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Abstract
We examine how technological change affects wage inequality and unemployment in a cali-
brated model of matching frictions in the labor market. We distinguish between two polar cases
studied in the literature: a “creative destruction” economy, where new machines enter chiefly
through new matches and an “upgrading” economy, where machines in existing matches are
replaced by new machines. Our main results are: (i) these two economies produce very similar
quantitative outcomes, and (ii) the total amount of wage inequality generated by frictions is
very small. We explain these findings in light of the fact that, in the model calibrated to the US
economy, both unemployment and vacancy durations are very short, i.e., the matching frictions
are quantitatively minor. Hence, the equilibrium allocations of the model are remarkably close
to those of a frictionless version of our economy where firms are indifferent between upgrading
and creative destruction, and where every worker is paid the same market-clearing wage. These
results are robust to the inclusion of machine-specific or match-specific heterogeneity into the
benchmark model. (JEL: J41, J64, O33)

1. Introduction

Technological progress is gradual and a large part of technological innovations
are embodied in capital equipment. New machines tend to be much more produc-
tive than existing machines, but typically not every worker is matched with the
most advanced equipment. Given that capital-embodied technical change creates
substantial productivity differences among machines, what are its effects on wage
inequality among labor that uses that equipment? Also, in light of the fact that
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new and more productive capital can make existing capital obsolete, what are the
effects of technological change on job creation, job destruction, and, ultimately,
unemployment? These are key questions for a macroeconomic analysis of labor
markets that takes on a long-run perspective.

If we view the labor market as a frictionless environment where workers
are paid according to their marginal product, then the answer to these questions
is relatively straightforward and well known. Here, the impact of technological
change on inequality is limited to the extent that workers differ in their ability
to use capital. Workers who use different vintages of capital but are otherwise
identical will be paid the same wage. Moreover, the competitive equilibrium
features no unemployment of labor.1

On the other hand, if frictions that prevent the free and timeless reallocation of
labor among alternative uses are an essential part of the labor market, the situation
is far more complex and none of the questions is settled, even in the simple case
of homogeneous workers.

First, in frictional models, wages of ex ante equal workers reflect the rel-
ative productivity difference of the technology they are working with. That is,
wages are not equalized for identical workers due to a “luck” factor: workers are
more or less fortunate in the matching process. But how important is this purely
frictional source of inequality in terms of measured total wage dispersion for
observationally equivalent workers? To put our analysis in perspective, consider
that Katz and Autor (1999) report that the 90–10 wage ratio of the residual wage
inequality in typical wage regressions, that is, the inequality that remains after
controlling for observable characteristics of the workers (gender, race, education,
experience) and for individual fixed effects to capture “unobserved individual
ability,” is around 1.5.

Second, since technological change may require the reallocation of labor
towards new and more productive machines, but reallocation requires time with
frictions, not all workers will be employed at any time. How does equilibrium
unemployment react to changes in the rate of technological change? To this impor-
tant question, two distinct qualitative answers emerge from the literature.

Aghion and Howitt (1994) argue that when replacing an old obsolete machine
with new capital requires destroying the existing match (the Schumpeterian
“creative-destruction” model), then unemployment tends to go up as growth accel-
erates, due to a higher job-separation rate. The models of Caballero and Hammour

1. For the case of worker heterogeneity, there are also precise predictions in the literature. Akerlof
(1969) showed that in a frictionless model with heterogeneous labor, unemployment of the worst
type of labor can arise in equilibrium only if the aggregate capital stock is fixed and if there is some
finite limit to the marginal product of capital. Jovanovic (1998) showed that when capital embodies
technological progress and machines are indivisible, faster growth raises wage inequality as long as
skills complement capital in the production function. In this case, the most skilled workers will be
the ones who are efficiently assigned to work on the most productive machines.
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(1998) and Cohen and Saint-Paul (1994) bear similarities to the Aghion–Howitt
approach.

