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Abstract 

We investigate the robustness of the general equilibrium stochastic growth model to 
the introduction of small costs of behavioral sophistication. Consumers choose amongst 
savings rules which vary in sophistication and effort cost. In our model, a given 
consumer’s gain from using a sophisticated rule is higher when other consumers use 
simple rules. Thus, decentralization makes it harder for simple rules to survive than in 
similar decision-theoretic models. Nevertheless, we find: (i) that sophisticated behavior, 
which we model as fully unrestricted, occurs in equilibrium only if its relative effort cost is 
extremely low; and (ii) that rule-of-thumb economies can generate aggregate time series 
that differ substantially from those of the standard model. 

Key words: Stochastic growth model; Robustness; Rules of thumb; Decentralized deci- 
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1. Introduction 

Many recent macroeconomic theories emphasize the intertemporal nature of 
the decisions faced by economic agents. The behavioral predictions of these 
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theories are often quite sophisticated. Motivated by the perception that the 
behavior of actual economic agents often seems less sophisticated than required 
by these theories, some researchers have introduced various forms of ‘bounded 
rationality’ into macroeconomic modeling. One example of this line of research 
is the literature on learning (see, e.g., Evans and Honkapohja, 1993; Sargent, 
1992). 

In this paper, we analyze a dynamic equilibrium environment which is similar 
to the workhorse stochastic growth model, except in one important respect: 
agents face explicit costs of following sophisticated behavioral rules. Given that 
we think that real-world agents do face various forms of costs - costs of 
computation, costs of acquiring information, costs of implementing decisions, 
etc. - we view this type of exercise as an important test of the robustness of the 
standard model as a framework for studying macroeconomic phenomena. The 
purpose of the paper is thus to analyze how the introduction of these costs into 
a decentralized version of the stochastic growth model affects the model’s 
predictions for individual as well as for aggregate variables. A central aspect of 
this robustness exercise is that we consider a decentralized economy. The 
purpose of this decentralization is to allow any given agent to respond to, and 
possibly take advantage of, the unsophisticated behavior of other agents. 

We find that extremely small relative costs of unrestricted behavior, i.e., the 
behavior that would be optimal for the consumers in the absence of any costs, 
lead to equilibrium outcomes dominated by unsophisticated - ‘rule-of-thumb’ - 
behavior. By extremely small we mean costs that are less than a tenth of 
a percent of per period consumption. For example, if the rule of thumb is an 
(optimally chosen) savings rate that is required to be constant over time, then all 
consumers use this rule of thumb so long as its relative cost advantage exceeds 
as little as 0.03% of per period consumption in a reasonably parameterized 
model economy. 

At the same time, rules of thumb can give rise to aggregate time series 
behavior that is quite different in several dimensions than that arising in an 
economy without decision rule costs. For example, one of the main successes of 
stochastic intertemporal optimization has been to explain why aggregate con- 
sumption is considerably less volatile in percentage terms than aggregate in- 
come. With even very small costs of decision rule sophistication, this implication 
may disappear: although the agent would, ideally, like to smooth consumption 
relative to income, the utility gain from smoothing is so small that many much 
cruder rules simply outperform consumption smoothing on a net-of-costs basis. 
In our examples, we show this using the constant-savings-rate rule and a con- 
stant-capital-stock rule: the former makes consumption, investment, and in- 
come equally volatile in percentage terms, while the latter leads to perfectly 
smooth investment, making consumption more volatile than income. 

We also find, as a general point, that the aggregate time series behavior of the 
model is very sensitive to the precise set of rules available to the agents and to 
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the relative costs of these different rules. In particular, equilibrium outcomes in 
which rule-of-thumb behavior dominates need not display time series behavior 
which differs substantially from that displayed by an economy without decision 
rule costs. For example, the stochastic growth model has the property that fully 
unrestricted behavior is very well approximated by making consumption a log- 
linear function of the agent’s state variables (individual and aggregate capital 
and the aggregate productivity shock). Hence, with such a rule, the aggregate 
time series would be very similar to those of the standard model. In this paper 
we make an even stronger point: there exist rules which are much simpler than 
the log-linear rule, and which reproduce the broad time series features of the 
standard model, including the consumption smoothing property. These simple 
rules have only one parameter, and they include what traditionally has been 
called a partial-adjustment rule for capital, as well as a rule setting consumption 
equal to a constant times the agent’s current holdings of capital. 

The economic model we consider is the stochastic neoclassical growth envi- 
ronment populated with a large number of consumers who are identical as of the 
beginning of time. These agents receive labor and capital income from a perfect- 
ly competitive production sector. Since we assume that there is no labor-leisure 
choice, the only decision for the agent is intertemporal: how much to consume 
and how much to save at each point in time. In a decentralized context, this 
decision requires, formally, an analysis of a stochastic optimal control/dynamic 
programming problem (see Brock and Mirman, 1972; Stokey and Lucas, 1989). 
Its solution takes the form of a time-independent decision rule which maps the 
current level of capital holdings by the agent, the aggregate level of capital, and 
the aggregate productivity shock into a choice for current consumption and 
savings. In this paper we assume that this decision rule is ‘hard to implement’ in 
this fully unrestricted form: in particular, there are more restricted types of 
behavior which require less effort. These restrictions take the form of rules of 
thumb, and they include time-and-state-independent savings rates or constant 
capital stocks, restrictions to linear functional forms and to limited dependence 
on the elements of the state vector, and so on. 

An equilibrium in our economy is then one where the agent chooses among 
the set of available decision rules, weighing the effort costs of an unrestricted 
behavioral rule against the utility losses implied by the rules of thumb. In an 
environment in which agents choose between the two types of decision rules, 
such as, for example, a sophisticated (fully unrestricted) rule and an unsophisti- 
cated rule of thumb characterized by a constant savings rate, three types of 
equilibria can emerge. If the relative effort cost associated with using the 
sophisticated rule, q, is smaller than some number q, then all agents use the 
sophisticated rule. If the cost is larger than some othzr, higher number, r& then 
all agents use the simple rule. Finally, if q E (q, @), then a fraction g(q) of the 
agents use the sophisticated rule and the rest u& the rule of thumb. We find g to 
be a continuous and monotonically decreasing function. There is, hence, the 
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possibility that agents sort themselves ex ante into sophisticated and less 
sophisticated types. In this kind of equilibrium, the sophisticated agents are able 
to take advantage of their better ability to adjust consumption and investment 
behavior in response to shocks and changes in the return to capital, but these 
advantages are just enough to equal the costs borne by using the complicated 
rule. 

Our results are related to earlier findings by Lucas (1987), Cochrane (1989), 
and Smith (1990, 1992). Lucas, first, compared the utility of a completely flat 
consumption profile with that of a fluctuating profile, with the magnitude of the 
fluctuations chosen to match that of observed aggregate consumption series. He 
found the difference in utility to be very small. Cochrane and Smith then looked 
at a larger class of rules of thumb, and argued more explicitly in terms of the 
relative costs of using the different rules: even if the relative cost of following 
fully flexible decision rules rather than simpler rules of thumb is very small, then 
in economies where all agents use the same decision rule, we would expect the 
agents to become rule-of-thumb decision makers. 

Although quite suggestive, these findings clearly have a problem: they are not 
derived in decentralized economies.’ In this context, this shortcoming is poten- 
tially very troublesome: although it may not pay off for all agents to switch to 
sophisticated rules in a coordinated fashion, a given small agent operating in an 
economy inhabited by rule-of-thumb decision makers may be able to obtain 
much higher payoffs from switching to a sophisticated rule by taking advantage 
of the simple rules used by other agents. In other words, the one-agent experi- 
ments performed by Lucas, Cochrane, and Smith suggest a lack of robustness of 
the model which may disappear once one recognizes that sophisticated agents 
can ‘exploit’ the suboptimal behavior of others. 

