condition (goods market clearing condition) is

satisfied.

Definition 2 (Recursive equilibrium) The recursive equilibrium consists of a set of value func-

tions {W̃ (w, a; z, S), J̃(w, a; z, S), W (a; z, S), J(a; z, S), U(a; z, S), V (z, S)}, a set of decision
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rules for asset holdings {ψ̃z
′

e (w, a; z, S), ψz
′

e (a; z, S), ψz
′

u (a; z, S)}, prices {r(z, S), p(z, S), Qg(z, S),

Qb(z, S), ω(a; z, S)}, vacancy v(z, S), matching probabilities λf (z, S) and λw(z, S), dividend d(z, S),

and a law of motion for the distribution, S′ = Ω(z, S), which satisfy

1. Consumer optimization:

Given the aggregate states, {z, S}, job-finding probability λw(z, S), prices {r(z, S), p(z, S),

Qg(z, S), Qb(z, S)}, wage w, and the law of motion for the distribution, S′ = Ω(z, S); the

individual decision rules ψ̃z
′

e (w, a; z, S) and ψz
′

u (a; z, S) solve the optimization problems (23)

and (26), with the value functions W̃ (w, a; z, S) and U(a; z, S). Given the wage function

ω(a; z, S), W (a; z, S) and ψz
′

e (a; z, S) satisfy (24) and (25).

2. Firm optimization:

Given the aggregate states, {z, S}, prices {r(z, S), Qg(z, S), Qb(z, S)}, wage w, the law

of motion for the distribution, S′ = Ω(z, S), and the employed consumer’s decision rule

ψ̃z
′

e (w, a; z, S), the firm solves the optimization problem (28) with (29), with the value func-

tions J̃(w, a; z, S). Given the wage function ω(a; z, S), J(a; z, S) satisfies (30). Given the

aggregate states, {z, S}, the worker-finding rate λf (z, S), prices Qg(z, S) and Qb(z, S), and

the unemployed consumer’s decision rule ψz
′

u (a; z, S), V (z, S) satisfies (27).

3. Free entry:

The number of vacancy posted, v(z, S), is consistent with the firm free-entry: V (z, S) = 0.

4. Asset markets clear:

The asset-market equilibrium condition (33) holds for each z′ and the asset prices satisfy (21)

and (22). Dividends d(z, S) are given by (31). k̄ satisfies k̃ = k̄/(1−u), where k̃ satisfies the

firm’s first-order condition r(z, S) = zF ′(k̃) for given r(z, S).

5. Matching:

λf (z, S) and λw(z, S) are functions of v(z, S) and u as in (1) and (2).
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6. Nash bargaining:

The wage function ω(a; z, S) determined through Nash bargaining between the firms and the

consumers by solving (32).

7. Consistency:

The transition function Ω(z, S) is consistent with λw(z, S), σ, and the consumer’s decision

rules.

3.7 Calibration

We follow the same calibration as in the previous section. Aggregate shocks take the values z ∈

{b, g} = {0.99, 1.01}. πij is the probability of the transition from state i to state j. Following Krusell

and Smith (1999, 2002), we set the average business cycle duration to 2 years. Our model period

is six weeks, therefore the average duration is 16 periods. From 1/(1 − πbb) = 1/(1 − πgg) = 16,

πbb = πgg = 0.9375.

3.8 Computation

The computation of our model is considerably more complex than standard incomplete markets

models. In addition to the problems we faced in the model without aggregate shocks, now the

distribution of asset and employment moves around endogenously over time, and the information

of the distribution is necessary for computing the individual optimization problem.

This complexity is similar to that in Krusell and Smith (1998, 1997). In our setting, however,

since unemployment is not summarized by an exogenously given stochastic process, the aggregate

productivity shock z is no longer the sole determinant of the unemployment rate. As a consequence,

we need more aggregate state variables than in previous settings.

Following Krusell and Smith (1998), we study a setting where consumer have boundedly rational

perceptions of the evolution of the aggregate state, since we hope that “approximate aggregation”

will hold. Thus, we assume that the consumer perceives next period’s aggregate capital stock,

k̄′, to be a (log-)linear function of (z, k̄, u), where u is an additional state relative to the setting
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without labor-market frictions. Since there are other nontrivial market-clearing conditions, we also

need to model the resulting outcomes—for θ, p, d, and Qz—as simple (typically linear) functions of

(z, k̄, u). After computing the equilibrium based on these assumptions and simulating the economy,

we check whether these perceptions are accurate. This indeed turns out to be the case, as we will

show below.

The main steps of our algorithm, using the z = g case for illustration, are as follows.

1. Postulate the law of motion for k̄ by assuming that k̄′ is a function of (z, k̄, u).

2. Assume that θ, p, d, and Qg are functions of (z, k̄, u) and guess on coefficients of prediction

rules.

3. Calculate u′ from u′ = (1 − λw(θ))u+ σ(1 − u).

4. Calculate Qb by using Qg from

Qg(z, k̄, u)(1 − δ + r(g, k̄′, u′)) +Qb(z, k̄, u)(1 − δ + r(b, k̄′, u′)) = 1.

5. Perform the individual optimization and Nash bargaining. We employed convergence criteria

of 10−3 for decision rules for individual asset accumulation, 3 × 10−3 (about 0.1% of the

average wage) for the Nash bargaining.

6. Simulate the economy using the result from the previous step. Generate data on k̄, p, d, Qg,

θ. Check if it is consistent with the predictions in the first step. If not, revise the prediction

rules and continue until convergence.

The detailed algorithm that we use is described in Appendix E.

3.9 Results

The law of motion for capital stock is

log k̄′ = 0.0788 + 0.9821 log k̄ − 0.0016 log u+ 0.0428 log z, R2 = 0.99999.
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The “approximate aggregation” result seems to hold up very well in the present setting. The R2 of

this prediction rule is 0.99999, and we report additional accuracy checks in Appendix F (forecasting

accuracy, as well as sensitivity to adding additional moments). The average aggregate capital is

k̄ = 104.80 for z = b and and k̄ = 105.24 for z = g.

The prediction rules for the other aggregate variables are

log θ = −2.8285 + 0.6122 log k̄ + 0.0070 log u+ 1.4294 log z, R2 = 0.99998,

log(p + d) = −1.7439 + 0.3501 log k̄ − 0.0484 log u+ 1.1504 log z, R2 = 0.99984,

logQg = 0.0122 + 1.0919 log Q̃g − 0.0013 log k̄ − 0.000018 log u, R2 = 0.99999,

logQb = −0.0049 + 0.9687 log Q̃b + 0.0006 log k̄ + 0.000006 log u, R2 = 0.99999,

where Q̃g and Q̃b are functions of z, k̄, and u (see Appendix E for details). Thus, almost all the

variation in the left-hand-side variables (θ, p + d,Qg, Qb) can be explained by the predicted value

in the right-hand side.21

Table 10 summarizes the statistics for each state from our simulations.

u v θ k̄ p d

z = b 6.92% −1.3% −1.7% −0.2% −1.2% −30.2%

z = g 6.88% +1.1% +1.4% +0.2% +1.0% +25.3%

Table 10: Summary statistics for the model with aggregate shocks.

All the values are shown as % deviation of the average value in each state from the total average,

except for u. The average value for each state is shown for u. Average aggregate capital is

k̄ = 104.80 for z = b and and k̄ = 105.24 for z = g. The vacancy-to-unemployment ratio (θ)

increases with z, but the fluctuations in θ are not realistic in magnitude; this is the fact discussed

in Shimer (2005) and Hall (2005). Similarly, the unemployment rate is negatively correlated with

the aggregate productivity shock, but the magnitude of the fluctuations is much below what we

observe in the data. Equity prices are higher on average for z = g states, although the magnitude

of these fluctuations is small.
21We notice a slightly lower R2 for the asset price; the forecasting accuracy for this variable is as good as for θ.
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Figure 8: Sample paths of k̄ and θ, Shimer calibration

Figure 8 shows a sample path for aggregate capital obtained from simulating our model. k̄

increases when z = g and decreases when z = b, and θ is not constant over time conditional on an

aggregate state: as the capital stock adjusts, the profitability of firm entry changes. For example, if

z moves from b to g and there is no immediate switch back, θ jumps, and the capital stock will start

increasing, and as it increases, θ will keep increasing further.22 The reason is that more capital

availability will make capital cheaper to rent.

