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Abstract

For many kinds of capital, depreciation rates change systematically with the age of the capital. Consider an example that

captures essential aspects of human capital, both regarding its accumulation and its depreciation: a worker obtains

knowledge in period 0, then uses this knowledge in production in periods 1 and 2, and thereafter retires. Here, depreciation

accelerates: it occurs at a 100% rate after period 2, and at a lower (perhaps zero) rate before that. The present paper

analyzes the implications of non-constant depreciation rates for the optimal timing of taxes on capital income. The main

finding is that under natural assumptions, the path of tax rates over time must be oscillatory. Oscillatory tax rates are

optimal when depreciation rates accelerate with the age of the capital (as in the above example), and provided that the

government can commit to the path of future tax rates but cannot apply different tax rates in a given year to different

vintages of capital.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

What is the optimal path of taxes for a benevolent government that needs to finance some essential public
expenditures? We study this question in a setting where taxation must take the form of proportional levies on
capital income and where depreciation rates may vary over time (i.e., non-geometric depreciation). We are
particularly interested in the case where depreciation rates increase with the age of capital, since we believe
e front matter r 2008 Elsevier B.V. All rights reserved.
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that it captures a realistic feature of the depreciation of physical and, in particular, human capital. For
example, when a worker leaves the workforce, large parts of her human-capital depreciates. We find that in
such economies, it is optimal for the government to commit (if it can) to an oscillating tax sequence.

A standard principle in public finance is that taxation should be designed so as to keep distortions smooth
over time. This principle applies whenever the social cost of raising tax revenue is convex, a circumstance that
is met in most settings. In models where taxes only distort static decisions (e.g., to labor supply), and where the
relevant elasticities are constant over time, this implies that taxes should be as close to constant as possible and
that shocks to expenditures should be absorbed by time-varying debt (see, e.g., Barro, 1979). However, if taxes
distort accumulation decisions, new issues arise, since such decisions depend not only on a single tax rate but
on the present value of taxes generated by each unit of investment. One much studied question is how much tax
revenue should be raised from income arising from static decisions (say, labor income) and how much should
be raised from taxing income from accumulated production factors (such as physical capital). The seminal
papers by Chamley (1986) and Judd (1985) in this area show, in particular, that optimal taxation in general
involves taxing both labor and capital but at very particular, time-varying rates: over time, the tax rate on the
accumulated factor should go to zero. Thus, they should be ‘‘front-loaded’’ and, in a typical setting (see
Atkeson et al., 1999), high only for a finite number of periods and thereafter zero forever. In this paper we
emphasize that the smoothing of distortions across vintages of investment does not, in general, imply the
smoothing of tax rates. Rather, under non-geometric depreciation, oscillations in tax rates can turn out to be a
way of smoothing distortions while also imposing higher present-value taxes on the inelastic supply of initial
capital and on capital installed early on.1

We consider a modified version of the standard neoclassical growth model. In addition to a more
generalized depreciation structure, we consider linear utility—in order to avoid tax effects on the interest
rate—and a two-sector production structure.2 Consumption is linear in the capital input (which could be
human capital or physical capital) whereas the production of investment involves decreasing returns. An
important assumption for our results is that at any point in time, all capital income has to be taxed at the same
rate; i.e., the government cannot impose vintage-specific taxes. Moreover, the government cannot levy taxes or
subsidies on investments (see Section 5 for further discussion of these assumptions).

When depreciation is geometric, our model reproduces the standard result that taxes on capital should be
front-loaded. Suppose, as is standard in the literature, that the government cannot tax capital income in
period zero (which would be non-distortionary). Then the planner taxes capital income in period 1 at a very
high rate so as to extract revenue from the part of the initial tax base that is inelastic (i.e., from those assets
that were accumulated before the start of the planning horizon). Thereafter, the optimal tax rate drops to its
steady-state level. Though standard, an interesting aspect of this result is that the distortions on asset
accumulation generated by this tax sequence are far from smooth: the tax burden is borne entirely by the
investments in the first period. This may seem surprising: should not the planner shift some burden to future
investments, so as to smooth distortions? In addition, after the first period (with high taxation), since capital
depreciates geometrically, there is still inelastic capital left. Both these factors speak for a large tax rate in the
second period. However, the fact that the initial investment is heavily distorted by the first-period tax makes it
very costly to distort it further by a high second-period tax rate. This speaks for lower taxes in period two. It
turns out that the opposing forces cancel exactly under geometric depreciation, so that taxes go to their steady-
state level immediately, although in our model the steady-state capital-income tax is not zero for reasons that
are related to the analysis of Correia (1996).3,4
1Strong time variation of tax rates is a characteristic of the optimal policy also in Greulich and Marcet (2007). They emphasize that,

while capital taxes are front-loaded, labor taxes have to be back-loaded to encourage early capital accumulation. Moreover, Hagedorn

(2007) emphasizes that in the presence of search frictions, Ramsey problems can be non-convex and therefore generate optimal tax cycles.

This mechanism is, however, quite difference from the one we emphasize here.
2With linear utility the government will not try to manipulate the interest rate; see Lucas and Stokey (1983).
3Intuitively, if the present-value tax revenue extracted from inelastic capital were held constant, then shifting capital taxation to later

dates would be detrimental: it would not reduce the burden on time-zero investments, and it would distort future investment decisions

unnecessarily.
4Here, as in Correia (1996), we assume that a production input (investment goods) cannot be taxed. Absent this restriction on taxation,

some long-run taxation of capital income will be optimal, since such taxation would indirectly allow some taxation of the untaxed input.
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If, on the other hand, capital depreciates at a time-varying rate (changing with the age of the capital), the
planner can and will use the timing of taxation to smooth distortions. To establish the result in a transparent
way, we focus on a simple deviation from geometric depreciation that we label ‘‘quasi-geometric’’: the
depreciation rate in the first period is allowed to be different from that in subsequent periods. The presence of
a distribution of capital vintages turns the timing of taxation into an additional instrument for enabling
distortion smoothing. We stress the case in which the depreciation rate increases with the age of the asset, since
this seems empirically relevant for most types of capital (see below for more discussion). In this case, the
Ramsey allocation implies oscillatory tax dynamics. The case of human capital illuminates this point. Suppose
that the asset is accumulated in period t� 1 and is fully productive in periods t and tþ 1 but not thereafter.
This is a particular case of quasi-geometric depreciation, where the depreciation increases with the asset age
(depreciation is zero initially, and then 100%). At time t, a surprise occurs, which increases the need for the
government to raise funds (e.g., a war).5 In this case, the planner wants to seize the opportunity to extract a
large amount of tax revenue from the generation that made its investment before the war. This generation
sunk its investment under the expectation of lower taxes, and this investment is, at t and tþ 1, an inelastic tax
base, calling for a high tax rate. The key insight is that this high tax rate can be counteracted by a lower tax
rate in tþ 2 so that investments in period t are not too distorted. The revenue from taxes paid by capital
originating from investments done before the shock is not hurt by the reduction in period tþ 2 taxes, since it is
fully depreciated by then. Then, since the tþ 2 tax rate is low, a higher tþ 3 tax rate helps smooth
investments, and so on. This oscillating plan features a smoother path of distortions than full front-loading
would. At the same time, it allows the planner to exploit the lower elasticity of the tax base at t. This example
is simple and intuitive because the asset (human capital) is only productive for two periods. However, we show
that this intuition is robust to the case where assets are infinitely lived and depreciate smoothly but at rate that
is increasing in the asset age.