Our results here show that, qualitatively, this mechanism is indeed operating: 
the cutoff costs above which we would observe only rule-of-thumb decision 
makers in the decentralized economy are one-and-a-half times larger (in welfare 
terms) than the welfare gains that obtain in a centralized setting such as that 
explored by Smith (1990,1992). The amount of the change, however, is not large 
enough to shake the main implications of this line of work regarding the 
robustness of the stochastic intertemporal optimization framework. 

Our approach to modelling lack of full consumer sophistication is not to give 
up rationality and the consumer’s understanding of the world in which he lives, 
but instead to recognize the existence of various costs associated with making 
and implementing decisions. This view is consistent with ‘rule-rationality’ as 
discussed by Robert Aumann in his ‘Perspectives on Bounded Rationality’ lecture 
(Aumann, 1992), and it has also been explored independently in the context of 

1 More precisely, they are decision-theoretic or, alternatively, they assume that all agents must 
behave in the same way. 
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a more standard game-theoretic setting (see Rosenthal, 1991). In contrast, the 
learning literature postulates that the agent is not fully rational: he uses, say, 
a forecasting device which is postulated in an ad hoc fashion, and which could be 
improved upon by an agent who forecasts in an unrestricted way and under- 
stands the behavior of the rest of the agents in the economy. 

What is ad hoc in this paper, and therefore in its current form a weakness, is 
the structure we impose for the costs associated with the different decision rules. 
In particular, the complexity of the rules is not made formal by appeal to 
numerical procedures involved in complex computations (as in, for example, 
Hurwicz, Reiter, and Saari, 1992). Ideally, one would like the costs to be more 
easily identifiable in order to impose further empirical discipline on the analysis 
~ as we formulate the costs now, only introspection can tell whether a given cost 
is empirically plausible. This weakness is especially important here, since we find 
that the model’s aggregate behavior depends critically on the precise set of rules 
available to consumers, together with the rules’ associated costs. For example, if 
the constant-savings-rate rule is the cheapest possible rule, the aggregate time 
series will look quite different than if the partial-adjustment rule is the cheapest 
rule. 

Moreover, we also do not attempt to solve the fundamental infinite-regress 
problem associated with ‘deciding how to decide how to _. . ’ (see Lipman, 1991). 
Indeed, one interpretation of our costs is simply that they are associated with the 
implementation of complex behavior, and not with evaluating its benefits. Our 
main goal in this paper, however, is a preliminary quantitative evaluation of the 
macroeconomic effects of allowing rule-of-thumb behavior. For this purpose, we 
prefer our simple operationalization of behavioral costs, reserving a search for 
better structural formulations for future research. It should also be pointed out 
that our structure does provide more structure than do models with purely 
‘irrational’ behavior taken as exogenous inputs into the analysis.2 

An additional result of our analysis is that the kind of decentralized decision 
rule selection we consider gives rise to a kind of ‘externality’. The reason why 
social benefits from choosing decision rules do not coincide with social costs is 
that the consumption possibility set of the less sophisticated agents depends on 
aggregate choices. For example, the set of attainable levels of investment and 
consumption for an agent using a constant-savings-rate rule depends on the 
process for his income, which in turn depends on aggregate choices. As a result, 
the competitive equilibrium fraction g is not, in general, ‘socially optimal’. More 

‘For examples see Akerlof and Yellen (1985a, b), Caballero (1991), Campbell and Mankiw (1990), 

Cochrane (1989), De Long et al. (1990), Haltiwanger and Waldman (1985, 1991), Ingram (1990), 

Mirrlees and Stern (1972), Smith (1990, 1992). and Weil (1991). In Evans and Ramey (1992) and 

Crettez and Michel (1990), agents are allowed to choose the level of sophistication of their actions, 

but in economic environments that difier substantially from the stochastic neoclassical growth 

environment studied here. 
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precisely, if the relative effort cost r,r E (q, $, then we find that an ex ante social 
welfare criterion would lead to a fraction of sophisticated agents that is smaller 
than that resulting in competitive equilibrium. It is also true that a move to the 
fraction g* -C g that maximizes ex ante utility makes both types of agents better 
off ex post. The deviation from a socially optimal fraction of sophisticated 
agents is quantitatively small and, in economic terms, has only a small effect on 
agents’ welfare.3 

We describe the setup with decision rule selection in Section 2, and in Section 
3 we describe our results. Finally, Section 4 draws tentative conclusions and 
makes some suggestions for future research. 

2. The model 

In this section we describe the economy with decision rule selection. To 
simplify the notation in our presentation, we focus on a simple case: one in 
which each agent has a choice between fully unrestricted behavior and a con- 
stant-savings-rate rule (with the savings rate chosen optimally). It is straightfor- 
ward to modify this framework to handle other pairs of decision rules, and in 
Section 3 we provide results for economies with other pairs of decision rules as 
well. 

2.1. The economic environment 

We assume that there is a continuum, say of measure 1, of identical agents. 
Agents derive utility from consumption goods of which there is one type per 
period. There is a constant-returns-to-scale production technology that trans- 
forms capital and labor at time t into consumption good at time t. We assume 
that this production function is given by 

Y, = KPH: -” exp( z,), 

where Y, is aggregate output, K, is the aggregate capital stock, and H, is the total 
amount of labor, which we assume is inelastically supplied at the (total and 
per-capita) amount of 1. The technology shock z, follows the stochastic process 

3This result is not necessarily at odds with the finding in Akerlof and Yellen (1985a) that suboptimal 
(near-rational) behavior in an economy with externalities can lead to a first-order decrease in 
aggregate (social) welfare. In our framework, the welfare loss associated with the competitive 
equilibrium may indeed be first-order, but is nonetheless quantitatively small. 
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z?+~ = PZ, + G+~, with G+~ N iidN(0, a,‘). The parameters c1 and p satisfy 
c( E (0, 1) and p E (- 1, 1). 

Intertemporal production (i.e., capital accumulation) takes place according 
to 

K t+l = (1 - W, + X,, 

where X, is total investment, K. is given, and 6 E (0, 1). The resource constraint 
in the economy reads 

c, + x, < Y,, 

where C, is total consumption. 
We define the following functions: 

MPK,(K,, z,) = aKPml exp(z,), MPLt(K,, z,) = (1 - C()KPexp(z,). 

These variables, the marginal productivity of capital and labor, respectively, are 
needed in the specification of the agent’s consumption possibility set, C. This 
consumption possibility set contains the admissible processes of consumption, c, 
and effort levels, e E (0, l}. The description of preferences that will be made 
below shows how effort affects utility. The general idea here is that effort can be 
expended in return for a less restrictive set of possible consumption processes. 
There is a fundamental difference between the consumption possibility set used 
here and those of standard, Arrow-Debreu economies. In the latter, the con- 
sumption possibility set is simply an appropriately chosen space that involves 
nonnegativity and certain more technical conditions needed for the existence of 
a price functional that has an inner product representation. The consumption 
possibility set here, on the other hand, depends on aggregate technology vari- 
ables, and in its specification it uses an individual version of the intertemporal 
technology. 

The set C depends on the stochastic processes MPK, and MPL,, since the 
less sophisticated consumption rules express consumption as a function of 
these variables (later to be interpreted as ‘income’). The set is defined as 
follows:4 

C = {(c, e) E %? x (0, l} : ei ere=landcEVore=OandcE%?U}, th 

“We omit the measurability restrictions on the stochastic processes described. These restrictions are 

straightforward but tedious to state, since they involve the processes MPK, and MPL,. 
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where %7 is a suitable set of stochastic processes (measurable and nonnegative) 
and where 

V, = {c E %: 3s E [0, l] and (x, k) E %‘* such that 

ct + xt = MPKWt, z,k + MP-G(L 4, 

k t+l = (1 - 6)k, +x, with k. = K,,, and 

q/x, = l/s - l}. 