Figure 9 (left panel) shows a sample path for the unemployment rate and vacancy rate obtained

from simulating our model. When the aggregate state switches from z = b to z = g, θ jumps

up. For a given u, this means a large increase in v. This will make u go down significantly in

the following period. If the aggregate state is still g in the following period, θ will remain high

(and even increase somewhat), but since u is now lower, v must fall as well (but remain higher

than prior to the z switch). Subsequently, if z continues to be g, v and u will keep moving, and

in opposite directions, since a rising θ reflects higher entry and a lower jobless rate.23 When z

switches from g to b, we see the opposite pattern. Note that the comparative steady states in the

22The asset price follows a sample path very similar to that of θ, since it too is a jump variable.
23A decrease in u has the opposite effect, since the capital stock per job is k̃ = k̄/(1 − u), but this effect turns out

to be smaller than the profitability effect.
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previous section describe the situation after the adjustment of k (and u) was completed, that is,

after z has continued to be at the same state for a long time. The results in this section suggest

that this adjustment is fairly slow. This explains why the unemployment fluctuations here are not

as large as those we saw across steady states with different productivities.
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Figure 9: Sample paths of u and v (left panel) and unemployment rate (u), vacancy rate (v) plot

(right panel), Shimer calibration. On the right panel, u and v values for z = b are plotted as

“circles” and u and v values for z = g are plotted as “squares.”

Figure 9 (right panel) shows combinations of the unemployment rates (u) and vacancy rates

(v) obtained from simulating our model for 2000 periods.24 Most of the points in the figure are

on either of the two “thick,” circled (low-v, or z = b) or squared (high-v, or z = g), lines; they

correspond to the paths u and v travel once the economy has been in one of the z states for several

consecutive periods. On these thick lines, as time passes without a new z switch, u and v move in

opposite directions, as θ adjusts. This can be compared with the θ movements in a model without

capital and concave utility: there, θ can only take on as many values as there are values for z, and

so will capital (if there is capital in the model); here, because of consumption smoothing, capital

must move slowly, as must θ, within each aggregate state. The other lines in the figure are points

24The first 500 periods are discarded.
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the economy reaches in the period of a switch.25

3.10 Alternative calibration: Hagedorn and Manovskii (2006)

In this section, we examine the alternative calibration of the model by Hagedorn and Manovskii

(HM). As in the model without aggregate shocks, we change three parameters: h = 3.33, γ = 0.05,

and ξ = 1.255.

Approximate aggregation seems to obtain here as well for the main variables, though there are

larger errors for θ and for the stock price (the additional robustness checks in Appendix F reveal

similar findings). The law of motion for the capital stock is

log k̄′ = 0.0901 + 0.9801 log k̄ − 0.0010 log u+ 0.0383 log z, R2 = 0.99999.

The prediction rules for the other aggregate variables are

log θ = −30.1104 + 6.4682 log k̄ − 0.0077 log u+ 10.4304 log z, R2 = 0.99912,

log(p+ d) = −26.5465 + 5.7540 log k̄ − 0.0247 log u+ 10.9716 log z, R2 = 0.99982,

logQg = −0.01237 + 0.8831 log Q̃g + 0.0009 log k̄ + 0.000021 log u, R2 = 0.99999,

and

logQb = −0.0069 + 0.9486 log Q̃b + 0.0007 log k̄ + 0.000006 log u, R2 = 0.99999,

where Q̃g and Q̃b are functions of z, k̄, and u (see Appendix D for details).

Table 11 summarizes the statistics for each state from the simulations.

u v θ k̄ p d

z = b 7.06% −9.9% −12.5% −0.2% −11.8% −169.4%

z = g 6.71% +8.3% +10.5% +0.2% +9.9% +141.6%

Table 11: Summary statistics for the model with aggregate shocks, HM calibration

25The north-eastern-most and the south-western-most lines are lines the economy reaches after one switch, and the

other lines (with a similar thickness to these lines) reflect the adjustment after the switch. The other scattered dots

are the cases where a switch occurs during the adjustment.
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We can see that the cyclical properties of the variables are qualitatively the same as the benchmark

calibration, but quantitatively much larger. The response of each variables to z are smaller than

the comparative statics of the model without aggregate shocks (except for d). d tends to be very

volatile since the vacancy posting behavior does not change much across states. In particular, the

level of d can become negative when z = b.

Figure 10 illustrates the behavior of unemployment and vacancies. The qualitative properties

of these paths are very similar to those for the benchmark (Shimer) calibration, but the magnitude

of the fluctuations is much larger.
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Figure 10: Sample paths of u and v (left panel) and unemployment rate (u), vacancy rate (v) plot

(right panel), HM calibration. On the right panel, u and v values for z = b are plotted as “circles”

and u and v values for z = g are plotted as “squares.”

3.11 Aggregate statistics more broadly

In this subsection, we evaluate the model’s performance to match the fluctuations in aggregate

variables.26 The standard deviation of output is 0.0069 for the Shimer calibration and 0.0075 for

the HM calibration. In the U.S. economy, the unemployment rate and vacancies are negatively

26Appendix H and Appendix I conduct the same model evaluation for the linear-utility version of the model and

the complete-market version of the model.

42



correlated. Shimer (2005) reports that the correlation of HP-filtered unemployment rate and va-

cancies is −0.894 for U.S. data.27 In our model with Shimer calibration, the correlation coefficient

of the cyclical components of unemployment rate and vacancies is −0.862 in the HM calibration this

statistic is −0.863. Figure 11 shows the HP-filtered Beveridge curves for both calibration exercises.
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Figure 11: Beveridge curves for the Shimer calibration (left panel) and the HM calibration (right

panel).

In the U.S. economy, the labor share is countercyclical. Rı́os-Rull and Santaeulàlia-Llopis (2007)

reports a correlation coefficient of −0.24 between the labor share and the output and Andolfatto

(1996) reports this number as −0.38. Our model generates countercyclical labor share with a

correlation of −0.99 for both calibrations.

Table 12 shows the standard deviation of investment, consumption, labor share, wage, stock

prices, dividend, and vacancy-unemployment ratio relative to the standard deviation of output

for the data and our model (both Shimer calibration and HM calibration). (The details of the

calculation of the reported statistics can be found in Appendix G.)

Our benchmark (Shimer calibration) result produces less output fluctuations and much lower

fluctuations in the vacancy-unemployment ratio. This type of finding has been documented by

27Shimer (2005) uses 105 as the smoothing parameter.
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U.S. economy Model: Shimer Model: HM

Investment 3.14 3.51 2.93

Consumption 0.56 0.18 0.13

Labor share 0.43 0.03 0.51

Wage 0.44 0.96 0.38

Stock price (p) 6.41 1.06 9.47

Stock price (p + k̄) 6.41 0.27 0.27

Dividend (d) 1.81 28.62 161.05

Dividend (d+ (1 + r − δ)k̄ − k̄′) 1.81 13.08 8.04

Vacancy-unemployment ratio 16.27 1.46 9.91

Table 12: Standard deviation of detrended series divided by the standard deviation of output. All

variables are logged and HP-filtered. Note that standard deviation of output is 0.0158 for the U.S.

data, 0.0069 for the Shimer calibration and 0.0075 for the HM calibration.