In contrast, Mortensen and Pissarides (1998) propose a mechanism whereby
the new technologies can replace old machines at some cost, but without destroy-
ing the existing match (the costly “upgrading” model).2 The separation rate is
unaffected by faster growth and all the effects work through job creation. For
small values of the upgrading cost, unemployment falls with faster growth, thanks
to the familiar “capitalization effect”: investors are encouraged to create more
vacancies, knowing that they will be able to incorporate and benefit from future
technological advances.3

Though we rely heavily on theory in our analysis—i.e., we explore mecha-
nisms that are made explicit using dynamic general equilibrium theory—our final
aim is to offer quantitative answers to these two questions. We wish to evaluate
how much frictional wage inequality might be created by technological change,
and how different quantitatively the implications for frictional unemployment of
the two alternative replacement models really are.

How do we accomplish these tasks? We study a calibrated version of a fric-
tional model à la Diamond–Mortensen–Pissarides (DMP) with random matching
and wages determined by cooperative Nash bargaining, augmented with vintage
capital à la Solow (1960). The DMP model over the years has established itself as
a standard framework of analysis of the labor market (see Pissarides 2000, for an
overview of the approach). Since capital-embodied technical change is, arguably,
the key driving force of productivity growth in developed economies in the past
three decades (see, e.g., Jorgenson 2001), we model technological advancement
through the introduction of new capital goods. Technically, our framework is
a generalization of Hornstein, Krusell, and Violante (2003) where firms cannot
upgrade existing machines without separating from their employed worker.

In particular, we are able to nest the two ways in which new equipment can
enter the economy and replace the old one by assuming that (i) new entrant firms
can buy new equipment at price I0 and (ii) existing firms, whether matched or
not, can upgrade their equipment to the latest vintage at price Iu. Thus, if Iu = 0,
technological change is fully match-augmenting and disembodied, whereas if
Iu = ∞, it has no match-augmenting or disembodied feature at all. In equilibrium,
depending on parameter values, new equipment may enter through either channel.

2. In this latter case, but not in the former, one could say that technology is “match-augmenting,”
because it augments the value of existing matches. In the extreme case where upgrading can proceed
at no cost, we have the Solowian model of disembodied technological change, even though the carrier
of technology is equipment.
3. An interesting qualification to this result is provided by King and Welling (1995): if, unlike what
is customarily assumed in this family of models, workers bear the full fixed-search cost, then the
capitalization effect leads to an increase in the number of searchers and to longer unemployment
durations.
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We parameterize our model economies tightly in order to match some micro-
estimates and certain long-run facts. In particular, in a way consistent with our
model formulation, we can use data on equipment prices, adjusted for quality,
to measure the speed at which the new equipment investment carries technology
improvements.4 In other words, in our framework, the percentage productivity
gaps across machines are restricted by data on relative prices of capital.

Our main findings are quite striking. We find that the unemployment effects
of a rise in the rate of capital-embodied technological change are, qualitatively,
those emphasized by Aghion and Howitt (1994): unemployment rises in response
to higher rates of capital-embodied technological change. The difference between
the two ways of thinking about how technology is introduced is qualitatively the
expected one—the Mortensen–Pissarides, or upgrading, perspective delivers a
smaller increase in unemployment than does the Aghion–Howitt perspective—
but quantitatively the two models are almost equivalent. Moreover, we find that
an acceleration in the speed of technological progress raises wage dispersion,
but that the amount of residual wage inequality generated by the calibrated DMP
model of technological change is extremely small: the model delivers a 90–10
wage ratio between 1.06 and 1.08, or, at most, one-sixth of that measured.

The intuition for these two results can be found in two key quantitative restric-
tions that the equilibrium of our calibrated model has to obey. First, the average
duration of unemployment in the United States is just above 8 weeks. In search
models, the duration of unemployment is proportional to the option value of search
and the latter, for risk-neutral workers, depends positively on wage dispersion.
A duration of unemployment as short as it is in the data can therefore only be
consistent with a very small amount of frictional inequality.5 Second, the average
duration of a vacant job with idle capital in the model (and in the U.S. data) is
roughly four weeks, i.e., a very small amount compared to the average life of a
new machine, which is over 11 years. When the meeting rate is so high, the firm
becomes roughly indifferent between scrapping and upgrading: intuitively, for a
given cost of a new machine, the upgrading option is substantially better than the
scrapping option only if the matching process is long and costly.

Another way to look at these two conclusions is that, empirically, the labor
market frictions are small. When the meeting frictions for both workers and firms
disappear, our model converges to the frictionless environment. In the frictionless
model: (1) firms are indifferent between upgrading and destroying a job since
they face an infinite arrival rate of idle workers, and (2) wage inequality is zero.