In the definition of %?“, the lower-case variables c,, x,, and k, denote, respec- 
tively, period t values for consumption, investment, and the capital stock for an 
individual agent. In other words, if effort is expended (e = l), the consumption 
possibility set is unrestricted, whereas in the case no effort is expended (e = 0), 
the agent is restricted to consumption paths such that the ratio of consumption 
to total ‘private resources’ at every point in time is equal to a number 1 - s that 
is constant across time and states but can be chosen freely. The private resources 
are selected as the sum of the products between each factor and its marginal 
product, using the capital path that is implied by the consumption/savings 
behavior given by s and using an initial value of capital that satisfies k. = K,,. In 
Section 3, we will consider other kinds of simple rules as well, and it should be 
clear to the reader how VZU has to be formulated in each case. 

Finally, the agent’s preferences over consumption streams and effort are 
represented by 

EO f P’44 - v, 
t=o 

where rl is the utility loss of a unit of effort and E0 is the expectation operator 
conditional on the time 0 information set. 

2.2. Equilibrium 

We use a competitive equilibrium concept. The final output in period t is 
produced in firms solving 

max Y, - r,K, - w,H, 
&H, 

subject to 

Y, = KPH:-“exp(z,), 
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where rt and w, are the relative prices of capital and labor services. Because of the 
constant returns assumption, these will have to equal MPK, and MPL,, respec- 
tively, in equilibrium. Consumers solve 

max E0 f B’u(c,) - qe 
c. c, k. x, ,’ t=o 

subject to 

c, + x, = rrkt + w, = y,, 

k t+, = (1 - W, + x,, 

ko = Ko, 

(c, e) E C. 

It is hence implicit in this problem from the last of the constraints that the agent 
has as an option to select e = 0 and a corresponding constant savings fraction s. 
Also note that, in the case e = 0, the capital accumulation path implicit in the set 
C will be consistent with the paths of the explicit constraints above, since in 
equilibrium rental rates coincide with marginal products. 

Note that the sophisticated agent, i.e., an agent who selects e = 1, does not 
have access to complete markets. This is not, however, a restriction: if a sophisti- 
cated agent were to trade in some contingent claim not available through the 
present market structure, he would have to trade with another sophisticated 
agent. This observation follows from our assumption that agents who choose 
e = 0 have access only to their special decision rule: allowing such an agent to 
trade in additional claims would violate this assumption. But since sophisticated 
agents are all alike, and since their preferences are convex, they will prefer to be 
the same and hence not need a more elaborate market structure. 

Observe that the consumer’s problem can be solved in two steps. In 
the first step, the consumer selects consumption paths corresponding to each 
of the cases e = 0 and e = 1 separately. In the second step, the consumer 
chooses the value of e that is associated with the highest utility as calculated in 
the first step. The first step involves solving the sophisticated agent’s problem 
(PS): 

us e max E. f /?‘u(c,) - q 
c,k,x.y r=o 
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subject to 

c,+xt=r,k,+w,=y,, 

k t+l = (1 - @kt + xr, 

ko = Ko, 

and solving the unsophisticated agent’s problem (PU): 

vu E max E. f fi’u(c,) 
E. s, k. x, Y t=o 

subject to 

ct + xt = rtk, + w, = y,, 

k t+l = (1 - @k, + x,, 

ko = Ko, 

c E %? with c,/y, = 1 - s. 

These problems give rise to laws of motion for the total capital stock of 
sophisticated agents, I&, and of unsophisticated agents, KU,. The aggregate 
capital stock is K, = BKsr + (1 - t9)Kur, 8 being the fraction of sophisticated 
agents in equilibrium. 

The sophisticated consumer’s problem is recursive. This follows, first, since 
the prices are functions of K, and z,. Second, these variables are composed of 
KS,, KUt, and z,, which jointly follow a recursive law of motion. The variable 
zI does so by assumption, Ksr does so by hypothesis, and Ku,+ 1 equals 

(1 - WU, + screw%, + (1 - @Km z,)Ku, 

+ ~~W%t + (1 - @Kut, z,)l, 

which is an expression in Kst, KU,, and zt only. Because of the recursive, 
standard nature of this problem, it generates a unique solution in the form of 
a decision rule for capitalfa, with k,,, =f,(k,, Kst, KU,, z,). 
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The relevant state variable of the economy is the triplet (KS,, Kat, 2,). The 
aggregate laws of motion of the two capital stocks are denoted Fs and Fv: 

As argued above, the rental rates are both functions of the aggregate state. 
We will focus on equilibria in which all unsophisticated agents choose the 

same value of s - this is motivated by our numerical finding that the unsophisti- 
cated agent’s problem has a unique solution. We denote the unsophisticated 
agent’s decision rulefu, with 

k r+ I =fdk,, Kst, Km, 4 

= (1 - 6)k, + s[MPK,(BKs, + (1 - @KU,, z,)k, 

+ MPJWKS, + (1 - WG,t, ~41. 

Our equilibrium can hence be defined as follows: 

Dejnition 1. A competitive equilibrium is a pair of pricing functions r(Ks, KU, z) 
and w(Ks, KU, z), a savings rate s, a fraction 8, aggregate laws of motion 
Fs(Ks, KU, z) and Fb(Ks, Kv, z), and decision rules f,(k, KS, KU, z) and 

fv(k, Ks, Ku, z), such that 

(1) Sophisticated agents maximize: fs solues (L’S). 

(2) Unsophisticated agents maximize: s and fv solve (PU). 

(3) Firms maximize: r = MPK and w = MPL. 

(4) Consistency holds: Fs(Ks, Ku, z) = fs(Ks, KS, Kv, z) and FU(Ks, Kv, z) = 
fu(Ka> KS, KU> z). 

(5) Agents make optimal decision rule choices: (a) 8 E (0, 1) =j vs = vu, 
(b) us > V” = 8 = 1, (c) us < U” = 8 = 0. 

It should be noted, again, that although this definition is written specifically for 
the case of a constant-savings-rate rule, it is straightforward to amend it to allow 
for different, and possibly more, types of rules. 

2.3. Some qualitative equilibrium characteristics 

We have not formally proved existence of the equilibrium as defined. 
However, an algorithm for computing the equilibrium numerically converges 
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successfully for a variety of starting values, suggesting that equilibria do exist 
and are unique. The methods for computing equilibria are described in the 
Appendix. 

In this section, we describe some of the qualitative characteristics of the 
computed equilibria. These qualitative characteristics apply not only to the 
economy in which consumers choose between an unrestricted rule and a con- 
stant-savings-rate rule, but also to economies with other pairs of decision rules 
(in particular, those for which we report numerical results in Section 3). 

In all of the numerical examples that we have computed, we find that the 
fraction 0 of sophisticated agents is a weakly decreasing function g(q) of the 
effort cost. We also find that there always exists a pair of costs 7 > q > 0 such 
that g(q) = 1 if q d q, g(q) = 0 if ye B f, and g(q) is continuous aid strictly 
decreasing over [Q 71. 

To gain more insight into the determination of 0, it is useful to think about the 
utility achieved by the two kinds of agents (gross of effort cost) as a function of 
the equilibrium fraction of sophisticated agents: Us(e) and U,(0). It will always 
be true that sophisticated agents have higher utility (gross of effort cost), i.e., 
Us(@) > U,(e) for all 8. We also find that U,(e) is a continuous and monotoni- 
cally decreasing function, whereas U,(0) is continuous and monotonically 
increasing. In other words, sophisticated agents are better off with fewer sophis- 
ticated agents in the economy, whereas the reverse is true for the unsophisticated 
agents. There is, hence, a sense in which sophisticated and unsophisticated 
agents thrive off of each other, and hence ‘disagree’ over the desirability of 
changes in 8.’ 

Following these observations, and the equilibrium definition, the cost q that 
supports the fraction 0 is simply U,(e) - U,(0). In particular, the cutoff levels 
for the effort costs satisfy q = U,(l) - U”(l) and f = U,(O) = U,(O). Since 
q = Us(e) - U,(0) is continuous and monotonically decreasing in 8 over [0, 11, 
The competitive equilibrium fraction 0 of sophisticated agents must fall as q rises 

over Cg, r?l. 