Andolfatto (1996), Hall (2005), and Shimer (2005), among others. They find that the standard D-

M-P model cannot generate the observed fluctuations in unemployment and vacancies. Our finding

is similar—our results suggest that that market incompleteness does not improve the performance

of the search-matching model in matching the magnitude of unemployment fluctuations. Since the

benchmark result falls short in generating fluctuations in unemployment, it also cannot match the

fluctuations in output.28 The HM calibration generates much larger fluctuations in unemployment

and vacancies, and the result comes closer to the actual data.

Table 12 also reports that our benchmark model underpredicts the fluctuations in stock prices.

That is, it is also subject to the stock-market volatility puzzle. The HM calibration leads to much

larger fluctuations in stock prices as measured by p. Measured by p + k̄, the fluctuations in stock

prices are much smaller. Dividends (measured by either d or d+ (1 + r − δ)k̄ − k̄′) fluctuate much

more than in the data, and the puzzle of the relative volatility between stock prices and dividends

remains unsolved.29

28We calibrate the aggregate productivity shocks following Krusell and Smith (1998). In their calibration, unem-

ployment is determined by an exogenously given Markov process which is calibrated to match the fluctuations in the

data. Their calibration can produce realistic fluctuations in output, since there are significant fluctuations coming

from both productivity and employment.
29In our framework, the two volatility puzzles (those for the stock-market volatility and for labor market fluc-
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3.12 Comparisons with the linear model and with a complete-markets model

The comparison to known versions of this model should also be of interest. We outline these in the

Appendix, sections H and I.30 The first version is the linear version, i.e., that with linear utility

but otherwise like the present model. The second version is a model with complete consumption

insurance across households: a Merz-Andolfatto type of model. As suspected from the above

analysis of steady states, the labor-market fluctuations are very similar in the main model in

this paper and in the linear model. These models differ greatly, however, in their implications

for consumption and investment, whose fluctuations in the linear model are far higher (than in

our benchmark model and than in data). As for the Merz-Andolfatto model, it behaves very

similarly to our benchmark model, both in terms of its labor-market features and its implications

for consumption and investment.

4 Conclusion

We introduce one additional element into the Pissarides (1985) model: workers are risk-averse

(and cannot perfectly insure consumption). This elaboration on the standard matching model can

equivalently be described as a B-H-A incomplete-markets model with aggregate shocks and with one

additional element: labor-market frictions. We find that approximate aggregation holds, making

model solution feasible despite a number of new elements relative to earlier models with aggregate

shocks and nontrivially varying wealth distributions.

Our positive findings are that for all the parameter configurations considered, labor-market ag-

gregates behave almost as in the linear utility model counterparts, and that the consumption and

investment fluctuations behave as in the typical representative-agent real-business-cycle model. If

tuations) seem closely related. As can be seen from the results based on the HM calibration, if we can generate

fluctuations in stock prices of a realistic magnitude, we will be able to generate more realistic labor-market fluctu-

ations. This is because the stock price reflects future profits (p + d is the sum of J in the economy), and future

profits drive the firm’s vacancy-posting decision (v increases as J increases). The HM calibration achieves this, while

it overpredicts the volatility of the dividends.
30In the case of the complete-markets model, we define equilibrium and solve for it differently than in the original

Merz-Andolfatto papers; we adhere to individual Nash bargaining, but treat workers as “assets.” This formulation

may be novel and allows the study of equilibria where the wage setting does not satisfy the Hosios condition.
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we adopt Hagedorn and Manovskii’s (2006) view, that is, we set the monetary value of unemploy-

ment to be very high, then the resulting setting has significant fluctuations in unemployment and

vacancies, and the other aggregate variables behave in realistic ways as well (e.g., the labor share is

countercyclical and real wages fluctuate relatively little). If, in contrast, we adopt the calibrations

in Hall (2005) or Shimer (2005), the fluctuations in unemployment and vacancies are significantly

lower than in the data.

One dimension in which the benchmark model is not empirically satisfactory is in the dispersion

of wealth and wages. Wages differ only because workers’ bargaining power depend on their asset

holdings; moreover, the effect of wealth on wages is very slight for most asset levels. Wealth, there-

fore, differs among workers only due to past employment luck. Since many elements of heterogeneity

are left out—worker ability, match quality, preferences, etc.—it is an open question as to what our

target wealth dispersion should be. Future versions of the present setting ought to incorporate

these elements, and it is an open question whether approximate aggregation will continue to hold

then, and how the positive findings for aggregates that we obtain here will change. The analysis of

steady states with multiple discount factors in Section 2.9.6, however, indicates that at least some

models with large wealth dispersion will (i) be feasible to study and (ii) yield similar predictions

to those obtained here.

Our model can serve as a framework for analyzing various stabilization and social-insurance

policies, but we do not consider such studies here. It is, we think, another very promising avenue

for future research.
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Appendix

A Consistency in the valuation of the firm

This appendix establishes that the valuation of the firm is consistent across the individual job level

and the aggregate level (equity price).

• Aggregate level (equity price):

p̃ = d+ qp̃ (34)

holds, where

d =

∫

π(a)fe(a)da − ξv

is dividend (same as the text) and q is the discount factor for the firm.

Note that p̃ is different from p in the text. p̃ is the value of the firm before the dividend is

paid, and p is the value of the firm after the dividend is paid. They are related by p̃ = p+ d.

In fact, (34) implies

p+ d = d+ q(p+ d),

and therefore p = q(p+ d). From (3), the discount factor q is equal to 1/(1 + r − δ).

• Individual job level:

Define J(a) and V with

J(a) = π(a) + q(σV + (1 − σ)J(ψe(a))) (35)

and

V = −ξ + q

[

(1 − λf )V + λf

∫

J(ψu(a))
fu(a)

u
da

]

(36)

and note that

p̃ =

∫

J(a)fe(a)da. (37)
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In addition, V = 0 must hold in equilibrium.

Note also that in steady state, assuming that ψu(a) and ψe(a) are increasing,

∫ a

a

fe(a
′)da′ = λw

∫ ψ−1
u (a)

a

fu(a
′)da′ + (1 − σ)

∫ ψ−1
e (a)

a

fe(a
′)da′

holds. Differentiating with respect to a, using Leibniz’s rule, we obtain

fe(a) = λwfu(ψ
−1
u (a))γu(a) + (1 − σ)fe(ψ

−1
u (a))γe(a), (38)

where

γu(a) =
dψ−1

u (a)

da
=

1

ψ′
u(ψ

−1
u (a))

(39)

and

γe(a) =
dψ−1

e (a)

da
=

1

ψ′
e(ψ

−1
e (a))

. (40)

Inserting (35) into (37), we obtain

p̃ =

∫

π(a)da + q

∫

(1 − σ)J(ψe(a))fe(a)da.

(Note that we used V = 0.) Adding vV (from (10)), which is equal to zero, to the right-hand side,

we arrive at

p̃ =

∫

π(a)da − ξv + q

[

λfv

∫

J(ψu(a))
fu(a)

u
da+

∫

(1 − σ)J(ψe(a))fe(a)da

]

.

The first two terms equal d; thus, it is sufficient to show that

λfv

∫

J(ψu(a))
fu(a)

u
da+

∫

(1 − σ)J(ψe(a))fe(a)da = p̃. (41)

To show this, inserting (38) into (37) we obtain

p̃ =

∫

J(a)λwfu(ψ
−1
u (a))γu(a)da+

∫

J(a)(1 − σ)fe(ψ
−1
u (a))γe(a)da.