4. Hornstein and Krusell (1996), Greenwood, Hercowitz, and Krusell (1997), and Cummins and
Violante (2002) provide theoretical justifications and implementations of the price-based approach
to the measurement of capital-embodied technical change.
5. Note that in our model, unlike in the more traditional Aghion–Howitt/Mortensen–Pissarides
frameworks, there is vacancy heterogeneity in equilibrium, thus unemployed workers face a non-
degenerate match distribution upon search.
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Incidentally, our results are consistent with the conclusions of Ridder and van den
Berg (2003), who estimate the severity of search frictions in the United States,
United Kingdom, France, Germany, and the Netherlands and find that the United
States has, by a significant amount, the least frictional labor market.

In the second part of the paper, we explore various extensions of the basic
framework. The organizing principle we have chosen here is to maintain the
assumption that workers are all ex ante identical.6 Thus, we look at different
forms of heterogeneity on the plant level, each of which can influence wages
in this form of labor market. There are two cases of interest. First, we consider
heterogeneity in equipment/entrepreneurs that goes beyond vintage differences:
machine-specific heterogeneity. Second, we consider the kind of match-specific
productivity heterogeneity considered by Mortensen and Pissarides (1994), but
now combined with the model of vintage capital. Thus, in the first extension,
entrepreneurs that enter the market are diverse and remain diverse as long as
they are in the economy, whereas in the second extension, the heterogeneity
appears in each new match and remains only so long as each match lasts. Our
findings are that these two additional forms of productivity heterogeneity lead
to very similar conclusions regarding the replacement debate: in response to a
higher rate of capital-embodied technological change unemployment increases,
whether or not upgrading is possible, but unemployment increases somewhat less
if upgrading is possible. Wage inequality remains limited. Wage inequality is the
highest, and becomes particularly visible through the emergence of a group of
high-wage earners, in the economy with match-specific heterogeneity, because in
this economy the breaking up of a match implies a larger loss of surplus than in
an economy with machine-specific heterogeneity.

The outline of the rest of the paper is as follows. In Section 2 we describe the
frictionless benchmark of the vintage-capital economy. Sections 3 and 4 contain
the two basic versions of the replacement problem in the model with frictions:
one where new machines enter in new matches, and one where they mainly enter
through the upgrading of machines operated in existing matches. Section 5 con-
tains the calibration to the US economy and quantitative analysis, and also pro-
vides more detailed intuition for our two main results. Finally, Section 6 considers
extensions to two additional sources of heterogeneity among matches: one due
to permanent differences among entrepreneurs/their equipment and one due to
permanent differences in match quality. Section 7 concludes.

6. Ex ante worker heterogeneity in productivity levels raises new issues. First, such a model implies
wage inequality and unemployment rates that depend nontrivially on worker type, thus making the
output of the exercise less comparable to data, since a worker’s productivity cannot be measured
directly. Second, it is well known (Sattinger 1995) that random matching models with two-sided
heterogeneity have multiple steady states. In particular, identical (but identifiable) workers can have
different combinations of equilibrium wage and employment rates. These issues are best left for
future exploration.
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2. The Frictionless Economy

We begin by presenting a version of the Solow (1960) frictionless vintage capital
model where production is decentralized into worker-machine pairs operating
Leontief technologies: this decentralized production structure is typical in fric-
tional economies. The competitive economy displays neither wage inequality nor
unemployment; however, it is a useful benchmark for interpreting the main results
of the richer frictional model.

Demographics. Time is continuous. The economy is populated by a stationary
measure one of ex ante equal, infinitely lived workers who supply one unit of
labor inelastically, and there is also a set of entrepreneurs whose only role it is to
pair up with workers and run the firm. Workers and entrepreneurs are risk-neutral
and discount the future at rate r .

Production. Production requires pairing one machine and one worker, and
machines are characterized by the amount of efficiency units of capital k they
embody. A matched worker–machine pair produces a homogeneous output good.