3. Results 

In this section we present our quantitative results. First, we focus on the case 
of the constant-savings-rate rule used in the exposition in the previous section. 
We use this rule to make two points. The first of these points is that equilibria 

‘In the terminology of Haltiwanger and Waldman (1985, 1991), the economy with decision rule 

selection is characterized by ‘congestion effects’ and ‘strategic substitutability’. Haltiwanger and 

Waldman argue that in such environments sophisticated agents have a disproportionately large 

impact on the economy’s equilibrium. Our goal in this paper is to measure these effects quantita- 
tively in a specific general equilibrium environment. 
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will be characterized by rule-of-thumb behavior unless the cost of sophistication 
is extremely small. The second point we make with this rule is that it does also 
give rise to aggregate time series statistics which are quite different from those of 
the standard model. We choose this particular rule to make these points because 
of its extreme simplicity - it requires knowledge only of present income and it 
has only one parameter - and because it has strong roots in the traditional 
macroeconomic literature.6 

Second, in the next subsection we consider a variety of other simple rules. 
These other rules serve to show that our key result - that rules of thumb are 
likely to dominate the equilibrium behavior of agents unless their relative cost 
advantage is extremely small - is quite general. The rules we choose also show 
how aggregate time series can look quite different depending on the types of 
rules considered. The rules which we look at encompass both consumption 
smoothing and investment smoothing. 

Third and finally, this section contains some remarks on properties of optimal 
allocations. This section is relevant in our economies because of the externality 
that enters via the agents’ consumption possibility sets. 

3.1. The constant-savings-rate rule 

Our specific functional form for preferences has either U(G) = (1 - v)- 1 c: - ‘, 
where v > 1 is the coefficient of relative risk aversion, or U(G) = log(c,). In the 
numerical computations we report below, the structural parameter values are 
set as follows: c1 = 0.36, /I = 0.99, S = 0.025, p = 0.95, and 6, = 0.007. These are 
standard choices for these parameter values in the economy without decision 
rule costs (see, for example, Hansen and Wright, 1992). These parameter values 
reproduce certain observed long-run time-series statistics such as capital’s share 
of income and the capital-output ratio. In addition, in the economy without 
decision rule costs, these parameter values generate equilibrium time series 
whose persistence and volatility roughly match those of observed U.S. aggregate 
time series.’ The only parameter which is difficult to pin down on the basis of 
first- and second-moment properties is the coefficient of relative risk aversion v. 
We therefore report sensitivity analysis with respect to this parameter: we let 
v take on the values 1, 2, 3, and 5 (with v = 1 corresponding to logarithmic 
preferences). The model is solved for 101 different values of the effort cost 
parameter q, with implied values of 0 ranging from 0 to 1 in increments of 0.01.’ 

6 Many Keynesian models characterize consumer savings behavior using this rule. Moreover, Solow 

(1956) uses this rule in his seminal paper on neoclassical economic growth. 

‘The economies with decision rule costs reproduce the same long-run statistics but differ in their 

second-moment properties. 

‘The Appendix shows how the equilibrium is computed by selecting a value of 0 and backing out the 

parameter r) that supports the given 0 as a competitive equilibrium. 
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Implementation Cost (in terms of a percentage loss in consumption) 

Fig. 1. Competitive equilibrium fraction of sophisticated agents vs. implementation cost. 

We make the cost q economically interpretable by expressing the loss in utility 
(gross of effort cost) in terms of a uniform percentage decrease in consumption 
across all periods of the planning horizon. That is, we solve for I in the following 
equation: 

Eo f P’ukst) - v = Eo f B’4U - 4cs,)> 
r=o r=o 

where cs is the equilibrium consumption sequence chosen by the sophisticated 
agent. Note that the term 1 - 1 on the right-hand side of the equation factors 
out for the utility functions that we use. When v > 1, the solution for R. is 
1 = 1 - (1 - ~/Us)l’(l-“), where US is the equilibrium utility (gross of effort 
cost) of the sophisticated agent. For logarithmic preferences (v = l), the solution 
is: II = 1 - exp( - ~(1 - a)). The cost ‘1 hence is equivalent to a 100 x 1% 
decrease in consumption per period, uniformly across all periods and states. 

In Fig. 1 (which is based on v = 2), we show the equilibrium fraction of 
sophisticated agents as a function of the effort cost 7, expressed in terms of a per 
period percentage loss in consumption as calculated above. We see that if the 
cost is less than 0.013% of per period consumption, then all agents use the 
sophisticated rule in equilibrium. If the cost on the other hand is greater than 
0.03%, then all agents use the unsophisticated decision rule. Thus, if the cost is 
smaller than 0.03% of per period consumption, at least some agents use the 
sophisticated rule in equilibrium. We use this number as a measure of the 
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Fig. 2. Utility of sophisticated agents (top) and unsophisticated agents (bottom) in competitive 

equilibrium. 

‘incentive to optimize’ in this economic environment. This number is very small: 
assuming annual per capita consumption expenditures of $20,000, no consumers 
use the sophisticated rule in equilibrium unless its relative cost is less than 
roughly $6 per year. 

It is useful at this point to make a comparison between the results obtained 
here and the corresponding results in decision-theoretic models. As pointed out 
earlier, one interpretation of the decision-theoretic setups is that they restrict all 
agents to using the same rule. The cutoff cost above which those models predict 
rule-of-thumb behavior then corresponds to the gain a typical agent would 
realize if all agents were to switch simultaneously to the fully optimal rule. For 
our present environment, we calculate that this cutoff cost is 0.018% of per 
period consumption. The cutoff cost in the decentralized model of 0.03% (which 
is the value above which all agents choose to use the constant-savings-rate rule) 
is therefore roughly one-and-a-half times larger than the cutoff cost computed 
under the alternative assumption that agents do not explicitly choose decision 
rules (and all agents use the same rule). 

Fig. 2 graphs the utility (gross of effort cost) for sophisticated and unsophisti- 
cated agents for a range of values of the equilibrium fraction of sophisticated 
agents, 0. The difference between the curves is the utility cost of the effort 
expense associated with the sophisticated rule that generates the given 13 in 
equilibrium. 

We also simulated time series for investment, consumption, and income of the 
two kinds of agents in the equilibrium with decision rule selection. Fig. 3, which 
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Fig. 3. Investment of sophisticated agents (thin) and unsophisticated agents (thick) in competitive 

equilibrium. 

is based on the equilibrium in which half of the agents are sophisticated and the 
other half unsophisticated, graphs typical investment time series for the two 
types of agents.g In general (also for other values of O), the time series for 
investment of sophisticated agents display much greater volatility in percentage 
terms than those for unsophisticated agents.” Sophisticated agents also choose 
higher volatility for income time series than do unsophisticated agents, but 
lower volatility for consumption time series than do unsophisticated agents.’ ’ 
The differences in volatilities, however, are the most pronounced for investment. 

As a consequence of these differences in volatilities, aggregate time series in an 
economy in which all agents use the unsophisticated rule behave very differently 
from aggregate time series in the standard case where all agents use the 
sophisticated rule. Most notably, when all agents use the unsophisticated 
(constant-savings-rate) rule, time series for consumption, investment, and 

‘The thicker (darker) line in the graph is the investment time series for unsophisticated agents; the 

thinner (lighter) line is the investment time series for sophisticated agents. 

“Specifically, we measure volatility as the standard deviation of the natural logarithm of the given 

time series. 

“It is also the case that the volatilities of investment and output time series for sophisticated agents 

increase markedly as the equilibrium fraction of sophisticated agents falls. On the other hand, the 

volatility of consumption time series for sophisticated agents remains roughly constant as the 

equilibrium fraction of sophisticated agents falls. 
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income display equal volatilities (this follows from the fact that consumption, 
investment, and income are proportional to each other for the unsophisticated 
agent). Thus the small costs introduced into the standard framework lead to 
equilibrium outcomes that have very different dynamics. One of the successes of 
the real business cycle framework, namely the ability of intertemporal optimiza- 
tion - consumption smoothing - to account for the relative volatilities of the 
observed consumption, investment, and income series in large (‘closed) econo- 
mies, is now less of a given: if we believe that there are costs of implementation 
similar to those described here, then in fact this model loses its power to explain 
these aspects of the data. 