In the first term, replace the variable a by a = ψu(a
′). Then a′ = ψ−1

u (a). The first term will

become

λw

∫

J(ψu(a
′))fu(a

′)γu(ψu(a
′))ψ′

u(a
′)da′,

where the final ψ′
u(a

′) is the Jacobian. Using λwu = λfv and (39), this is equal to the first term in

(41). The second term is similar, using (40).
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B Solution of the model without aggregate shocks

1. We use a discrete grid on a; the grid is fine for the value function and coarser for the wage

function. For value function, we use 1000 grid points with equal distance over [0, 500]. For

the wage function, we use 125 grid points.31 In between the grid points, the values of the

functions are interpolated using cubic splines.32

2. Guess an ω(a).

3. Guess a θ. Note that this will give us λw and λf . From the steady-state condition

uλw = (1 − u)σ,

we know u. Since ν/u = θ, we also know ν.

4. Guess k̄. Since r = zf ′(k̃), where k̃ = k̄/(1 − u), we know r.

5. In the worker’s problem, note that since

p =
p+ d

1 + r − δ
, (42)

we can define

a = (1 + r − δ)(k + px) (43)

and write the employed worker’s budget constraint as

a′ = (1 + r − δ)(a + w − c).

We also know w as a function of a. So let us solve the worker’s problem as

W (a) = max
a′

u(c) + β
[

σU(a′) + (1 − σ)W (a′)
]

subject to

a′ = (1 + r − δ)(a + ω(a) − c)

31In some experiments, we use 50 grid points to gain stability.
32When this interpolation does not perform well, we used linear interpolation.
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and

U(a) = max
a′

u(c) + β
[

(1 − λw)U(a′) + λwW (a′)
]

subject to

a′ = (1 + r − δ)(a+ h− c).

If necessary, we can interpolate on ω(a).

6. Given this, we know the asset and employment decision rules for workers, so we can easily

calculate the invariant distribution for the worker’s idiosyncratic states. These are calculated

by iterating over the density functions, fu(a) and fe(a), until these converge. (The initial

condition that we used for this iteration is that everyone holds the amount k̄ of the asset.)

7. In the firm’s problem, first iterate on

J(a) = zF (k̃) − rk̃ − ω(a) +
1

1 + r − δ
(1 − σ)J(ψe(a))

until convergence. (We already used the fact that V = 0.)

8. Calculate the right-hand side of V as

−ξ +
1

1 + r − δ
λf

∫

J(ψw(a))
fu(a)

u
.

This quantity should be zero in equilibrium; if it is positive, our θ is too low, and if it is

negative, our θ is too high.

9. We can calculate d from

d =

∫

π(ω(a))fe(a)da− ξν.

Here, π(ω(a)) = zf(k̃) − rk̃ − ω(a). From (42), we calculate p. Summing up (43) for each

individual i,
∫

aidi = (1 + r − δ)

[
∫

kidi+ p

∫

xidi

]

.

Since
∫

kidi = k̄ and
∫

xidi = 1, k̄ should satisfy

k̄ =
1

1 + r − δ

∫

aidi− p.

If this k̄ is different from the initial guess, we have to update.
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10. Finally, we can calculate the new ω(a) for each a from Nash bargaining:

max
w

(

W̃ (w, a) − U(a)
)γ (

J̃(w, a) − V
)1−γ

.

Here, we can use V = 0. W̃ (w, a) is the solution to

W̃ (w, a) = max
a′

u(c) + β
[

σU(a′) + (1 − σ)W (a′)
]

subject to

a′ = (1 + r − δ)(a + w − c).

J(w, a) is the solution of

J̃(w, a) = zF (k̃) − rk̃ − w +
1

1 + r − δ
(1 − σ)J(ψ̃e(w, a)).

11. Repeat until convergence.

C Comparison to the linear model

In this section, we compare our result to the linear D-M-P model. In it, the consumer maximizes

∞
∑

t=0

βtct

subject to

c+
a′

1 + r − δ
= a+ w

when working and

c+
a′

1 + r − δ
= a+ h

when unemployed. Here, a = k + px holds, as in the original model. Because utility is linear,

1 + r − δ = 1/β holds. Now, since the workers are indifferent in terms of the timing of the

consumption, without loss of generality, we can let a′ = a for everyone, and set

ct =
r − δ

1 + r − δ
a+w
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for employed and

ct =
r − δ

1 + r − δ
a+ h

for unemployed. Since the first terms of the right-hand sides are constant and common across the

employment states, we can factor them out in the utility function and consider ct = w and ct = h

without loss of generality.

The value functions become

W = w +
1

1 + r − δ
[σU + (1 − σ)W ]

and

U = h+
1

1 + r − δ
[(1 − λw)U + λwW ].

On the firm side, the value of a filled job is

J = y − w +
1

1 + r − δ
[σV + (1 − σ)J ],

where y is defined as

y = arg max
k̃

zk̃α − rk̃,

that is,

y = z
( r

αz

)
α

α−1

− r
( r

αz

)
1

α−1

,

since

k̃ =
( r

αz

)
1

α−1

.

The value of vacancy is

V = −ξ +
1

1 + r − δ
[λfJ + (1 − λf )V ]. (44)

From the free entry, V = 0.

Now, since W − U and J − V is linear in w, the Nash bargaining solution results in the simple

surplus-sharing rule:

W − U = γS

52



and

J − V = (1 − γ)S, (45)

where

S = (W − U) + (J − V ) (46)

is the total surplus.

From (44), (45), and the free-entry condition,

S =
(1 + r − δ)ξ

(1 − γ)λf

holds. From (46) and the value functions,

S =
(1 + r − δ)(y + ξ − h)

r − δ + σ + (1 − γ)λf + γλw

holds. Combining these two, simplifying, and using the definitions of λf and λw, the following

holds:

y − h

r − δ + σ + γχθ1−η
=

ξ

(1 − γ)χθ−η
.

This is the same as equation (21) in Hornstein, Krusell, and Violante (2006). This equation is

shown as equation (16) in the main text.

D Resource balance/goods-market equilibrium

In this subsection, we show that the resource balance condition (goods-market equilibrium condi-

tion)

c̄+ k̄′ = (1 − δ)k̄ + zF (k̃)(1 − u) − ξv + hu

holds, where

k̃ =
k̄

1 − u
,

c̄ ≡

∫

ce(a; z, S)fe(a;S)da +

∫

cu(a; z, S)fu(a;S)da,

ce(a; z, S) ≡ a+ ω(a; z, S) −Qg(z, S)ψge (a; z, S) −Qb(z, S)ψbe(a; z, S), (47)
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and

cu(a; z, S) ≡ a+ h−Qg(z, S)ψgu(a; z, S) −Qb(z, S)ψbu(a; z, S). (48)

Note that the asset-market equilibrium condition (33) holds.

The first step is to show that

∫

afe(a;S)da +

∫

afu(a;S)da = (1 − δ + r(z, S))k̄ + p(z, S) + d(z, S) (49)

is implied by the asset-market equilibrium in the last period and the law of motion for the individual

states.

Assuming that the decision rules for a′ are increasing in a, the law of motion for the asset

distribution is as follows:

∫ a′

a

fe(ã;S
′)dã = λw

∫ (ψz′

u )−1(a′;z,S)

a

fu(a;S)da + (1 − σ)

∫ (ψz′

e )−1(a′;z,S)

a

fe(a;S)da (50)

∫ a′

a

fu(ã;S
′)dã = (1 − λw)

∫ (ψz′

u )−1(a′;z,S)

a

fu(a;S)da + σ

∫ (ψz′

e )−1(a′;z,S)

a

fe(a;S)da. (51)

Here, (ψz
′

u )−1(a′; z, S) denotes the value of a that satisfies a′ = ψz
′

u (a; z, S).

To derive (49), we use a one-period forwarded version:

∫

a′fe(a
′;S′)da′ +

∫

a′fu(a
′;S′)da′ = (1 − δ + r(z′, S′))k̄′ + p(z′, S′) + d(z′, S′).