In Section 2, we describe the basic setup from the perspective of standard Ramsey problems where the issue
is that of how and when to finance an exogenous stream of government expenditures when the government can
borrow and lend. Section 3 derives our main results. Section 4 introduces stochastic shocks to government
spending needs. This extension shows that, if government debt is not state contingent, optimal tax oscillations
can arise after a fiscal shock. Thus, the fluctuations in our examples are not necessarily mere memories of the
initial-period capital stock. However, if debt is state contingent, no new fluctuations occur: those that are
present are indeed a memory of the initial period. Section 5 concludes. The appendix contains some proofs and
technical derivations. Some additional proofs are contained in a technical appendix, available from the
corresponding author’s webpage.

2. The model

In this section, we set up the basic model. We first discuss the main maintained assumption—the general
structure of depreciation—and then describe the Ramsey problem facing a benevolent planner who must
finance an exogenous stream of expenditures.

2.1. Quasi-geometric human-capital depreciation

The key new element we consider is variable depreciation rates of the stock of capital. To fix ideas, we will
refer to human capital throughout, though we briefly argue in Section 5 that also many kinds of physical
capital share this depreciation structure. Thus, let us subdivide the life of a unit of capital, which is now
represented by a worker, into three stages: youth, young adulthood, and old adulthood. The conditional
probability of death increases with age. More precisely, a young agent dies with probability zero, a young
adult dies with probability dr and an old adult dies with probability d, where d 2 ð0; 1� and r 2 ½0; 1�.
5The assumption in this example—that the change is a ‘‘surprise’’—is made for simplicity. It can be interpreted as allowing the planner

to make a commitment but then re-optimize after a zero-probability shock realization. We show in Section 4 that the argument is robust to

assuming that the shock is the realization of a stochastic process of which agents know the probability distribution, and the government

commits, ex ante, to a state-contingent plan.
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Fig. 1. Remaining stock of capital installed in period t� 1 with quasi-geometric depreciation ðr 2 ð0; 1ÞÞ. The parameter values in the

example are r ¼ 0:05 and d ¼ 0:5.
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Moreover, each period young agents are born so that the size of the population is constant. Youth and young
adulthood last for at most one period: a surviving young agent turns into a young adult, whereas a surviving
young adult turns into an old adult. Only young agents invest in human capital, e.g., through education.
A unit of investment at time t leads to one unit of productive capital in period tþ 1. Thereafter, human capital
does not depreciate within the lifetime of an individual, but disappears when an agent dies.6 Thus, the expected
contribution to the future stock of human capital of a unit of investment at t is 1 unit in period tþ 1, 1� rd
units in period tþ 2, and ð1� rdÞð1� dÞk units in period tþ 2þ k. We label this structure quasi-geometric

depreciation. Note that r ¼ 1, i.e., a constant mortality rate within the working population, yields a standard,
geometric depreciation of human capital, whereas ro1, i.e., an increasing mortality rate within the working
population, yields a lower initial depreciation than in the geometric case. The case r ¼ 0 and d ¼ 1, on the
other hand, describes the case where worker human capital survives for two periods without depreciation and
then disappears. Fig. 1 represents a case of accelerating depreciation, showing the fraction of investments
made in period t� 1 that survives att; tþ 1; . . . ; etc.

In order to derive implications for the optimal taxation of human capital, we consider a discrete-time,
infinite-horizon model where agents age and die according to the description above. To abstract from
mortality risk issues, which are orthogonal to our focus, we assume agents to be part of ‘‘large families’’.
In particular, the economy is populated by a continuum of representative unitary households, each consisting
of a continuum of agents of different ages.7 The total size of the representative household is unity. The age
distribution of each household is constant over time. As above, an agent born in period t builds up it units of
human capital in the first period of her life and becomes productive as of period tþ 1. Thereafter, her human
capital remains constant until her death.

The total stock of human capital of the household is the integral of the human capital of all its members.
Because of the age-dependent mortality rates, in order to determine the total human capital of the household,
it is necessary to distinguish between two kinds of human capital at time t: the capital of the old adults, for
which we use the notation ho

t , and that of the young adults, hy
t . Clearly, hy

t ¼ it�1. The difference between these
kinds of capital is not in their productivities—the total human capital input of the household at t, which we
call ht, equals ho

t þ hy
t—but in their depreciation rates from t to tþ 1. Thus, our assumptions are summarized
6In addition, one could assume that the human capital (knowledge) of an individual decreases with age even conditionally on survival.

This would yield the same qualitative dynamics of human-capital depreciation as the mortality channel discussed in the text.
7In our unitary households, all utilities will be interpreted from the perspective of perfect altruism across generations: the representative

agent is a ‘‘dynasty planner’’ who internalizes the effects of current choices on all future generations.
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by the following laws of motion for the two types of human capital:

ho
tþ1 ¼ ð1� dÞho

t þ ð1� rdÞit�1,

h
y
tþ1 ¼ it. (1)

These equations amount to a generalized version of the standard accumulation equation:

htþ1 ¼ it þ ð1� dÞht þ dð1� rÞit�1. (2)

In this formulation, total human-capital productive next period equals (i) the investment made this period plus
(ii) total capital in use this period depreciated at rate d, with (iii) an adjustment upward by dð1� rÞit�1 due to
the fact that not all capital in use today actually depreciates at a constant rate d: part of it, it�1, depreciates at
the lower rate rd.8Notice, in particular, that when r ¼ 1 Eq. (2) reduces to the standard Blanchard–Yaari
perpetual youth model which yields geometric depreciation. Much of the analysis below will be conducted in
terms of old capital, ho, since it is a natural state variable, whereas ht is not.

A standard three-period model where agents invest in their youth and work for two periods can be viewed as
a particular case of the general quasi-geometric depreciation structure described above, where d ¼ 1.9 In this
case, r ¼ 0 means that productivity is constant throughout the life of an individual, whereas r40 would
capture a downward-sloping age-earnings profile (the worker’s knowledge depreciates with age). We will focus
on this simple case in the analysis of stochastic shocks of Section 4.

2.2. Preferences and technology

Since our goal is to develop a tractable framework, we introduce two stark assumptions about technology
and preferences. First, we assume the intertemporal preferences of the representative household to be time-
additive and the intratemporal preferences to be linear in consumption and quadratic in ‘‘educational
effort.’’10 More formally,

U0 ¼
X1
t¼0

bt
ðct � i2t Þ,

implying that the gross interest will be 1=b.11 Second, we assume that the production function is linear in
human capital. In particular, production at t is simply ht: it equals total (old plus new) human capital. In this
model, the issue is purely one of when income should be taxed; there is no choice between taxing different
factors of production.12

The representative household chooses investment plans to maximize U0. The optimal choice of investment
must balance the marginal cost of investment ð2itÞ and the expected present discounted value (PDV) of the
after-tax output generated by a marginal unit of human capital. Since the marginal product of human capital
is unity by assumption, this value is given by

bð1� ttþ1Þ þ ð1� rdÞ
X1
s¼2

bs
ð1� dÞs�2ð1� ttþsÞ.