Finally, Table 1 presents the sensitivity analysis with respect to v. It shows 
that more curvature in the utility function u leads to higher cutoff costs: with 
more curvature, the agent perceives volatile consumption as more painful, and 
hence the agent is less willing to use a rule of thumb which does not smooth 
consumption relative to income. However, the cutoff costs for the case v = 5 
remain quite small: no consumers choose the unrestricted rule if its relative cost 
exceeds 0.079% of per period consumption (or $16 per year assuming annual 
consumption expenditures of $20,000). Table 1 also shows some properties of 
the aggregate time series for the alternative values of v and for different fractions 
of sophisticated agents in equilibrium; these are all qualitatively similar 
(and when all agents are rule-of-thumb decision makers, they are virtually 
identical). ’ * 

3.2. Other simple rules 

In this section we replicate the results of the previous subsection using other 
rules of thumb in place of the constant-savings-rate rule. In particular, we look 
at three other rules of thumb: 

(1) A partial-adjustment-of-capital rule: k,, 1 = yk, + (1 - y)k:, where 

and y is chosen optimally (k: is the steady state capital stock if the shock 
z, remains indefinitely at its current level). 

(2) A consumption function reading: c, = ak,, with a chosen optimally. 

12For the case v = 2, Table 4 displays the decision rules of sophisticated agents and the savings rates 
of unsophisticated agents for a range of values of 0. 
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Table 1 

Cutoff costs and aggregate time series statistics: Unrestricted rule vs. constant-savings-rate rule 

tJ=l 

cutoff costs 

A B C B/C 

0.0064% 0.0162% 0.0094% 1.72 

Aggregate time series statistics 

e a, ox OY cork Y) cork y) Cody, y-1) Cody, y - 2) 

1.0 2.43% 6.09% 3.08% 0.928 0.901 0.974 0.949 

0.5 2.43% 4.47% 2.87% 0.982 0.955 0.970 0.941 

0.0 2.61% 2.61% 2.61% 1.000 1.000 0.963 0.929 

v=2 

cutoff costs 

A B C B/C 

0.013% 0.030% 0.018% 1.70 

Aggregate time series statistics 

e 0, 

1.0 2.35% 

0.5 2.39% 

0.0 2.61% 

0, 

6.62% 

4.80% 

2.61% 

UY 

3.25% 

2.96% 

2.61% 

cork Y) 

0.947 

0.990 

1.000 

cork Y) 

0.942 

0.978 

1.000 

Cody, Y - I) 

0.977 

0.972 

0.963 

WY, Y- 2) 

0.954 

0.945 

0.929 

v=3 

cutoff costs 

A B C B/C 

0.021% 0.046% 0.028 % 1.64 

Aggregate time series statistics 

e 0, UX UY cork Y) cork Y) Cody, Y - II WY, Y - 2) 

1.0 2.32% 7.14% 3.40% 0.954 0.959 0.979 0.958 

0.5 2.37% 5.10% 3.04% 0.993 0.987 0.973 0.948 

0.0 2.61% 2.61% 2.61% 1.000 1.000 0.963 0.929 
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Table 1 continued 

V=S 

cutoff costs 

A B C B/C 

0.039% 0.079% 0.051% 1.53 

Aggregate time series statistics 

B 0, 0.X eY cor(c, Y) co+, y) cor(y, Y-d WY. Y- 2) 

1.0 2.30% 8.05% 3.66% 0.962 0.974 0.982 0.964 

0.5 2.34% 5.60% 3.16% 0.997 0.995 0.975 0.952 

0.0 2.61% 2.61% 2.61% 1.000 1.000 0.963 0.929 

v is the coefficient of relative risk aversion (v = 1 denotes logarithmic preferences). The number in 

column A is n; below this cutoff cost, all agents use the unrestricted rule. The number in column B is 

7; above thiscutoff cost, all agents use the constant-savings-rate rule. The number in column C is the 

cutoff cost in a centralized, or decision-theoretic, setup; this is the cutoff cost above which all agents 

use the constant-savings-rate rule in an environment in which all agents are required to use the same 

rule. All cutoff costs are expressed in terms of a uniform percentage decrease in per period 

consumption. B/C is the ratio of column B to column C. fl is the competitive equi!ibrium fraction of 

sophisticated agents (i.e., agents using the unrestricted rule); 1 - 0 is the fraction of unsophisticated 

agents (i.e., agents using the constant-savings-rate rule). ni is the standard deviation of the logarithm 

of time series i (expressed as a percentage); cor(i, j) is the contemporaneous correlation between the 

logarithm of time series i and the logarithm of time series j; cor(y, y-J is the correlation between log 

output and log output lagged k periods (‘c’ denotes aggregate consumption consumption, ‘x’ denotes 

aggregate investment, and ‘y’ denotes aggregate output). Time series statistics are estimates based on 

simulated time series with 50,000 observations. 

(3) A constant-capital rule: k, = k, where 

is the deterministic steady state capital stock in the economy without 
decision rule costs. 

Note that all these rules are very simple in that they each have at most one free 
parameter (the constant-capital rule has no free parameters). The partial- 
adjustment rule, like the constant-savings-rate rule, has roots in the traditional 
macroeconomic literature, but it offers much more in terms of possibilities for 
consumption smoothing. The constant-capital rule does the reverse: it smooths 
investment completely and makes consumption more volatile than income. 
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Finally, the c = ak rule is similar to the constant-savings-rate rule, but offers 
much more in terms of consumption smoothing possibilities. Two of the four 
rules that we consider in this paper - the constant-savings-rate rule and the 
partial-adjustment rule - have built-in responses to the aggregate productivity 
shock; the others do not. 

Besides having some intuitive appeal, we choose this set of rules to make our 
points as clearly as possible. First, the rules are all very simple. Second, they all 
appear in equilibrium except when the cost of the sophisticated rule is extremely 
low. Third, they give rise to quite different aggregate time series behavior. We do 
not consider more complicated rules, since this is unlikely to lead to any 
surprises: the greater the number of free parameters in the rules and the more 
complicated the rules are allowed to look, the ‘better’ will the rules be for the 
agents and the more easily will agents be willing to use the rules. A good 
example of this is the rule making consumption a log-linear function of the 
agent’s own capital, aggregate capital, and the shock: this rule is known to be 
very close to the fully optimal rule, not only in utility terms but also in its time 
series properties (see, for example, Christiano, 1990). 

It should also be pointed out that consumption rules that are more extreme 
than the constant-capital rule can be difficult to use. For example, a constant- 
consumption rule is not feasible unless consumption is set at a very low level, 
namely that level feasible with the worst possible sequence of realizations of the 
productivity shock - any higher constant consumption level would have to be 
violated with positive probability. Therefore, consumption has to be set in 
relation to at least one of the state variables in the economy. 

Turning to the results, Table 2 shows a comparison of the three rules of thumb 
listed above (assuming v = 2 throughout).i3 We see that the cutoff costs above 
which all agents use the rule of thumb in equilibrium are all very low, with the 
highest value recorded for the constant-capital rule: 0.089% of per period 
consumption. Furthermore, it is clear that partial adjustment of capital provides 
for substantial consumption smoothing; a similar proposition holds for the 
c = ak rule, but to a somewhat lesser extent. The ‘best’ rule - in the sense that 
this rule has the smallest cutoff cost above which all agents use the rule in 
equilibrium - is the partial-adjustment rule. The aggregate time series statistics 
when all agents use either the partial-adjustment or c = ak rules are much closer 
to those of the standard model than when all agents use either the constant- 
savings-rate or constant-capital rules. 