From (33), we need to show that

∫

a′fe(a
′;S′)da′ +

∫

a′fu(a
′;S′)da′ =

∫

ψz
′

e (a; z, S)fe(a;S)da +

∫

ψz
′

u (a; z, S)fu(a;S)da. (52)

Differentiating (50) with respect to a′,

fe(a
′;S′) = λwfu((ψ

z′

u )−1(a′; z, S);S)ρe(a
′; z, S) + (1 − σ)fe((ψ

z′

e )−1(a′; z, S);S)ρu(a
′; z, S), (53)

where

ρu(a
′; z, S) =

d(ψz
′

u )−1(a′; z, S)

da′
=

1

(ψz′u )′((ψz′u )−1(a′; z, S); z, S)
(54)

and

ρe(a
′; z, S) =

d(ψz
′

e )−1(a′; z, S)

da′
=

1

(ψz
′

e )′((ψz
′

e )−1(a′; z, S); z, S)
. (55)
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Now, multiply both sides of (53) with a′ and integrate to obtain

∫

a′fe(a
′;S′)da′

= λw
∫

a′fu((ψ
z′

u )−1(a′; z, S);S)ρe(a
′; z, S)da′

+(1 − σ)
∫

a′fe((ψ
z′

e )−1(a′; z, S);S)ρu(a
′; z, S)da′.

(56)

Changing variables by using a′ = ψz
′

u (a; z, S) (implying a = (ψz
′

u )−1(a′; z, S)), the first term on the

right-hand side becomes

λw

∫

ψz
′

u (a; z, S)fu(a;S)ρe(ψ
z′

u (a; z, S); z, S)(ψz
′

u )′(a; z, S)da,

where (ψz
′

u )′(a; z, S) is a Jacobian. From (54), this is equal to

λw

∫

ψz
′

u (a; z, S)fu(a;S)da.

Similarly, the second term on the right-hand side of (56) is equal to

(1 − σ)

∫

ψz
′

e (a; z, S)fe(a;S)da.

Therefore, (56) becomes

∫

a′fe(a
′;S′)da′ = λw

∫

ψz
′

u (a; z, S)fu(a;S)da+ (1 − σ)

∫

ψz
′

e (a; z, S)fe(a;S)da.

Similarly, we can show that

∫

a′fu(a
′;S′)da′ = (1 − λw)

∫

ψz
′

u (a; z, S)fu(a;S)da + σ

∫

ψz
′

e (a; z, S)fe(a;S)da.

Summing up, we obtain (52).

Next, integrating (47) and (48) for everyone gives us

−c̄+
∫

afe(a;S)da +
∫

afu(a;S)da +
∫

ω(a; z, S)fe(a;S)da + hu

=
∫

Qg(z, S)ψge (a; z, S)fe(a;S)da +
∫

Qb(z, S)ψbe(a; z, S)fe(a;S)da

+
∫

Qg(z, S)ψgu(a; z, S)fu(a;S)da +
∫

Qb(z, S)ψbu(a; z, S)fu(a;S)da.

From (49), the left-hand side of this expression is equal to

−c̄+ (1 − δ + r(z, S))k̄ + p(z, S) + d(z, S) +

∫

ω(a; z, S)fe(a;S)da + hu. (57)

55



In equilibrium, there are 1 − u jobs in the economy and each job employs k̃ = k̄/(1 − u) units of

capital. Thus, (29) becomes

π(a; z, S) = zF (k̃) − r(z, S)k̃ − ω(a; z, S).

From (31) and
∫

fe(a;S)da = (1 − u), (57) is equal to

−c̄+ (1 − δ)k̄ + p(z, S) + zF (k̃)(1 − u) − ξv + hu.

Therefore, we have to show that

k̄′ + p(z, S)

=
∫

Qg(z, S)ψge (a; z, S)fe(a;S)da +
∫

Qb(z, S)ψbe(a; z, S)fe(a;S)da

+
∫

Qg(z, S)ψgu(a; z, S)fu(a;S)da +
∫

Qb(z, S)ψbu(a; z, S)fu(a;S)da.

From (33), the right-hand side is equal to

Qg(z, S)[(1 − δ+ r(g, S′))k̄′ + p(g, S′) + d(g, S′)] +Qb(z, S)[(1 − δ+ r(b, S′))k̄′ + p(b, S′) + d(b, S′)].

From the asset-pricing equations (21) and (22), this is equal to k̄′ + p(z, S).

E Solution of the model with aggregate shocks

Since we have many state variables, we use a relatively small number of grid points: 60 points in

a direction for the value functions, 15 points in a direction for the wage function, 4 points in the

k̄ as well as the u direction. For a, we use more grids close to 0 to accommodate more curvature.

We use cubic splines in a direction and linear interpolation in other directions.

1. Assume a law of motion for aggregate capital,

log k̄′ = a0 + a1 log k̄ + a2 log u+ a3 log z, (58)

prediction rules for the current aggregate variables as functions of the aggregate state,

log θ = b0 + b1 log k̄ + b2 log u+ b3 log z, (59)
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where we note that u′ can be calculated once θ is given as

u′ = (1 − λw(θ))u+ σ(1 − u), (60)

and asset-price functions,

log(p(z, k̄, u) + d(z, k̄, u)) = c0 + c1 log k̄ + c2 log u+ c3 log z (61)

logQz(z, k̄, u) =

{

d0 + d1 log Q̃z(z, k̄, u) + d2 log k̄ + d3 log u if z = g

e0 + e1 log Q̃z(z, k̄, u) + e2 log k̄ + e3 log u if z = b,
(62)

where Q̃z(z, k̄, u) ≡ πzz/(1 − δ + r(z, k̄′, u′)) (note that k̄′ and u′ are obtained as functions of

z, k̄, and u by the above equations). Q̃z is the exact value of Qz when g = b. We expect Qz

not to be too different from Q̃z when shocks are not too large. When z = g, we can calculate

Qb using

Qg(z, k̄, u)(1 − δ + r(g, k̄′, u′)) +Qb(z, k̄, u)(1 − δ + r(b, k̄′, u′)) = 1. (63)

When z = b, this can be used to calculate Qg, given Qb. In total, we have 20 coefficients to

iterate on.

2. Start the loop on individual optimization and Nash bargaining.

(a) Outside loop: assume an initial wage function ω(a; z, k̄, u) for each aggregate grid point

(z, k̄, u).

(b) Give the initial values for the value functions, W (a; z, k̄, u) and U(a; z, k̄, u).

(c) Inside loop: for each value (grid point) of a, k̄, u, z, perform the worker’s individual

optimization.

(d) Repeat until W (a; z, k̄, u) and U(a; z, k̄, u) converge.

(e) Calculate J(a; z, k̄, u) by using the worker’s decision rule and noting that V (a; z, k̄, u) =

0.

(f) Based on the above functions, we calculate W̃ (w, a; z, k̄, u) and J̃(w, a; z, k̄, u), and per-

form Nash bargaining for each aggregate state. Thus, the Nash bargaining delivers
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the wage function ω(a; z, k̄, u) based on W̃ (w, a; z, k̄, u), U(a; z, k̄, u), J̃(w, a; z, k̄, u) and

V (a; z, k̄, u)(= 0).

(g) Revise the wage function ω(a; z, k̄, u) by taking a weighted average of the original wage

function and the new wage function obtained in the previous step. Repeat until conver-

gence.

Note that with aggregate shocks, the wage depends not only on a but also on the aggregate

state, (z, k̄, u). The wage function, ω(a; z, k̄, u), is defined on 15× 2× 4× 4 grid points. (The

Nash bargaining is performed at each of these points.) For each (z, k̄, u), the wage function (as

a function of a) is interpolated using the cubic splines between grid points. In the simulation

(next step), we need to compute the wages for (k̄, u) that are not on the grid. In that case,

we first compute a wage function ωz∗k̄∗u∗(a) for a specific (z∗, k̄∗, u∗) by linearly interpolating

in k̄ and u directions. Then ωz∗k̄∗u∗(a) is used to compute the wage at each a (interpolated

by cubic spline between a grids).