Defining

k � bþ ð1� rdÞ
X1
s¼2

bs
ð1� dÞs�2 ¼ b

1þ bdð1� rÞ
1� bð1� dÞ
8With ht � it�1 depreciating at rate d and it�1 at rate rd, the new total capital in use becomes it þ ðht � it�1Þð1� dÞ þ it�1ð1� rdÞ, which
delivers the right-hand side of Eq. (2).

9Its counterpart in the literature on physical capital depreciation is a one-hoss shay depreciation structure, where investment at t stays

intact until tþ 2 but then depreciates fully.
10From now on, all variables will be aggregated at the unitary household level. Note that, due to risk neutrality, our formulation is

identical to one in which there is no unitary household and the planner is utilitarian, i.e., attaches the same weight to all living agents.
11It is possible to relax the assumption of quadratic investment costs and generalize it to any convex cost. Then, one can provide a

characterization of the dynamics around a steady state which is qualitatively identical to the global solution we obtain.
12In spite of the linear technology, our model does not feature endogenous growth, due to the quadratic investment cost.
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and

Tt � bttþ1 þ ð1� rdÞ
X1
s¼2

bs
ð1� dÞs�2ttþs, (3)

it follows immediately that we can write the household’s optimal choice of investments in the following
compact way:

it ¼ iðTtÞ �
1
2
ðk� TtÞ, (4)

where k is the effective duration of new investment and Tt is the effective discounted sum of taxes (which we
label the ‘‘present-value tax’’) on period-t investments.

2.3. The Ramsey problem

The government must finance a given sequence fgtg
1
t¼0 of expenditures subject to an intertemporal budget

constraint

b0 þ
X1
t¼0

bt
ðgt � ttðh

o
t þ it�1ÞÞp0, (5)

where pre-tax output equals ht ¼ ho
t þ it�1 and b0 is initial government debt. Note that the only instrument

available to the government is taxation of the return to human capital, which coincides here with output taxation.
The Ramsey problem can now be formulated as a planner choosing a tax sequence maximizing the representative

household’s utility subject to its budget constraint (5), and the restriction that the allocation be a competitive
equilibrium. Due to risk neutrality, maximizing total utility of the representative household is equivalent to
maximizing the PDV of after-tax output minus investment costs. Therefore, the Ramsey problem amounts to

max
ftt;it;h

o
tþ1g

1
t¼0

X1
t¼0

bt
ððho

t þ it�1Þð1� ttÞ � i2t Þ

subject to the budget constraint, (5), the law of motion of (old) capital under quasi-geometric depreciation, (1),
and the implementability constraint, (4). In addition, we impose that tax rates are bounded and that t0 ¼ 0:13

Before turning to the analysis, it is useful to relate our model to existing results in the optimal capital
taxation literature. First, using a model with geometric capital depreciation and a linear (as opposed to
quadratic) investment cost, Chamley (1986) and Judd (1985) established that if the Ramsey tax sequence
converges to a steady state, then the steady state must be zero.14 However, the Chamley–Judd result does not
apply to our model even in the particular case of geometric depreciation. In fact, we will show later that our
model features positive taxation in the long run, due to the quadratic investment costs. This result, which is
not the main focus of our analysis, is a particular case of the more general analysis by Correia (1996).15

3. Analysis

Define l as the Lagrangian multiplier associated with the government budget constraint. The Lagrange
method then implies that the Ramsey problem can be expressed, after rearranging terms, as

max
ftt;it;h

o
tþ1g

1
t¼0

X1
t¼0

bt
ððttðl� 1Þ þ 1Þðho

t þ it�1Þ � i2t Þ � l b0 þ
X1
t¼0

btgt

 !
. (6)
13The tax t0 would be lump-sum as it is levied on predetermined human capital only. Therefore, if t0 were a choice variable, it would be

set at its maximum feasible level, with no effect on any other choice. Hence, setting t0 ¼ 0 is without loss of generality.
14In the analysis of Chamley and Judd, the planner can tax both labor and capital. However, this is not important for the current

discussion. Moreover, Atkeson et al. (1999) show that, under CRRA utility, the Ramsey solution features zero capital taxation for all tX2.
15Correia’s main insight is that untaxed input factors provide one channel through which capital taxation can be used beneficially, even

in the long run. In our framework, the human-capital investment is a non-taxable household activity, subject to increasing marginal cost.

There are therefore untaxed ‘‘profits’’ in this operation, which are equivalent to the untaxed factor income in Correia’s analysis.
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The solution to the problem in (6) depends on the Lagrangian multiplier, l. The value of l is determined by
minimizing the objective in (6). It represents the shadow value of the government’s budget constraint, (5), and
is increasing in the government’s needs to raise funds

b0 þ
X1
t¼0

btgt

 !

and decreasing in ho
t þ it�1. In the rest of the paper, we will characterize the optimal sequence of taxes

conditional on l, bearing in mind that conditioning on l is equivalent to conditioning on a set of initial
conditions.16

The following lemma is a useful step towards characterizing the solution to the Ramsey problem (the proof
is simple algebra and is, therefore, omitted).

Lemma 1. Setting t0 ¼ 0, the Ramsey problem, (6), subject to (1) and (4) is equivalent to the following program:

max
fttg
1
t¼0

ðl� 1Þðt0ðh
o
0 þ i�1Þ þ T̂0ho

1Þ þ
X1
t¼0

btyðTtÞ � l b0 þ
X1
t¼0

btgt

 !
, (7)

where

T̂0 � b
X1
t¼0

ðbð1� dÞÞtttþ1, (8)

yðTtÞ � lkiðTtÞ � iðTtÞ
2
ð2l� 1Þ (9)

and Tt and iðTtÞ are defined as in (3) and (4), respectively.

The new functions yðTtÞ and T̂0 will be particularly useful in the analysis below. The function yðTtÞ is the
contribution of the human-capital investment of generation t to the planner’s discounted utility. Each such
‘‘vintage’’ investment contributes to the planner’s utility via private consumption, itðk� TtÞ, the financing of
government expenditure, lTtit, and the investment cost, �i2t . By using (4) to eliminate Tt, expression (9)
follows immediately. Furthermore, T̂0 is the effective discounted sum of taxes levied on human-capital
investments made before the beginning of the planning horizon, and thus inelastic. With analogy to previous
definitions, we label it the ‘‘present-value tax on inelastic capital’’ . Taxes entering T̂0 are discounted at the rate
bð1� dÞ, reflecting the discount factor and the rate of depreciation of the initial human capital.