Finally, we also let two rules of thumb compete, assuming implicitly that the 
fully sophisticated rule is prohibitively costly for any agent. These experiments 

13The optimal choice for y in the partial-adjustment rule varies only to a small degree with the value 

of q: the optimal choice is close to 0.955 in all cases. Similarly, the optimal choice for a in the c = ak 

rule is close to 0.0725 regardless of the value of q. 
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Table 2 

Cutoff costs and aggregate time series statistics: Unrestricted rule vs. three rules of thumb 

Partial-adjustment-of-capital rule 

cutoff costs 

A B C B/C 

0.0019% 0.0142% 0.0043% 3.26 

Aggregate time series statistics 

0 uc 0.x CY corfc, y) co+, y) corty, y-t) tort y, Y - 2) 

1.0 2.35% 6.62% 3.25% 0.947 0.942 0.917 0.954 

0.5 2.39% 5.95% 3.10% 0.948 0.927 0.974 0.949 

0.0 2.49% 5.18% 2.90% 0.939 0.878 0.971 0.942 

c = ak rule 

cutoff costs 

A B C B/C 

0.0087% 0.0346% 0.0143% 2.42 

Aggregate time series statistics 

0 0, ux UY cork Y) cor(x, Y) MY, Y - 1) WY, Y - 2) 

1.0 2.35% 6.62% 3.25% 0.947 0.942 0.971 0.954 
0.5 2.44% 6.53% 3.15% 0.913 0.896 0.975 0.951 

0.0 2.63% 6.49% 3.01% 0.860 0.798 0.973 0.945 

Constant-capital rule 

cutoff costs 

A B C B/C 

0.031% 0.089% 0.046% 1.92 

Aggregate time series statistics 

0 

1.0 

0.5 

0.0 

UC 

2.35% 

2.49% 

3.02% 

G 

6.62% 

3.66% 

0.00% 

QY 

3.25% 

2.17% 

2.24% 

cork Y) 

0.947 

0.997 

1.000 

cork y) 

0.942 

0.989 

0.000 

cor(y, Y - 1) 

0.977 

0.968 

0.950 

WY, y-4 

0.954 

0.937 

0.903 

The coefficient of relative risk aversion v = 2 for all three cases. fl is the competitive equilibrium 

fraction of agents using the unrestricted rule; 1 - 0 is the fractioh of agents using the rule of thumb. 

For additional explanation, see the notes to Table 1. 
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are designed to show more explicitly that the aggregate time series behavior may 
depend crucially not only on the costs of the rules of thumb relative to those of 
unrestricted behavior, but also on the relative costs of different simple rules. 
Table 3 makes this point clear, contrasting the constant-savings-rate rule (im- 
plying no consumption smoothing) with the c = ak rule (implying substantial 
consumption smoothing). Table 3 also contrasts the partial-adjustment rule 
with, respectively, the constant-savings-rate rule and the c = ak rule. 

3.3. Socially optimal allocations 

The environment studied here has externalities in that the consumption 
possibility set depends on the aggregate law of motion of the distribution of 
capital. In particular, when the agents make decisions, they do not internalize 
the effect of their choices on the consumption possibilities for agents who follow 
rules of thumb: aggregate investment at time t decisively affects how these agents 
will consume at time t + 1. 

Given that all agents are alike as of time 0, the planning problem is straight- 
forward: maximize total utility of all agents. This, in turn, is equivalent to 
maximizing the weighted sum of sophisticated and unsophisticated agents’ 
utilities, with the weights being the fraction of each type. That fraction is now 
a direct choice variable from the point of view of the planner. The constraints to 
the planning problem are also clear; they are simply the aggregate technology 
constraints and the restriction that the two kinds of agents have to choose 
consumption processes in V and V,, respectively. 

To gain further insight into the externality described above, we solve the 
planning problem numerically for the economy in which agents choose between 
the unrestricted rule and the constant-savings-rate rule.14 We find that the range 
of values of the effort cost q for which both types of agents coexist is the same as 
for the competitive equilibrium allocation. Furthermore, as shown in Smith 
(1992), over the range where there is only one type of agent, the socially optimal 
decision rules coincide with the competitive equilibrium decision rules - a first 
welfare theorem for special versions of this environment.i5 In other words, in the 
case where all agents are of the same type, the agents choose socially optimal 
decision rules in equilibrium, and the externality disappears. 

However, over the range where 8, the competitive equilibrium fraction of 
sophisticated agents, is in (0, l), the competitive equilibrium produces subopti- 
ma1 behavior. First, decision rules and savings rates are not optimal, even if the 

140nce again, the qualitative results reported here carry over to the economies in which agents 

choose between other types of rules. 

“It is straightforward to verify that the first-order conditions in the two cases coincide and that 

these conditions are sufficient for maxima in both cases. 
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Table 3 

Cutoff costs and aggregate time series statistics: Three pairs of rules of thumb 

Partial-adjustment-of-capital rule vs. c = ak rule 

cutoff costs 

A B C B/C 

0.0093 % 0.0107% 0.0100% 1.07 

Aggregate time series statistics 

% UC 

1.0 2.49% 

0.5 2.54% 

0.0 2.63% 

ox 

5.18% 

5.81% 

6.49% 

UY 

2.90% 

2.95% 

3.01% 

cork Y) 

0.939 

0.903 

0.860 

cork Y) 

0.878 

0.837 

0.798 

WY, Y- I) 

0.971 

0.972 

0.973 

WY, y-4 

0.942 

0.944 

0.945 

Partial-adjustment-of-cnpital rule vs. Constant-savings-rate rule 

cutoff costs 

A B C BIG 

0.012% 0.015% 0.014% 1.12 

Aggregate time series statistics 

6, 0, u‘x UY cork Y) cor(x, Y) cor(y, Y- I) cor(y, y-2) 

1.0 2.49% 5.18% 2.90% 0.939 0.878 0.97 1 0.942 

0.5 2.50% 3.85% 2.76% 0.984 0.943 0.967 0.936 

0.0 2.61% 2.61% 2.61% 1.000 l.CKKl 0.963 0.929 

c = ak rule vs. Constant-savings-rate rule 

Cutoff costs 

A B C B/C 

0.0021% 0.0052% 0.0036% 1.43 

Aggregate time series statistics 

% UC ox UY cork, Y) cork Y) Cody, Y- I) cor(y, Y-Z) 

1.0 2.63% 6.49% 3.01% 0.860 0.798 0.973 0.945 

0.5 2.51% 4.37% 2.80% 0.964 0.898 0.968 0.938 

0.0 2.61% 2.61% 2.61% 1.000 1.000 0.963 0.929 

The coefficient of relative risk aversion v = 2 for all three cases. % is the competitive equilibrium 

fraction of agents using the the first rule of thumb; 1 - % is the fraction of agents using the second 

rule of thumb. For additional explanation, see the notes to Table 1. 



550 P. Krusell, A.A. Smith, Jr. 1 Journal of Economic Dynamics and Control 20 (1996) 527-558 

Fig. 4. Socially optimal fraction vs. competitive equilibrium fraction of sophisticated agents. 

agents are not able to select among rules of differing sophistication. Numer- 
ically, the differences between the competitive equilibrium and socially optimal 
savings rates are small. However, the socially optimal decision rules for sophisti- 
cated agents differ noticeably from the decision rules that sophisticated agents 
choose in competitive equilibrium. 

Second, the competitive equilibrium fraction of sophisticated agents, given 
a value of the effort cost q, is not in general optimal. We find that the optimal 
allocation dictates a (weakly) smaller number of sophisticated agents than does 
the competitive equilibrium. This result is robust to changes in the values of 
parameters, including the cost q. Fig. 4 graphs the socially optimal fraction of 
sophisticated agents against that of the corresponding competitive equilibrium 
for the case of the constant-savings rate rule. 

Table 4 displays the savings rates of unsophisticated agents and the decision 
rules of sophisticated agents for a range of values of 8, the competitive equilib- 
rium fraction of sophisticated agents. For each of these values of 8, Table 4 also 
displays the savings rate and the decision rule (as well as the socially optimal 
fraction 8* of sophisticated agents) that the social planner chooses. 