3. Simulation.

(a) Give initial values for a, employment status, k̄, u, and z. (Note that the sum of a is

equal to [(1 − δ + r)k̄ + p+ d], so once we have k̄, u, and z, we know the sum of a.)

(b) Using the condition that

V (z, S) = −ξ +Qg(z, S)((1 − λf (θ))V (g, S′) + λf (θ)
∫

J(ψgu(a; z, S); g, S′)[fu(a;S)/u]da)

+Qb(z, S)((1 − λf (θ))V (b, S′) + λf (θ)
∫

J(ψbu(a; z, S); b, S′)[fu(a;S)/u]da)

must equal zero (using the prediction rules (58), (59), and (60) for k̄′ and u′ in evaluating

the future value function), we can calculate the equilibrium value of θ. Then we know

v = uθ. Record this value of θ as “data” (for later use).

(c) Calculate u′ using the computed value of θ and (60). Note that this u′ may not be the

same as the u′ predicted using (60), if the prediction rules are incorrect. Record this u′

as data.
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(d) Calculate the sums of a′gs and a′bs from the consumer’s decisions. Call them A′
g and A′

b.

From asset-market equilibrium,

A′
g = (1 − δ + r(g, k̄′, u′))k̄′ + p(g, k̄′, u′) + d(g, k̄′, u′) (64)

and

A′
b = (1 − δ + r(b, k̄′, u′))k̄′ + p(b, k̄′, u′) + d(b, k̄′, u′) (65)

have to hold. These may not hold if the consumers’ prediction rules are incorrect. Here,

we search for the values of Qg, Qb, and k̄′ so that these two equations and (63) hold.

To this end, consider the case of z = g. (When z = b, g and b are reversed everywhere.)

The main idea here follows Krusell and Smith (1997).

Note that (64) can be rewritten as

k̄′ =
A′
g − p(g, k̄′, u′) − d(g, k̄′, u′)

1 − δ + r(g, k̄′, u′)
(66)

and that (65) can be rewritten as

k̄′ =
A′
b − p(b, k̄′, u′) − d(b, k̄′, u′)

1 − δ + r(b, k̄′, u′)
.

Therefore,

A′
g − p(g, k̄′, u′) − d(g, k̄′, u′)

1 − δ + r(g, k̄′, u′)
=
A′
b − p(b, k̄′, u′) − d(b, k̄′, u′)

1 − δ + r(b, k̄′, u′)
(67)

holds. We will search for a Qg that satisfies (67); we can expect that A′
g is decreasing

in Qg and A′
b is decreasing in Qb.

33 Note that Qb can be calculated as a (decreasing)

function of Qg, from (63). To calculate A′
g and A′

b for each Qg, we re-calculate the

optimization problem for a given Qg: for employed consumers

Ŵ (Qg, a; z, k̄, u) = max
a′g ,a

′
b

u(c) + β[ πzg(σU(a′g; g, k̄
′, u′) + (1 − σ)W (a′g; g, k̄

′, u′))

+πzb(σU(a′b; b, k̄
′, u′) + (1 − σ)W (a′b; b, k̄

′, u′))]

33We use (58), (59), (60), (61), and r = zF ′(k̃) to calculate p(z′, k̄′, u′) + d(z′, k̄′, u′) and r(z′, k̄′, u′). Thus, they

are not functions of our unknowns.
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subject to

c+Qga
′
g +Qb(Qg)a

′
b = a+ ω(a; z, k̄, u),

a′g ≥ a,

a′b ≥ a,

and k̄′ and u′ given, and for the unemployed

Û(Qg, a; z, k̄, u) = max
a′g ,a

′
b

u(c) + β[ πzg((1 − λw)U(a′g; g, k̄
′, u′) + λwW (a′g; g, k̄

′, u′))

+πzb((1 − λw)U(a′b; b, k̄
′, u′) + λwW (a′b; b, k̄

′, u′))]

subject to

c+Qga
′
g +Qb(Qg)a

′
b = a+ h,

a′g ≥ a,

a′b ≥ a,

and k̄′ and u′ given.

Now calculate A′
g and A′

b with this method for different values of Qg until we find a Qg

that makes (67) hold with equality. If we are in a rational expectations equilibrium, this

Qg has to equal the Qg from the prediction rule (62).

Then we calculate k̄′ from (66) and Qb from (63). Record the values of Qg, Qb, and k̄′

as data.

(e) From

d(z, k̄, u) =

∫

π(a; z, k̄, u)fe(a; k̄, u)da− ξv,

where π(a; z, k̄, u) = π̃(ω(a; z, k̄, u); z, k̄, u), we can obtain data on d(z, k̄, u). (We already

know all the values determining the first term, and v was obtained in an earlier step.)

(f) From

p(z, k̄, u) = Qg(z, k̄, u)[p(g, k̄
′, u′) + d(g, k̄′, u′)] +Qb(z, k̄, u)[p(b, k̄

′, u′) + d(b, k̄′, u′)],

we can obtain data on p(z, k̄, u). Here, Qg and Qb were obtained in an earlier step, and

for p(z′, k̄′, u′) + d(z′, k̄′, u′), we use the prediction rules (58), (59), (60), and (61).
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(g) With a random number generator, obtain z′ and move to the next period. The individ-

ual’s employment and asset status are also forwarded to the next period. The individual

asset holdings are represented by a density function.34 Repeat from step (b) for N peri-

ods. Discard the first n periods from the sample. We set N = 2000 and n = 500 in our

program.

(h) Using all the above data (k̄, z, u, θ, Qz, p, d), we can revise the laws of motion,

labor-market tightness functions, and pricing functions by running ordinary least squares

regressions.

(i) Repeat until the prediction rules (the laws of motion, labor market tightness functions,

and pricing functions) predict the simulated data with sufficient accuracy (high R2). As

stated in the main text, we find prediction rules that are very accurate. For the Shimer

calibration, all R2s are larger than 0.9999. For the HM calibration, all R2s are larger

than 0.999. R2 here is defined as

R2 ≡ 1 −

∑2000
t=501(mt −mp

t )
2

∑2000
t=501(mt − m̄)2

,

where mt is the simulated value of a variable, mp
t is the predicted value of mt using the

prediction rule (law of motion) that the consumers used in the optimization step and

the simulated values of the right-hand-side variables, and m̄ is the average of mt.

F Accuracy of the computational algorithm

F.1 Forecasting accuracy

The agents in our model use a linear law of motion to forecast next period’s capital stock (k̄′).

Similarly, they use linear prediction rules to predict the other aggregate variables (θ, (p + d), Qg

34The period-0 density is given exogenously, but we discard a sufficient number of initial periods from the sample in

the regressions below in order to remove the influence of the initial distribution. For the Shimer calibration, we used

a uniform distribution on [0, 2k̄]. For the HM calibration, since the distribution moves slowly, we used the stationary

distribution from the no-aggregate-shocks model as the initial distribution. In both cases, we checked that the results

are not sensitive to the choice of the initial distribution.
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1 period ahead 25 years ahead

Variable corr(x, x̂) max % error corr(x, x̂) max % error

k̄′ 1.000000 0.0035 0.999905 0.0325

θ 0.999991 0.0238 0.999978 0.0305

p+ d 0.999998 0.0187 0.999991 0.0226

Qg 1.000000 0.0029 1.000000 0.0027

Qb 1.000000 0.0043 1.000000 0.0050

r 1.000000 0.0021 0.999976 0.0205

u′ 0.999994 0.0049 0.999977 0.0084

Table 13: Forecasting and prediction accuracy for the Shimer calibration where x is the value of

the variable from the simulations and x̂ is the predicted value.

and Qb) for the current period. To evaluate the agents’ forecasting and prediction abilities we

compute the errors that they make in forecasts 1 period ahead and 25 years (200 periods) ahead.