The objective function (7) is then the sum of the PDV of the contribution to the planner’s utility of all
investments from time zero onwards

X1
t¼0

btyðTtÞ,

and the PDV of the tax revenue from pre-existing human capital. Ignoring irrelevant constants and
predetermined variables and recalling that we rule out lump-sum taxes ðt0 ¼ 0Þ, the Ramsey problem
simplifies to

max
fT̂0;Ttg

1
t¼0

ðl� 1ÞT̂0ho
1 þ

X1
t¼0

btyðTtÞ, (10)

where

T̂0 ¼
X1
t¼0

ð�dbð1� rÞÞtTt. (11)
16The Ramsey problem above admits an alternative interpretation whereby households derive utility from both private consumption

and the consumption of a public good. The intratemporal utility is modified to uðc; g; iÞ ¼ cþ lg� i2, where l in this case denotes the

constant marginal utility agents derive from the consumption of the public good, and government revenue is entirely spent on the public

good. See the working paper version of the present paper, Hassler et al. (2004), for details.
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Expression (11) follows from Eqs. (3) and (8) and is formally derived in the appendix. This expression implies
that T̂0 cannot be chosen independently of the Tt’s. Note that ho

1 is a key predetermined variable; its size will
influence the dynamics of present-value taxes.

The program (10) pins down the optimal sequence fTtg
1
t¼0’s and T̂0 rather than the tax sequence fttg

1
t¼1.

Since it ¼ ðk� TtÞ=2, this amounts to the planner choosing the investment sequence. Thus, (10) is a primal

formulation, where the planner chooses an allocation directly, subject to the constraint that it is a competitive
equilibrium. In the appendix, we prove formally that there is a one-to-one mapping between the primal and
the dual formulations. Namely, a sequence of present-value tax rates (or investments) pins down uniquely a
sequence of individual tax rates satisfying (3) and (8).17
3.1. The case of geometric depreciation

We first analyze the benchmark case of constant mortality rate of the adult population, i.e., geometric
depreciation ðr ¼ 1Þ. In this case all the present-value taxes are geometric (as opposed to quasi-geometric)
sums of future tax rates. In particular, T̂0 ¼ T0: the present-value tax on inelastic capital is identical to the
present-value tax on investment in period zero, which is distortionary. Thus, we can rewrite the Ramsey
problem of Eq. (10) as

max
fTtg

1
t¼0

ðl� 1ÞT0ho
1 þ

X1
t¼0

btyðTtÞ.

The solution to this Ramsey problem is simple and striking: the problem is separable in the Tt’s so these
variables can be chosen independently—one by one. Moreover, the choice problem for Tt looks identical for
all t except for t ¼ 0. This observation, together with the fact that each such problem is, by definition, strictly
concave (since y is strictly concave), immediately implies that the total taxes will be constant—say, Tt ¼ Tn—
from t ¼ 1 and onwards. That is, we reach a steady state after one period. It is given by

y0ðTnÞ ¼ 0.

Backing out tax rates, this implies that tax rates are also constant after one period: tt ¼ tn from t ¼ 2 and
onwards.18

In period zero, the problem is different: here T0, which distorts i0, also raises revenue from the taxation of
the inelastic human capital, ho

1. Thus, the optimal T0, which we label T�0, satisfies

ðl� 1Þho
1 þ y0ðT�0Þ ¼ 0.

Clearly, T�04T� which in turn implies that t14t�. The extent of the initial tax hike depends positively on ho
1.
3.2. Quasi-geometric depreciation

In the general case with an increasing mortality rate (quasi-geometric human-capital depreciation), T̂0 is no
longer equal to T0. Since the inelastic capital, ho

1, depreciates at a different rate from new investments, the
timing of taxes can be used to improve efficiency. Now, the connection between T̂0 and the sequence of Tt’s in
Eq. (11) is key for understanding the oscillatory tax dynamics: if ro1, the weights on the future present-value
taxes Tt have alternate signs. Thus, every Tt will influence the taxation of inelastic capital, and whether Tt

increases or decreases the present-value tax on inelastic capital depends on whether t is even or odd.
17Intuitively, because tax rates are bounded and bð1� dÞo1, the present-value taxes must be bounded as well. Forward iterating on

Eq. (3) leads to Ttþ1 ¼ b�1ð1� dÞ�1ðTt � bttþ1Þ. This difference equation can be solved for a unique feasible sequence of tax rates.

Namely, given a sequence fTtg
1
t¼0, one can back out a unique sequence of tax rates fttg

1
t¼1 which satisfies the boundedness condition. See

Proposition 2 and its proof in the appendix.
18Intuitively, because tax rates are bounded and bð1� dÞo1, the present-value taxes must be bounded as well. Forward iterating on

Eq. (3) leads to Ttþ1 ¼ b�1ð1� dÞ�1ðTt � bttþ1Þ. This difference equation can be solved for a unique feasible sequence of tax rates.

Namely, given a sequence fTtg
1
t¼0, one can back out a unique sequence of tax rates fttg

1
t¼1 which satisfies the boundedness condition. See

Proposition 2 and its proof in the appendix.
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After eliminating T̂0, using (11), from (10), the Ramsey problem now reads

max
fTtg

1
t¼1

ðl� 1Þ
X1
t¼0

ð�dbð1� rÞÞtTt

 !
ho
1 þ

X1
t¼0

btyðTtÞ.

The first-order condition with respect to Tt is

ðl� 1Þho
1ð�dð1� rÞÞt þ y0ðTtÞ ¼ 0. (12)

The set of FOCs for tX0 pins down uniquely the optimal present-value tax sequence fTtg
1
t¼1 and, hence, the

optimal tax sequence fttg
1
t¼1 (see the proof of Proposition 2). Note that the first-order condition for T0 is the

same as in the case of geometric depreciation. However, under geometric depreciation ho
1 only affects future

present-value taxes via its effect on the Lagrange multiplier, l: In contrast, under quasi-geometric depreciation
ho
1 also affects directly the dynamics of the entire sequence of investments and taxes, as shown by Eq. (12). The

solution can be summarized by our main proposition.19

Proposition 2. Assume that kdð1� rÞkp1 and that

b0 þ
X1
t¼0

btgt

is not too large. Then, the optimal (Ramsey) present-value tax sequence is given by

Tt ¼
l� 1

2l� 1
ðkþ 2ho

1ð�dð1� rÞÞtÞ for tX0. (13)

The corresponding unique tax sequence that implements the Ramsey allocation is

ttþ1 ¼ t� � dð1� rÞðtt � t�Þ for tX1, (14)

t1 ¼ t� 1þ 2ho
1

1þ bdð1� dÞð1� rÞ

bð1� bd2ð1� rÞ2Þ

� �
, (15)

where t� � ðl� 1Þ=ð2l� 1Þo 1
2
, and lX0 guarantees that Eq. (5) is satisfied with equality, given the investment

rule (4), the definition of Tt in (3), and the optimal tax sequence defined by (14)–(15). If dð1� rÞ ¼ 0, then the tax

sequence is constant after the first period. If dð1� rÞ 2 ð0; 1Þ, then the tax sequence converges in an oscillatory

fashion to t�. If dð1� rÞ ¼ 1, then the optimal tax sequence is a two-period cycle.