We also note that when the competitive equilibrium fails to be optimal, i.e., for 
q E (Q rj), the social planner would also be able to increase utility (net of effort 
costy for all agents. Thus, moving from the competitive equilibrium to the 
socially optimal allocations is also (ex post) Pareto improving. This can be 
illustrated by the following facts. Let the utility (gross of effort cost) of an agent 
of type i E {S, U> in the competitive and socially optimal allocations for a given 
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Table 4 

Competitive equilibrium and socially optimally decision rules: Unrestricted rule vs. constant- 

savings-rate rule 

H 

Unsophisticated 

agents Sophisticated agents 

s Dll D, D2 03 

Competitive eq. 

Socially optimal 

Competitive eq. 

Socially optimal 

Competitive eq. 

Socially optimal 

Competitive eq. 

Socially optimal 

Competitive eq. 

Socially optimal 

Competitive eq. 

Socially optimal 

Competitive eq. 

Socially optimal 

1.000 

1.000 
0.25698 

0.900 0.25679 
0.842 0.25693 

0.750 0.25668 

0.658 0.25687 

0.500 0.25661 

0.422 0.25678 

0.250 0.25658 

0.214 0.25667 

0.100 

0.090 

0.000 
0.000 

0.25656 

0.25659 

0.25651 

0.25651 

0.0854 0.9765 
0.0854 0.9765 

0.0854 0.9767 
0.0863 0.9787 

0.0859 0.9774 
0.0882 0.98 16 

0.0876 0.9802 
0.0904 0.9858 

0.0918 0.9857 

0.0936 0.9906 

0.0978 0.9917 
0.1012 0.995 1 

0.1105 0.9999 

0.0000 0.0720 

0.@300 0.0720 

- o.c002 

- 0.0024 

- 0.0010 

- 0.0059 

- 0.0043 

- 0.0106 

- 0.0110 

- 0.0164 

- 0.0186 

- 0.0229 

- 0.0303 

0.0720 

0.0732 

0.0724 

0.0749 

0.0740 

0.0777 

0.0774 

0.0810 

0.0816 

0.0841 

0.0880 

The coefficient of relative risk aversion Y = 2. tI is the fraction of sophisticated agents (i.e., the 

fraction using the unrestricted rule); 1 - 0 is the fraction of unsophisticated agents (i.e., the fraction 

using the constant-savings-rate rule). Rows labelled ‘Competitive eq.’ contain the decision rule 

choices of both types of agents in competitive equilibrium. Rows labelled ‘Socially optimal’ contain 

the socially optimal fraction of sophisticated agents and the socially optimal decision rule choices for 

sophisticated and unsophisticated agents, given the corresponding competitive equilibrium fraction. 

For unsophisticated agents, s is the optimal savings rate. The decision rule used by sophisticated 

agents is given by log&+ r) = Do + D, log&,) + Dz log@,,) + Dg,, where Ks, and KU, are the 

capital stocks held by, respectively, sophisticated and unsophisticated agents and z, is the aggregate 

productivity shock. 

q be, respectively, U,(O) and U,*(O*), with the asterisk (*) denoting the optimal 
allocation. Numerical calculations reveal that Vi(S) -C UT(O*) for both values of 
i. Now, since 8* < 8, the planner wishes to reallocate the fraction 8 - O* of 
agents from sophisticated to unsophisticated decision rules. These agents are 
better off since Ut(O*) > U,(O) - q = Vu(O), where the inequality is the same 
as the one above and the equality is a condition that holds in competitive 
equilibrium. Next, the fraction 1 - 8 of agents continue to use unsophisticated 
decision rules; these agents are better off because Ut(O*) > U,(e). Similarly, the 
fraction 8* of agents continue to use sophisticated decision rules; these agents 
are also better off in the new allocation: Uf(O*) - q > V,(O) - v. 
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Finally we note that the increases in utility that are possible in going from the 
competitive to the socially optimal allocation are numerically very small. The 
aggregate (average) increase in welfare, which varies with the cost q, is largest 
when the cost q is such that the competitive equilibrium fraction of sophisticated 
agents is near one-half. Even in this case, however, the aggregate welfare gain, 
measured in terms of a uniform percentage increase in per period consumption, 
is only 0.0001% when v (the coefficient of relative risk aversion) equals one and 
0.0004% when v equals five. 

4. Conclusions 

How should our results be interpreted? Clearly, two quite different interpreta- 
tions are available. First, one might say that since the constant-savings-rate rule 
(and other very simple rules of thumb as well) make the aggregate behavior of 
the standard model look worse - aggregate consumption smoothing is 
weakened - we should conclude that, in the real world, the costs of sophisticated 
behavior must be very low (or, alternatively, that the constant-savings-rate and 
constant-capital rules must be expensive relative to other simple rules which do 
lead to aggregate consumption smoothing). In other words, since the aggregate 
behavior of the model is quite sensitive to decision rule costs, the relative 
magnitudes of these costs can be ‘estimated’ with high accuracy, in particular to 
be smaller than the relevant cutoffs calculated in the text. 

Second, at least to the extent that one finds acceptable the way in which this 
paper models unsophistication, the results can be interpreted as alarming for all 
those who use the stochastic, representative-agent growth model as a basis for 
macroeconomic theorizing. This view is based on the belief that macroeconomic 
models should have quantitatively reasonable microeconomic underpinnings 
or, put differently, that a good model should fit not only the macro but also the 
micro data. According to this view, the real-world costs facing consumers are in 
fact higher than the cutoffs we report in this paper, so that reasonable micro- 
economic underpinnings should include these costs. 

We are inclined toward the second interpretation, but we feel that several 
caveats are necessary. First, there is clearly a need to solve the conceptual 
problems of finding a way to formalize costly decision making. Our approach 
here is ad hoc, and it remains to be seen whether our results would hold up in 
structures with a deeper, and less restrictive, modeling structure. A more struc- 
tural approach seems especially important in light of one of the key findings of 
this paper: the relative costs of different rules of thumb, about which we have 
very poor information, seem crucial in order to determine the model’s aggregate 
behavior. 

Second, we also think that further work on analyzing the sensitivity 
of the intertemporal optimization framework to various costs of behavioral 
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sophistication needs to tackle a couple of other issues which we have not been 
able to deal with in this paper. One is that our structure is not recursive; one 
would, ideally, recognize that agents face the tradeoff between sophisticated and 
unsophisticated behavior at every point in time, and not just at time zero. 
A related problem is that of agent heterogeneity: the economic model in this 
paper is as close as one could get to the representative-agent framework. If 
agents are not the same ex ante, and if they face uninsurable idiosyncratic risk in 
addition to aggregate productivity shocks, then the quantitative analysis may 
provide a different answer.16 The reason for this, of course, is that the idiosyn- 
cratic risk is much larger than the aggregate risk. With higher variance of the 
risk, the costs of not being sophisticated go up, and this may change the results 
significantly. However, the difficulty of analyzing models with agent heterogen- 
eity and aggregate risk is well known (see, for example, Diaz-Gimenez, Prescott, 
Fitzgerald, and Alvarez, 1992) and economists have only just begun the search 
for solution techniques to be applied to this class of models. 

Appendix 

This appendix describes the numerical algorithm that is used to compute the 
competitive equilibrium defined by Definition 1. The algorithm is described in 
the context of the economy in which agents choose between an unrestricted rule 
and the constant-savings-rate rule. It is straightforward to modify the algorithm 
to handle other pairs of rules. 

The numerical algorithm makes use of linear-quadratic approximations in 
order to reduce computational burden. The key idea of the numerical algorithm 
is to fix a fraction 8 of sophisticated agents, solve for the competitive equilibrium 
decision rule choices of sophisticated and unsophisticated agents given 8, and 
then calculate the cost q = U,(e) - V,(0) that supports 0 as a competitive 
equilibrium. 

The first step is to solve the sophisticated agents’ problem (PS) and the 
unsophisticated agents’ problem (PU), given a fraction 9 of sophisticated agents. 
Note that the equilibrium pricing functions rt = MPK, and w, = MPL, can be 
inserted into the constraints of problems PS and PU without loss of generality, 
since individual agents take as given the behavior of aggregate variables. 