We assume that the agents in the economy have the knowledge of the the current period’s capital

stock and the unemployment rate. By only using this information and next period’s technology

shock, agents can predict aggregate variables 1 period ahead by using the linear prediction rules.

We start from period 501 of our simulation and compute the capital stock, interest rate, and

unemployment rate 1 period ahead and the current period’s (θ, (p + d), Qg and Qb). Then we

compare these predicted values with values that we observe from the simulations. We report

two measures of accuracy: the correlation between the values implied by the linear rules and the

simulations and the maximum percentage deviation from the value implied by the simulation. We

also report the forecasting and prediction errors for 25-years-ahead forecasts.

F.2 Additional moments

To check the robustness, we checked whether we can improve on the R2 significantly by including

additional moments of the wealth distribution in the regression. In particular, we added the stan-

dard deviation, skewness, and kurtosis. We found that the improvements are less than 2× 10−5 for

all the regressions in both cases.
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1 period ahead 25 years ahead

Variable corr(x, x̂) max % error corr(x, x̂) max % error

k̄′ 1.000000 0.0030 0.999959 0.0179

θ 0.999565 1.0225 0.999590 0.9512

p+ d 0.999992 0.3000 0.999989 0.3904

Qg 1.000000 0.0041 1.000000 0.0055

Qb 1.000000 0.0053 1.000000 0.0128

r 0.999994 0.0100 0.999980 0.0200

u′ 0.999755 0.1826 0.999590 0.2438

Table 14: Forecasting and prediction accuracy for the HM calibration where x is the value of the

variable from the simulations and x̂ is the predicted value.

G Data for the U.S. economy and calculation of the cyclical statis-

tics of the model

Output (data): We compute the logarithm of quarterly real GDP per capita and detrend it by

using an HP filter. The smoothing parameter that we use is 1600. The standard deviation of the

cyclical component is 0.0158.

Stock prices and dividends (data): We compute the standard deviation of the cyclical com-

ponent of the stock market prices and dividends for 1951-2004 period.35 We use monthly data for

stock prices and dividends which are normalized by CPI. We adjust the monthly data to quarterly

frequency. For stock prices we select the monthly value for the 3rd, 6th, 9th, and 12th month of

each year. For the dividends, we sum up the monthly flows for three months. The standard devia-

tion of the cyclical component of the natural logarithm of stock prices is 0.1012 and for dividends

it is 0.0286. Dividends fluctuate far less than stock prices. The finding that a typical economic

model produces much less fluctuation in the stock prices (compared to the dividend fluctuationx)

has been labeled the “stock-market volatility puzzle” in the literature (Shiller (1981)).

Vacancy-unemployment ratio (data): The vacancy-unemployment ratio is constructed by cal-

culating the ratio of the Help Wanted Advertising Index to the rate of unemployment, measured in

35This data set is constructed by Robert Shiller. See http://www.irrationalexuberance.com/index.htm.
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index units per thousand workers.36 The data are quarterly and span the period of 1951 to 2005.

First we detrend the natural logarithm of the vacancy-unemployment ratio and then compute the

standard deviation of the cyclical component of the series.

Investment, consumption and wage (data): We report these statistics from Andolfatto (1996).

Labor share (data): Rı́os-Rull and Santaeulàlia-Llopis (2007) find that the standard deviation

of the labor share is 43% of that of output. Andolfatto (1996) reports this number to be 68% of

that of output.

Model: We simulate our model for 2000 periods, discard the first 500 periods, and then adjust the

generated data to a quarterly frequency. We detrend the series by using an HP filter with a smooth-

ing parameter of 1600 for output, investment, consumption, the average wage, the labor share, the

stock price, the dividend, and the vacancy-unemployment ratio. The values of these variables at

time t are calculated using the simulated data as follows: output is calculated as ztk̄
α
t (1 − ut)

1−α,

investment is k̄t+1 − (1 − δ)k̄t, consumption is ztk̄
α
t (1 − ut)

1−α − k̄t+1 + (1 − δ)k̄t − ξvt + hut, the

average wage is the average wage of the employed agents in the economy at time t, the labor share

is the average wage divided by zt(k̄t/(1 − ut))
α, the stock price is pt, the dividend is dt, and the

vacancy-unemployment ratio is vt/ut.

H The linear model with aggregate shocks

The consumer maximizes

E

[

∞
∑

t=0

βtct

]

subject to

c+
a′

1 + r − δ
= a+ w

when working and

c+
a′

1 + r − δ
= a+ h

when unemployed.

36This data set was constructed by Robert Shimer. See http://home.uchicago.edu/ shimer/data/mmm/.

64



Clearly, 1 + r − δ = 1/β has to hold. Thus, r is constant.

The surplus per match, y, is defined as

y = arg max
k̃

zk̃α − rk̃.

Therefore, k̃ and y are a function of only z:

k̃(z) =
( r

αz

)
1

α−1

and

y(z) = z
( r

αz

)
α

α−1

− r
( r

αz

)
1

α−1

.

We will look for an equilibrium where the value functions and the wage only depend on z. On

the firm side, the value of a filled job is

J(z) = y(z) − w(z) +
1

1 + r − δ
E[σV (z′) + (1 − σ)J(z′)|z].

The value of a vacancy is

V (z) = −ξ +
1

1 + r − δ
E[λfJ(z′) + (1 − λf )V (z′)|z]. (68)

From free entry, V (z) = 0. This condition determines θ, and thus θ is a function only of z: θ(z).

The value functions for the consumers become

W (z) = w(z) +
1

1 + r − δ
E[σU(z′) + (1 − σ)W (z′)|z]

and

U(z) = h+
1

1 + r − δ
E[(1 − λw)U(z′) + λwW (z′)|z].

Since W (z) − U(z) and J(z) − V (z) are linear in w(z), the Nash bargaining solution results in

the simple surplus-sharing rules

W (z) − U(z) = γS(z)

and

J(z) − V (z) = (1 − γ)S(z), (69)
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where

S(z) = (W (z) − U(z)) + (J(z) − V (z)) (70)

is the total surplus. Thus, w is indeed a function of z.

¿From (68), (69), and the free-entry condition,

S(g) =
(πbbλf (b) − πgbλf (g))ξ

β(1 − γ)Pλf (g)λf (b)
(71)

and

S(b) =
(πggλf (g) − πbgλf (b))ξ

β(1 − γ)Pλf (g)λf (b)
, (72)

where P ≡ πggπbb − πbgπgb. From (70) and the value functions,

S(g) = y(g) + ξ − h+ β(πggS(g) + πgbS(b))(1 − σ − (1 − γ)λf (g) − γλw(g)) (73)

and

S(b) = y(b) + ξ − h+ β(πbgS(g) + πbbS(b))(1 − σ − (1 − γ)λf (b) − γλw(b)). (74)

Recall that

λf (z) = χθ(z)−η

and

λw(z) = χθ(z)1−η.

Thus, (71), (72), (73), and (74) can be solved for four unknowns: S(g), S(b), θ(g), and θ(b).

Once these are found, we can calculate the wage as

w(z) = y(z) + ξ − (1 − γ)S(z) + β(1 − σ − λf (z))(πzg(1 − γ)S(g) + πzb(1 − γ)S(b)).

Unemployment follows

u′ = u+ σ(1 − u) − λw(z)u.

Vacancy can be calculated as

v = θ(z)u.
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u v θ k̄ p d

z = b 6.94% −1.8% −2.2% −1.6% −1.6% −46.2%

z = g 6.87% +1.7% +2.3% +1.6% +1.7% +47.7%

Table 15: Summary statistics of the simulated data (Shimer calibration).

u v θ k̄ p d

z = b 7.15% −12.4% −15.8% −1.8% −11.7% −326.8%

z = g 6.68% +12.3% +15.7% +1.8% +11.6% +324.2%

Table 16: Summary statistics of the simulated data (HM calibration).