Proof (sketch). The first-order condition (12), together with the definition of yðTtÞ as given in (9), yield the
optimal present-value tax sequence, (13). The proof in the appendix amounts to showing that the tax sequence
(14)–(15) is the unique sequence satisfying (13) and the tax constraint ttp1, given the definition of the Tt’s as
in (3). &

Fig. 2 shows the dynamics of tax rates ðttÞ, present-value taxes ðTtÞ, investments and net output, defined as
ho

t þ it�1 � i2t , in a case of quasi-geometric depreciation. Note that investments fluctuate less than taxes, an
illustration of the fact that although taxes may fluctuate a lot over time, investments and distortions are
smoother. Net output fluctuates around a geometric trend toward the steady state.20
19The assumption that

b0 þ
X1
t¼0

btgt

is not too large is meant to avoid uninteresting complications arising from corner solutions in the choice of taxes.
20However, gross output, excluding investment costs, i.e., hot þ it�1, displays monotone convergence and is, in fact, constant in the case

of d ¼ 1.
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Fig. 2. Ramsey dynamics—an example with accelerating depreciation. The figure displays the dynamic evolution of tax rates (tt), present-

value taxes ðTtÞ, investments ðitÞ, and net output in the optimal Ramsey allocation of Proposition 1. The parameter values underlying the

figures are d ¼ 0:7, r ¼ 0, b ¼ 0:8, and an initial stock of installed capital of ho1 ¼ 0:25. Moreover, the government expenditure are such

that the Lagrange multiplier is l ¼ 1:3.
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3.3. Interpretation

3.3.1. A second-best benchmark: age-specific taxation

In order to understand the results of the previous section, it is useful to compare them with the case in which
the planner has access to age-specific taxation, i.e., she can tax the income produced by different cohorts at
different rates. The Ramsey sequence is then very simple: the planner taxes the human-capital income of the
initially old adults, ho

1, at the highest possible rate every period, since these taxes are non-distortionary. All
cohorts after period zero are then taxed at the constant rate t� such that y0ðTsÞ ¼ 0 for all s40, where
Ts ¼ T� � bð1� bð1� dÞÞ�1t�. We will refer to this benchmark allocation as second best. This allocation
achieves a perfectly smooth distortion of investments by smoothing perfectly the taxes affecting future
investment vintages.

In contrast, when age-specific taxes are ruled out, the planner cannot separate taxation of output produced
by inelastic human capital from distortionary taxation on output produced by later human-capital vintages.21

Thus, a trade off arises between the objective of smoothing distortions and that of taxing inelastic human
capital. Note, that the Ramsey tax sequence of Proposition 2 features perfect tax and investment smoothing
only when ho

1 ¼ 0: when there is no inelastic capital, the planner chooses constant taxes as she would do in the
second best.
3.3.2. Geometric depreciation ðr ¼ 1Þ
In the case of geometric depreciation, there are no oscillations, and taxes are smooth after one period.

Investments, however, are far from smooth. In particular, since t14t�, while tt ¼ t� for all t41, all distortions
generated to extract income from the inelastic capital are borne by the first cohort of young agents
21Hassler et al. (2007) analyzes the properties of the Ramsey allocation in a two-period version of this model when age-dependent

taxation is allowed.
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(T04Tt ¼ T�, for all t40). This implies very low investments in period zero. Why does the planner not
attempt to smooth distortions by taxing capital at later dates, thus reducing t1 so as to increase i0?

First, given the present-value tax on inelastic capital, T̂0, it is impossible for the planner to use the timing of
taxes to alleviate distortions on period-zero investments. This follows immediately from the fact that T̂0 ¼ T0.
For instance, if the planner were to reduce t1 and increase t2 so as to keep T̂0 constant, investment in period
zero would not change. Second, such tax reallocation would increase T1 and distort it away from the second-
best level, T�. The same argument applies to any other potential changes in the timing of taxation (e.g., the
same experiment using t3 instead of t2 would increase both T1 and T2). In sum, it is optimal for the planner to
‘‘front-load’’ taxes in order not to distort investments after the first period.

Our results imply that taxes for periods t41 only depend on ho
1 via its effect on l (a larger ho

1 increases the
tax revenue all else equal, relaxing the government budget constraint, and implying lower l and lower t�). To
understand this result, note that along the optimal path, the marginal distortion of ts must be proportional to
the marginal revenue generated by that tax. If ho

1 is increased, the marginal revenue raised by t1 increases, so t1
should then be increased, increasing the distortion on period-zero investments i0. What are the implications
for the optimal choice of t2? The trade-off between distortions and revenue generation for t2 is affected in two
ways. First, as for t1, the higher ho

1 affects the marginal revenue of t2 positively. Second, however, the higher
distortion on period-zero investments increases the marginal distortionary cost of t2 since this tax affects i0
(in addition to affecting i1). Under geometric depreciation, these two effects exactly balance each other out
and the increase in t1 caused by a higher ho

1 should not lead to any changes in t2 or, more generally, in any
subsequent tax rates.

3.3.3. Quasi-geometric depreciation

We now move to the general case, where ro1. According to Proposition 2, the Ramsey tax sequence is
oscillating when r 2 ½0; 1Þ. We refer to this case as accelerating depreciation, since capital depreciates less in
the first period than afterwards. In order to understand why oscillations arise, it is useful to start from a
particular case.

A particular case: d ¼ 1. The case of d ¼ 1 has a feature that makes the analysis particularly intuitive: t1 is
the only instrument the planner has available for taxing the inelastic capital. Taxes at later dates do not extract
revenue from ho

1, since this will have depreciated fully. Why, then, not set tt ¼ t� for t41, instead of producing
an oscillating sequence after the initial tax hike? The reason is that, unlike in the case of geometric
depreciation, the planner can now use the timing of taxes to smooth future distortions. Recall that, while an
initial tax hike is attractive since it generates revenue from an inelastic base, it also distorts investments in
period zero, i0 (as in the case of geometric depreciation, the magnitude of such hike is increasing in the inelastic
capital). These distortions can be mitigated, because investment decisions depend on both t1 and t2 (recall
that, when d ¼ 1, we have Tt ¼ ttþ1 þ bð1� rÞttþ2). Thus, the planner can alleviate the distortion on period-
zero investments by promising a low tax rate in period two. In turn, the low tax rate in period two stimulates
investments in period one, and since it is optimal to keep distortions smooth, it is therefore useful to
compensate the tax break in period two by another tax hike in period three, and so on.

In contrast to the case of geometric depreciation, taxes at dates t41 are now affected by the size of the stock
of inelastic capital, ho

1 : To understand this, note that when ho
1 is higher, it is optimal to increase t1 (relative to

future taxes). This increases the marginal distortion of t2 because i0 is already distorted by a high t1.
Moreover, t2 does not extract revenue from ho

1 since it is fully depreciated by period t ¼ 2. Thus, it is optimal
to reduce t2.

The parameter r is key for the size of the oscillations. Consider for instance the extreme case when r ¼ 0:
the one-hoss shay case. As Proposition 2 shows, in this case oscillations do not die out: the economy ends up in
a two-period cycle. The reason is that the increase in the distortion entailed by t2 on i0 is particularly large
since i0 has not depreciated at all by period t ¼ 2. Equivalently, the effectiveness of counteracting a current tax
hike by a next-period tax break is high. When r40, a larger share of the return on the investment is accrued in
the first period of life than in the second. Therefore, reducing t2 will be a less effective instrument for
counteracting distortions in period zero. Hence, oscillations are smaller and die out in the long run.