First consider the optimization problem faced by a sophisticated agent, given 
6. Recalling that K, = f3Kst + (1 - f3)KLlt, the constraints to problem PS can be 
used to express c, as a function of the period t state variables & = log(k,), 
Rst = log(K,,), Kc, = log(&), and z, and the period t choice variable &+ 1. 
Using this expression for c,, the period t utility function u(c,) can be 

“This point was also made in other contexts, such as in the discussion of the welfare costs of 

business cycles; see kmrohoroglu (1989). 
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approximated by a quadratic function in a neighborhood of the steady state values 
of the period t state and choice variables: u(c,) z u*(&, Rst, Z&, .&, It,+ J = 

:i$$+ ~~Qz~,+~~+IWIL +RIE?il +2W2k+l&t +SR&wheret, = 
z '. 

1; or$e: that the agent’s problem be well-defined, it is necessary to assign to 
the sophisticated agent a perceived law of motion for the aggregate capital stock 
Z?,, held by unsophisticated agents. The decision rule used by a typical unso- 
phisticated agent is given by k, + 1 =f,(k,, Ksr, KU,, z,), where the specific form of 
the functionf” is given in Section 2.2. This decision rule can be reexpressed in the 

form 6 + I =_$;l<%, Ksr, KU, 4, where_&@, b, G -1 = log f&w@), exp@), expG-3, .I. 
The function 3” can in turn be approximated by a linear function of its 
arguments in a neighborhood of the steady state values of R,, Rsr, Rut, and z,: 
R,+, = e. + elR, + ezz, + e&, + e4Rut. It turns out that e, = 1ogD - 
(C/D)R, el = C/D, e2 = (s/D)exp(aK), and e3 = e,, = 0, where s is the savings 
rate used by the unsophisticated agent, R is the (common) steady state value 
of R,, i&,,, and I& C = sa exp(aif) + (1 - G)exp(K), and D = s exp(&) + 
(1 - G)exp(R). Note that the coefficients eo, ei, and e2 are all functions of the 
savings rate used by the unsophisticated agent. Since, in equilibrium, all unso- 
phisticated agents use the same savings rate, it follows that KU, + 1 = E. + 
El KU, + E2zt, where Ei = ei, i = 0, 1,2. (When solving the unsophisticated 
agent’s problem PU below, it is useful to maintain a distinction between the 
coefficients ei used by a given small unsophisticated agent and the coefficients Ei 
used by all other unsophisticated agents.) Hence, the coefficients Ei are functions 
of the (common) savings rate s used by unsophisticated agents. The sophisticated 
agent takes s (and hence the coefficients Ei) as given when solving problem PS. 

Given these perceived laws of motion, the linear-quadratic approximation to 
problem PS can be written in recursive form as follows: 

subject to 

5: 1+1 = Al<, + ~1~,+1, 

where 

000 0 
Al = 



P. Krusell, A.A. Smith, Jr. / Journal of Economic Dynamics and Control 20 (1996) 527-558 555 

and P is an unknown matrix that must be computed. When solving this 
problem, the agent takes I?,, as given. Uncertainty can be suppressed in this 
problem without loss of generality by the certainty equivalence principle. 

Substituting the constraint into the objective function above, the first-order 
condition (given P) is 

(1) 

where 

F, = -(RI +/?B;PB,)-'(WI +,!?B;PA,), 

F, = -(RI +fiB;PB,)-'W,. 

Eq. (I) is the decision rule of an individual sophisticated agent. Since, in 
equilibrium, all sophisticated agents choose the same decision rule, we can 
impose on the decision rule (1) the consistency condition 1, = i&t = 05, (where 
O=[OlOO])toyield?t,+,= D[,, where D = F1 + 0F2. Given this solution 
for &+ 1 and the consistency condition I? St = O{,, the objective function above 
can be expressed as a quadratic form &‘P<, in the period t state vector 5,. We 
seek a matrix P such that P = P. This matrix can be computed via an iterative 
process by setting P (O) = 0, computing p, setting P(l) = P, etc., until conver- 
gence is achieved. 

The solution to the sophisticated agent’s problem PS can be summarized by 
a function H,: E + D that maps perceptions of unsophisticated agent’s behavior 
(as determined by the decision rule coefficients Ei) into the optimal decision rule 
coefficients D = [D,, D1 Dz D3] chosen by sophisticated agents. 

Next, consider the optimization problem faced by an unsophisticated agent, 
given 0. Write the quadratic approximation 12 to the period c utility function as 
follows: 

where 

The unsophisticated agent seeks to maximize (by choice of a state-contingent 
sequence {k,}: r): 

Eo f P’ Wt, Kst, KU,, z,, k+ I), 
1=0 

given lo, 

subject to 

i - Ad* + B&t + Et+ 1, 1+1 - 
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where 

WV,+ I) = 0, W,+ I vi+ I) = L 

A2 = 

‘1 0 0 0 0’ 

000 0 0 

Do 0 Dt D2 03 

E. 0 0 El E2 

00000 

&=[O 10 0 O-J’. 

Z is a 5 x 5 matrix of zeros save far a: as the last diagonal element. The 
coefficients Di and Ei in the matrix A2 reflect the unsophisticated agent’s 
perceived laws of motion for the aggregate state variables Rst and R,,. 

Unlike the sophisticated agent, the unsophisticated agent cannot freely 
choose a sequence (k,} to maximize his/her objective function, but is con- 
strained to use a constant savings rate rule, with savings rate s chosen optimally. 
As discussed above, a first-order approximation to this decision rule can be 
written 1, = Fc,, where F = [e. el 0 0 e2] and the coefficients ei can be ex- 
pressed as functions of the savings rate s chosen by the small unsophisticated 
agent. Given F (as determined by s) and an initial condition Co, the value of the 
unsophisticated agent’s objective function is given by 

trace iQ + F’R2F + 2f”V f B’Eo(L, G> 
1 

, (2) 
t=o 

where the recursive relation 

Eo(L+ I CC;+ I) = t-42 + B2F1 EoG5:) 642 + B2F)’ + .Z (3) 

can be used to evaluate the conditional expectation in Eq. (2). Eqs. (2) and (3) can 
be used in a conventional hillclimbing algorithm to determine the optimal 
savings rate. 

The solution to the unsophisticated agent’s problem PU can be summarized 
by a function HU: (D, E) + e that maps perceptions of the behavior of sophisti- 
cated agents and of other unsophisticated agents (as determined by the decision 
rule coefficients Di and Ei, respectively) into the optimal decision rule coeffi- 
cients ei chosen by an unsophisticated agent. In equilibrium, unsophisticated 
agents are identical, so that ei = Ei. 

A competitive equilibrium in the linear-quadratic economy is a pair of 
decision rule coefficients (D*, E*) such that D* = H,(E*) and E* = HU(D*, E*). 
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The fixed point (D*, E*) can be computed iteratively beginning from some initial 
pair of coefficients (Do, E’). 

The solution to the social planner’s problem can be computed in two steps. In 
the first step, the fraction of sophisticated agents 8 is fixed and linear-quadratic 
methods analogous to those used above to solve the unsophisticated agent’s 
problem are used to compute the optimal decision rule for sophisticated agents 
and the optimal savings rate for unsophisticated agents. In particular, in the 
linear quadratic approximation to the social planner’s problem (given O), the 
social planner chooses a pair of decision rules RSt + 1 = Fso, and Kc, + 1 = Fuo,, 
where o, = [ 1 & r?,, zt] ‘. The social planner can freely choose the elements of 
Fs. The elements of FU, on the other hand, are functions of the savings rate 
s chosen by the social planner for use by unsophisticated agents (see the 
discussion above). Given 8, the social planner chooses Fs and s so as to 
maximize the quadratic approximation to the appropriate objective function, 
i.e., the weighted average of sophisticated agents’ and unsophisticated agents’ 
utilities, with the weights given by the fraction of each type of agent in the 
economy. In the second step, the social planner searches over values of B so as to 
maximize the quadratic approximation to the planner’s objective function, 
taking into account the mapping from 8 to the corresponding socially optimal 
choices of Fs and s. 
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