Since the sum of J(z)s across firms, (1− u)J(z), is equal to the stock price before the dividend

payment, p+ d, we have

p = (1 − u)J(z) − d = (1 − u)(1 − γ)S(z) − d.

Here, d is the sum of the profits:

d = (1 − u)(y(z) − w(z)) − ξv.

Tables 15, 16, and 17 summarize the properties of the model. We can see that capital stock, GDP,

consumption, and investment are much more volatile than in our baseline model. In particular, the

fluctuations of consumption and investment are substantially larger.

I Complete-markets model with aggregate shocks

As in Merz (1995), we can think of the economy as consisting of many large families. Each family

insures the workers from idiosyncratic shocks. There are many such families, so that each family

takes the aggregate states (z, k̄, u) as given. The family’s utility function is

E

[

∞
∑

t=0

βt log(ct)

]

.

The optimization problem is given from

R(k,X) = max
c,k′

log(c) + β[πzgR(k′,X ′
g) + πzbR(k′,X ′

b)]
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U.S. economy Linear model Linear model

Shimer HM

Investment 3.14 71.72 70.14

Consumption 0.56 14.24 13.83

Labor share 0.43 0.05 0.66

Wage 0.44 0.93 0.20

Stock price (p) 6.41 1.09 6.80

Stock price (p+ k̄) 6.41 1.05 1.14

Dividend (d) 1.81 31.74 96.10

Dividend (d+ (1 + r − δ)k̄ − k̄′) 1.81 85.91 80.28

Vacancy-unemployment ratio 16.27 1.44 9.05

Table 17: Standard deviation of detrended series divided by the standard deviation of output. All

variables are logged and HP-filtered. Note that standard deviation of output is 0.0158 for the U.S.

data, 0.0117 for the Shimer calibration, and 0.0128 for the HM calibration.

subject to

c+ k′ = (1 + r(X) − δ)k + (1 − u)w(X) + uh+ d(X),

where X ≡ (z, k̄, u) is the aggregate state. k is the individual capital stock for the family. In

equilibrium, k = k̄ holds. Xg represents (g, k̄, u) and Xb represents (b, k̄, u). For the family,

the vacancy-unemployment ratio θ(X), dividend d(X), and the wage function w(X) are given.

Unemployment evolves following u′ = u+ σ(1 − u)− λw(θ)u. The interest rate r(X) is given from

the firm’s optimization as

r(X) = αz

(

k̄

1 − u

)α−1

.

Thus, given w(X), d(X), and θ(X), this optimization can be carried out. Note that it will turn

out that only aggregate state variables appear in the Nash bargaining, so that w is only a function

of X (changing k does not affect wage).

This optimization will result in the individual decision rules k′ = κ̃(k,X) and c = ζ̃(k,X). The

equilibrium values for k̄′ and c are given by k̄′ = κ(X) = κ̃(k̄,X) and c = ζ(X) = ζ̃(k̄,X). A

one-period Arrow security which gives one unit of consumption goods conditional on z′ (note that
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k̄′ and u′ are predetermined) can be priced as

Qz′(X) = βπzz′
ζ(X)

ζ(X ′)
.

The matched workers and the unemployed workers can be viewed as “assets” from the viewpoint

of the family. The former generate w(X) every period and the latter generate h per period. Thus,

the value of these assets, respectively, are

W (X) = w(X) +Qg(X)[σU(X ′
g) + (1 − σ)W (X ′

g)] +Qb(X)[σU(X ′
b) + (1 − σ)W (X ′

b)]

and

U(X) = h+Qg(X)[(1−λw(X))U(X ′
g)+λw(X)W (X ′

g)]+Qb(X)[(1−λw(X))U(X ′
b)+λw(X)W (X ′

b)].

The value of a filled job is

J(X) = y(X) − w(X) +Qg(X)[σV (X ′
g) + (1 − σ)J(X ′

g)] +Qb(X)[σV (X ′
b) + (1 − σ)J(X ′

b)]

and the value of a vacancy is

V (X) = −ξ+Qg(X)[λf (X)J(X ′
g)+(1−λf (X))V (X ′

g)]+Qb(X)[λf (X)J(X ′
b)+(1−λf(X))V (X ′

b)].

From the free entry, V (X) = 0. This condition determines θ(X).

The surplus per match, y(X), can be calculated by

y(X) = z

(

k̄

1 − u

)α

− r(X)

(

k̄

1 − u

)

.

Since W (X)−U(X) and J(X)−V (X) are linear in w(X), the Nash bargaining solution results

in the simple surplus-sharing rules

W (X) − U(X) = γS(X)

and

J(X) − V (X) = (1 − γ)S(X),
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where

S(X) = (W (X) − U(X)) + (J(X) − V (X)) (75)

is the total surplus. Thus, w is indeed a function of X.

From (75) and the value functions, S(X) can be computed using the mapping

S(X) = y(X) + ξ − h+ (Qg(X)S(X ′
g) +Qb(X)S(X ′

b))(1 − σ − (1 − γ)λf (X) − γλw(X)).

This gives J(X) = (1 − γ)S(X).

Given J(X) and V (X) = 0,

0 = −ξ +Qg(X)λf (X)J(X ′
g) +Qb(X)λf (X)J(X ′

b).

Thus

λf (X) =
ξ

Qg(X)(1 − γ)S(X ′
g) +Qb(X)(1 − γ)S(X ′

b)

will solve for θ(X), since λf (X) = χθ(X)−η.

One can then calculate the wage from

w(X) = y(X) + ξ − (1 − γ)S(X) + (1 − σ − λf (X))(Qg(X)(1 − γ)S(X ′
g) +Qb(X)(1 − γ)S(X ′

b)),

and so

w(X) = y(X) + ξ − (1 − γ)S(X) +
(1 − σ − λf (X))ξ

λf (X)
.

Unemployment follows

u′ = u+ σ(1 − u) − λw(X)u

and vacancies are given by

v = θ(X)u.

Since the sum of J(X), (1 − u)J(X), is equal to the stock price before the dividend payment,

p+ d,

p = (1 − u)J(X) − d = (1 − u)(1 − γ)S(X) − d.
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u v θ k̄ p d

z = b 6.92% −1.3% −1.7% −0.2% −1.3% −29.6%

z = g 6.87% +1.1% +1.4% +0.2% +1.1% +24.7%

Table 18: Summary statistics of the simulated data (Shimer calibration).

u v θ k̄ p d

z = b 7.05% −9.8% −12.4% −0.2% −9.2% −170.3%

z = g 6.71% +8.2% +10.3% +0.2% +7.7% +142.3%

Table 19: Summary statistics of the simulated data (HM calibration).

Here, d is the sum of the profit across firms:

d(X) = (1 − u)(y(X) − w(X)) − ξv.

Tables 18, 19, and 20 summarize the properties of the model. These are very similar to the

incomplete-markets outcome reported in the text.
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U.S. economy Complete market Complete market

model: Shimer model: HM

Investment 3.14 3.35 2.79

Consumption 0.56 0.23 0.14

Labor share 0.43 0.04 0.64

Wage 0.44 0.94 0.22

Stock price (p) 6.41 1.10 7.38

Stock price (p + k̄) 6.41 0.26 0.26

Dividend (d) 1.81 28.00 160.98

Dividend (d+ (1 + r − δ)k̄ − k̄′) 1.81 12.29 7.48

Vacancy-unemployment ratio 16.27 1.47 9.85

Table 20: Standard deviation of detrended series divided by the standard deviation of output. All

variables are logged and HP-filtered. Note that standard deviation of output is 0.0158 for the U.S.

data, 0.0069 for the Shimer calibration, and 0.0075 for the HM calibration.
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