The general case with accelerating depreciation: We now turn to the general case of accelerating quasi-
geometric depreciation: r 2 ½0; 1Þ and d 2 ð0; 1Þ. As under geometric depreciation, human capital is never
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completely depleted, and the present-value tax on inelastic capital, T̂0, depends on the entire tax sequence.
However, unlike in the case of geometric depreciation, the Ramsey tax sequence follows an oscillatory pattern.
The general point is that since T̂0aT0, it is possible to use the timing of taxes to alter T0 while leaving T̂0

unchanged. For instance, if we decrease t2 and increase t1 so as to keep T̂0 constant, T0 will decrease, since
taxes from period two and onwards have a larger impact on T0 than on T̂0.

22 The planner can now use the
timing of taxation as an imperfect substitute for the absence of age-specific taxes and achieve better distortion
smoothing. Recall, in particular, that the hike in t1 distorts heavily i0. Thus, distortion smoothing makes it
desirable for the planner to use future taxes to reduce T0. This is achieved by setting t2ot� (as in the d ¼ 1
case). However, having done this, it is not optimal to set tt ¼ t� for t42, because such a sequence would imply
a deviation from the second-best benchmark in the direction of too large investments in period one (T1oT�),
while all future investment levels would be set at the second-best level. Again, distortion smoothing suggests
an increase in t3 so as to reduce i1, and so on.

4. Stochastic government expenditure

Proposition 2 establishes conditions under which fluctuations in taxes and output are efficient. However, if
ho
1 ¼ 0 (i.e., no pre-installed capital at time zero), the optimal tax sequence is smooth; that is, the optimal tax

oscillations implied by the model can be entirely traced back to an initial condition. The aim of this section is
to show that when future expenditure needs are stochastic and markets are incomplete (no state-contingent
debt can be issued), then the transitional dynamics of the optimal tax sequence feature oscillations even if there
is no inelastic capital to begin with. However, if the government can issue state-contingent debt, no oscillations
arise.

For simplicity, government-expenditure risk is limited to a one-time event only. More precisely, as of period
1 it is revealed whether spending requirements will be high (state h) or low (state l). However, in period zero
the state is unknown, and p 2 ð0; 1Þ denotes the probability that the state will be high. Again, for simplicity we
focus on the case d ¼ 1, i.e., the standard overlapping-generations case with no intergenerational human-
capital transmission, and assume that i�1 ¼ 0.

4.1. Incomplete markets

In this section, we assume that the government cannot issue state-contingent debt. However, the
government can set, with full commitment, state-contingent taxes sequences, except for t1. An interpretation
of this assumption is that t1, as well as all other tax rates, must be set one period in advance: there is an
‘‘implementation lag’’ of one period, implying that the tax rate in period one cannot depend on information
revealed in period one, whereas the subsequent taxes can depend on that information. Thus, at time zero, the
planner sets t1 and a state-contingent tax plan, ftj;t; tj;tg

1
t¼2 for j 2 fl; hg. When the first-period investment, i0, is

chosen, only t1 is known with certainty, whereas agents do not know whether the tax rate will be th;2 or tl;2 in
period two. In contrast, all subsequent generations of investments (including i1) are made under perfect
information.

When uncertainty has unraveled, the sequence fth;tg
1
t¼2 is implemented if spending requirements are high,

whereas the sequence ftl;tg
1
t¼2 is implemented if these are low. The tax sequences must now satisfy one

government budget constraint for each state j 2 fl; hg:

b0 þ g0 þ
X1
t¼1

btgj;t � Gj ¼ bt1i0 þ
X1
t¼2

bt
ðtj;tðh

o
j;t þ ij;t�1ÞÞ, (16)

where ho
j;t and ij;t denote equilibrium stocks of old and new capital in state j at time t. The Lagrange multipliers

of the two budget constraints are denoted by lh and ll : Clearly, Gh4Gl40 implies lh4ll40.23
22The particular case of d ¼ 1 provides an extreme example: by keeping t1 constant and reducing t2, one can decrease T0 while keeping

T̂0 constant.
23As above, we do not solve explicitly for lj as a function of Gj . However, we note that the optimal steady-state tax rate corresponding

to a a particular value of lj is given by t�j ¼ ðlj � 1Þ=ð2lj � 1Þ.
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We extend the definition (9) to the stochastic case

yjðTÞ � ljkiðTÞ � iðTÞ2ð2lj � 1Þ. (17)

Thus, yjðTj;tÞ will be the realized contribution to the planner’s utility of the human-capital investment of the
generation born in period tX1, conditional on state j 2 fl; hg and on the realized present-value tax Tj;t. The
analysis of the investment of the generation born in period-zero necessitates some new notation, as such.

The investment i0 is made under uncertainty and requires some new notation. We denote by

ye
0ðTl;0;Th;0Þ � ½iðT

e
0Þðk� Te

0Þ � iðT e
0Þ

2
� þ ð1� pÞll iðT

e
0ÞTl;0 þ plhiðT e

0ÞTh;0 (18)

the expected contribution to the planner’s utility of the generation born at zero. The expected (as opposed to
realized) period-zero present-value tax is denoted by

Te
0 � pTh;0 þ ð1� pÞTl;0, (19)

where, again, Tl;0;Th;0 are the realized present-value taxes on period-zero investments in the two states. Due to
certainty equivalence, i0 is fully determined by Te

0. The right-hand side of Eq. (18) consists of two terms: the
certainty equivalent utility from private consumption (in square brackets) and the expected value for the
planner of the tax revenue levied on the investments of the generation born at zero.

The Ramsey plan can be formulated as

max
ft1;Th;t;Tl;tg

1
t¼0

ye
0ðT

e
0;Tl;0;Th;0Þ þ

X1
t¼1

bt
ðp � yhðTh;tÞ þ ð1� pÞ � ylðTl;tÞÞ (20)

subject to (17)–(19), and the constraints that, for j 2 fl; hg,

Tj;0 ¼ bt1 þ bð1� rÞ
X1
t¼0

ð�bð1� rÞÞtTj;tþ1; (21)

which generalize Eq. (11).24

Here, we summarize the results. The details of the analytical derivations are provided in the technical
appendix available from the corresponding author’s webpage. Substituting the constraints (19) and (21) into
(20), T e

0, Tl;0 and Th;0 can be eliminated from the objective function. The Ramsey program can then be
formulated as an unconstrained maximization problem with choice variables t1 and fTh;t;Tl;tg

1
t¼1. The first-

order conditions for this problem imply a linear system of equations yielding unique solutions for t1, Th;0, and
Tl;0 (with Th;04Tl;0) in terms of primitives and the shadow values of the two budget constraints, lh and ll .
Then the sequences of present-value taxes, fTh;t;Tl;tg

1
t¼1, can be shown to satisfy

Th;t � T�h ¼ � T�h � T e
0 þ

lh � ll

2lh � 1
ð1� pÞTl;0

� �
ð�ð1� rÞÞt, (22)

Tl;t � T�l ¼ � T�l � T e
0 �

lh � ll

2ll � 1
pTh;0

� �
ð�ð1� rÞÞt. (23)

Clearly, if 0oro1, the sequences fTh;t;Tl;tg
1
t¼1 converge in an oscillatory fashion to their respective

limits T�h and T�l , where T�j � kðlj � 1Þ=ð2lj � 1Þ for j 2 fh; lg. If r ¼ 1 oscillations do not die out.
The difference equations (22)–(23) and t1 provide a complete characterization of the optimal state-contingent
24The expression in (21) is derived from the definition Tj;t � btj;tþ1 þ ð1� rÞb2tj;tþ2, which implies

Tj;t�1 � btj;t ¼ bð1� rÞTj;t � bð1� rÞðTj;t � btj;tþ1Þ.

Forward substitution gives

Tj;t�1 � btj;t ¼ bð1� rÞ
X1
s¼0

ð�bð1� rÞÞsTj;tþs � bð1� rÞ lim
T!1
ð�bð1� rÞÞTðTj;tþT � bttþTþ1Þ,

where the last term is zero.
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Fig. 3. Upper panel displays the present-value taxes in case of high Th;t (black) and low Tl;t (red) spending requirement. The lower panels

displays the associated sequence of tax rates. The dotted lines represent steady-state values for taxes conditional on war and peace,

respectively. The parameter values underlying this example are r ¼ 0:1, p ¼ 0:5, and b ¼ 0:75. Moreover, the government expenditures

associated with war and peace are chosen so that the Lagrange multipliers become lh ¼ 2, and ll ¼ 1:75, respectively.
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present-value taxes. Given t1 and fTh;t;Tl;tg
1
t¼1, the tax sequences ftj;tg

1
t¼2 can be backed out using (recursively)

the expression

tj;tþ1 ¼
Tj;t�1 � btj;t

b2ð1� rÞ
,

where th;1 ¼ tl;1 ¼ t1. This yields

tj;tþ1 ¼ t�j � ð1� rÞðtj;t � t�j Þ; tX2, (24)

where t�h � ðlh � 1Þ=ð2lh � 1Þ and t�l � ðll � 1Þ=ð2ll � 1Þ.
Fig. 3 shows a numerical example. The upper panel shows that present-value taxes ðTj;tÞ, and thus

investments, oscillate in both states of nature. The right panel shows the actual tax sequence that implements
the optimal allocation. Tax oscillations arise in both states of nature, even though there is no inelastic capital.
Had the state of nature been known in advance, the planner would have chosen a constant sequence t�h ¼

1
3
in

the high-spending state and t�l ¼ 0:3 in the low-spending state, respectively. However, due to uncertainty, t1
must be set at a level producing an intermediate investment level in period zero. In fact, Te

0 ¼ 0:397 and is thus
in between the two steady-state levels of present-value taxes (0.419 and 0.377, respectively). If the high-
spending state is realized, the planner sets th;24t�h. The reason is twofold: first, the government faces larger
spending needs than expected; second, taxes have turned out to be lower than what agents born in period zero
had expected and based their investment upon. In other words, i0 is higher than the steady-state investments
under large financing needs. Then, distortion smoothing requires this generation to be taxed more heavily in
the second period. In contrast, if the low state is realized, the planner sets tl;2ot�l and the mirror image of the
argument anabove applies. From period three and onwards, taxes continue to oscillate following the dynamics
characterized in the deterministic case of Proposition 2. For instance, the high (low) th;2 ðtl;2Þ tends to distort
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the investment of the generation born in time one heavily (lightly). Thus, distortion smoothing requires a high
(low) th;3 ðtl;3Þ, and so on.

4.2. Complete markets

The results in the previous subsection can be compared with those in an environment of complete markets,
where there exist markets for state-contingent assets paying one unit of the consumption good conditionally
on the realization of the high-spending or the low-spending state. Let period-one consumption be the
numéraire and define qj;t as the Arrow–Debreu price of the consumption good in period t and state j. The
assumption of a one-period implementation lag in taxes is maintained. The two government budget
constraints given by (16) can now be consolidated into one constraint:

b0 þ g0 þ
X1
t¼1

X
j2fh;lg

qj;tgj;tþ1 ¼ bt1i0 þ
X1
t¼1

X
j2fh;lg

qj;ttj;tþ1ðtj;tþ1ðh
o
j;tþ1 þ ij;tÞÞ. (25)

Since individual utility is linear in consumption, it follows that the Arrow–Debreu prices must be given by the
discounted probabilities, i.e., that qh;t ¼ btp and ql;t ¼ bt

ð1� pÞ. Hence,

b0 þ g0 þ
X1
t¼1

bt
ðge

tþ1 � tetþ1ðt
e
tþ1ðh

o;e
tþ1 þ iet ÞÞÞ ¼ 0, (26)

where variables with superscript e denote expected values: xe � pxh þ ð1� pÞxl . Since there is only one budget
constraint, the Ramsey plan simplifies to

max
fTtg

1
t¼0

X1
t¼0

btyCMðTtÞ ¼
X1
t¼0

bt
ðlCMkiðTtÞ � iðTtÞ

2
ð2lCM � 1ÞÞ,

where lCM denotes the multiplier associated with the complete-market budget constraint (26). Clearly, the
solution features y0CMðTtÞ ¼ 0 for all t, namely, constant present-value taxes and investment.

Intuitively, under complete markets the government can achieve perfect distortion smoothing by
letting private agents bear all the spending risk. The resulting allocation is identical to one where the
government efficiently collects just enough resources to satisfy its spending needs in expectation and then
uses lump-sum taxes to cover additional needs in the high-spending state and to rebate the surplus
to the private agents in the low-spending state. Note that the assumption of risk neutrality ensures that
agents are prepared to own a portfolio of state-contingent debt that makes them act as insurers of the
government.

5. Final remarks

We have shown, using a modified neoclassical growth model, that a benevolent government can find it
optimal to make the sequence of capital income tax rates oscillatory in order to finance a given stream of
expenditures at a minimal cost to consumers. Three assumptions underlie this result. First, depreciation rates
for capital are increasing in age, as opposed to constant. Second, the government cannot apply different tax
rates to income from different vintages of capital. Third, the government has commitment to set future tax
rates. We now make brief comments on each of these assumptions.

Our main argument rests on the assumption that depreciation rates increase as capital ages. We do
believe that this captures essential features of the evolution of human capital: it tends to ‘‘die’’ with worker
retirement, as well as to some extent when workers switch tasks (to the extent that human capital is
task-specific). There is also substantial empirical evidence that the depreciation rate of many physical
assets is increasing with age. A seminal study by Coen (1975) estimates capacity depreciation for equipment
and structures in 21 industries and finds a predominant pattern of depreciation increasing with age. In



ARTICLE IN PRESS
J. Hassler et al. / Journal of Monetary Economics 55 (2008) 692–709 707
many cases, capital depreciation is found to be of the one-hoss shay variety, i.e., capital maintains its full
capacity until when it is scrapped. Similar results are obtained by Penson et al. (1977) and by Pakes and
Griliches (1984), who find that the productive value of investments is actually increasing over the first three
years and remains constant for the following four to five years. The evidence for increasing depreciation rates
is particularly sharp in the case of IT technologies (see e.g. Whelan, 2002; Geske et al., 2007; Dunn et al.,
2004).25

If the government could apply vintage-specific tax rates, the taxation problem would become trivial:
the planner could expropriate pre-installed capital and attain perfect distortion smoothing on new
investments. Such a conclusion follows independently of the depreciation structure. In particular, taxation
in the standard Chamley–Judd framework would not feature any dynamics either.26 The motivation for ruling
out vintage-specific taxation by assumption is that we believe that it is difficult in practice to distinguish when
existing capital was built. For human capital, the timing of education is observable, but the timing of later
investments in human capital (on and off the job), and their importance relative to educational investments,
are for the most part not observed. For physical capital, though initial investment amounts might be measured
by tax authorities, later adjustments in the form of maintenance and upgrades are difficult to assess.
Moreover, a feature of many forms of investments is that they have a consumption component. This is
obvious for the case of education, but it is arguably the case also for many other investment activities. Thus,
with substantial investment subsidies, the difficulty for fiscal authorities of sorting out the consumption
component from true productive investments arguably make such subsidies quite imperfect tools. A more
thorough treatment relying explicitly on information asymmetries would be an interesting extension to the
present work.27

Finally, what if the government could not commit to its future tax rates? Then taxes would indeed be set
differently, unless one could invoke reputational mechanisms: the commitment equilibrium is time
inconsistent, for reasons standard to capital taxation problems. In a working paper version of the this
paper, we show that the lack of commitment implies a natural tendency for taxes not to fluctuate or, at
least, to fluctuate less (see also Hassler et al., 2005, for a similar result with a politico-economic interpretation).
When there is no commitment or commitment is imperfect (as in Debortoli and Nunes, 2007), the
government’s trade-off between costs and benefits changes. As a general principle for both the case with
and that without commitment, the excess value of government funds times the marginal revenue of taxes
at period t is set equal to the marginal distortionary cost of taxes in period t. Under commitment, the marginal
distortionary cost depends on a weighted sum of the wedges between first-best and actual investments
levels prior to t, where the weights are determined by the depreciation structure. In contrast, if, due to a lack
of commitment, the government sets the tax for t no earlier than in period t� 1, the marginal cost of taxes
in period t depends only on the investment wedge in period t� 1, since all previous investments are then
sunk, thus making decisions in different periods more similar. In the smooth Markov-perfect (limit-of-
finite-horizon) equilibrium we look at, this leads to a dampening, or complete elimination, of the
fluctuations we find to be optimal under commitment. In conclusion, the policy implications can differ
substantially depending on the extent of government commitment. Thus, our model suggests one avenue for
testing the extent to which commitment is present, at least if the other maintained assumptions of our analysis
are met.
25In contrast, studies based on second-hand asset prices argue that geometric decay is a good model of economic depreciation (see

Hulten and Wykoff, 1981). We believe, however, that the price of second-hand capital is a poor proxy for the internal productive capacity

of installed capital (which is the relevant notion for our analysis), since this is affected by private information and adverse-selection issues.

Moreover, there is some variation in results across studies using second-hand prices. For example, Oliner (1996) finds that economic

depreciation for machine tools is significantly increasing with age.
26In this case, all revenue generated by pre-installed capital could always be fully captured by the government. Thus, in every period the

government would have a separate tax rate for that income which originates in investment prior to period zero. This rate could be bounded

at any point in time, but taxation of the initial base for capital income would then continue until it is exhausted.
27The assumption that the government has no access to age-dependent taxes, upon which our results depend, has been adopted

elsewhere in the literature; see, for instance, Erosa and Gervais (2002).
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Appendix A

A.1. Derivation of (Eq. (11))

From the definition

Tt � bttþ1 þ ð1� rdÞ
X1
s¼2

bs
ð1� dÞs�2ttþs

it follows immediately that

Tt�1 � btt þ ðTt � bttþ1Þbdð1� rÞ ¼ bð1� rdÞTt. (27)

Forward substitution implies

Tt�1 � btt ¼ bð1� rdÞ
X1
s¼0

ð�bdð1� rÞÞsTtþs þ lim
T!1
ð�bdð1� rÞÞTðTtþT � bttþT Þ

¼ bð1� rdÞ
X1
s¼0

ð�bdð1� rÞÞsTtþs,

where limT!1 ð�bdð1� rÞÞTðTtþT � bttþT Þ ¼ 0, since taxes are bounded, implying that their PDVs
(in particular the Tt’s) are also bounded. In particular, the expression above implies that

T0 ¼ bt1 þ bð1� rdÞ
X1
s¼0

ð�bdð1� rÞÞsTsþ1. (28)

Recall that, by definition

T0 � bt1 þ ð1� rdÞ
X1
s¼2

bs
ð1� dÞs�2ts.

This, together with Eq. (28), implies that

X1
s¼2

bs
ð1� dÞs�2ts ¼ b

X1
s¼0

ð�bdð1� rÞÞsTsþ1. (29)

Finally, rearranging the expressions for T̂0 and

T̂0 ¼
X1
s¼1

bs
ð1� dÞs�1ts

leads to

T̂0 ¼ bt1 þ ð1� rdÞ
X1
s¼2

bs
ð1� dÞs�2ts � dð1� rÞ

X1
s¼2

bs
ð1� dÞs�2ts,

which, in turn, can be rewritten, using (28)–(29), as

T̂0 ¼ T0 þ
X1
s¼1

ð�bdð1� rÞÞsTs,

which is expression (11) in the paper.

A.2. Details of the proof of Proposition 2

Solving (27) for ttþ1 yields

ttþ1 ¼
Tt�1 � btt � Ttbð1� dÞ

b2dð1� rÞ
.



ARTICLE IN PRESS
J. Hassler et al. / Journal of Monetary Economics 55 (2008) 692–709 709
Using (13) and the expression for t� given in the text to replace Tt�1 and Tt yields (for tX1)

ttþ1 ¼ t
1þ bdð1� rÞ
bdð1� rÞ

� t
1þ bð1� dÞdð1� rÞ

d2ð1� rÞ2b2
2h1ð�dð1� rÞÞt �

tt

bdð1� rÞ
.

The complete solution to this difference equation can be written as

tt ¼ t� þ
1þ bdð1� dÞð1� rÞ

bð1� bd2ð1� rÞ2Þ
2h1tð�dð1� rÞÞt�1 þ c �

1

bdð1� rÞ

� �t

,

where c is an arbitrary integration constant. The interpretation of the arbitrary c is that there is an infinite
number of tax sequences that implement the optimal allocation. However, since the root of the homogeneous
part, �1=ðbdð1� rÞÞ, is outside the unit circle, the constraint tt 2 ½0; 1� is not satisfied for ca0. Thus, the
only feasible solution to (13) is determined by setting c ¼ 0. Writing this solution recursively yields the
solution in (2).

The non-diverging dynamics implies that it is sufficient that t1 be bounded for guaranteeing a uniformly
bounded tt. Clearly, this condition is satisfied.
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