Technological Change. There is embodied and disembodied technical change.
The economy wide disembodied productivity level, ez(t), grows at a constant rate
ψ > 0. Technological progress is also embodied in capital and the amount of
efficiency units embodied in new machines grows at the rate γ > 0. Once capital
is installed in a machine it is subject to physical depreciation at the rate δ > 0.
A production unit that at time t has age a and is paired with a worker has output

y(t, a) = ez(t)k(t, a)ω = ez0+ψt
[
k0e

γ (t−a)e−δa
]ω

, (1)

where ω > 0. In what follows we set, without loss of generality, z0 = 0 and
k0 = 1.

How New Machines Enter. At any time t firms can freely enter the market upon
payment of the initial installation cost I0(t) for a machine of vintage t . The cost
of new vintages grows at the rate g. Existing firms with older machines also have
the opportunity to upgrade their machine and bring its productivity up to par with
the newest vintage. The cost of upgrading Iu(t, a) ≥ 0 grows at the rate g but
it is independent of age for a ≤ â. We assume that once a machine is too old, it
becomes infinitely costly to upgrade: Iu(t, a) = ∞ for a > â.

Rendering the Growth Model Stationary. We will focus on the steady state
of the normalized economy; this corresponds to a balanced growth path of the
actual economy. It is immediate that for a balanced growth path to exist, we need
g = ψ +ωγ . In order to make the model stationary we normalize all variables by
dividing by the growth factor egt . The normalized cost of a new production unit is
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then constant at I0 and Iu, and the normalized output of a production unit of age a

which is paired with a worker is e−φa , where φ ≡ ω(γ +δ); thus, output is defined
relative to the newest production unit. Note that the parameter φ represents the
effective depreciation rate of capital obtained as the sum of physical depreciation
δ and technological obsolescence γ.7

Embodied Technical Change and the Relative Price of New Capital. Since the
cost of new vintage machines in terms of the output good, I0 and Iu, is growing at
the rate g but the number of efficiency units embodied in new vintages is growing
at the rate γ , the price of quality-adjusted capital (efficiency units) in terms of
output is changing at the rate g − γ = ψ − (1 −ω)γ . In the quantitative analysis
of our model, we will use this relationship to obtain a measure of the rate of
embodied technical change from the rate at which the observed relative price of
equipment capital changes.

2.1. Competitive Equilibrium

Assume that the labor market is frictionless and competitive so that there is a
unique market-clearing wage. In the steady state, the wage rate w, now measured
relative to the output of the newest vintage, is constant. Consider a price-taker
firm with the newest vintage machine. The firm optimally chooses the age ā that
maximizes the present value of the current machine lifetime profits

V0 = max
ā

{∫ ā

0
e−(r−g)a[e−ϕa − w]da + e−(r−g)ā max{V0 − Iu, 0}

}
, (2)

where r − g is the effective discount factor. While the wage w is the same for all
firms, a firm’s output falls compared to new machines because of depreciation and
obsolescence. Thus, flow profits are monotonically declining in age and eventually
become negative, and there is a unique age at which the machine will be discarded
or upgraded. Profit maximization leads to the condition

(r − g) max[V0 − Iu, 0] = e−ϕā − w. (3)

The firm upgrades/exits when the gain from upgrading/exit (left-hand side) is the
same as the return from a marginal delay of the investment decision (right-hand
side). If the value of a new machine is lower (higher) than the cost of upgrading,
the firm will scrap (upgrade) the machine. If the firm scraps the machine, the
wage is equal to the relative productivity of the oldest machine, which is also the
marginal productivity of labor. The higher the wage, the shorter the life-length of
capital since (normalized) profits per period fall and thus reach zero sooner.

7. In Hornstein, Krusell, and Violante (2003), we describe the normalization procedure in detail.
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Free entry of firms with new machines requires that the value of a new machine
does not exceed the cost of a new machine: V0 ≤ I0. Obviously if the cost of
upgrading a machine is greater than the cost of buying a new machine, I0 < Iu,
then machines will never be upgraded. On the other hand, when the cost of
upgrading is lower than the cost of buying a new machine, machines will never
exit. Using the profit-maximization condition (3) in the firm value equation (2),
the optimal investment condition can be written as

min{I0, Iu} =
∫ ā

0
e−(r−g+φ)a

[
1 − e−φ(ā−a)

]
da. (4)

This is the key condition that determines the exit/upgrading age ā, and hence
wages.

Existence and Uniqueness. Equation (4) allows us to discuss existence and
uniqueness of the equilibrium. The right-hand side of this equilibrium condition
is strictly increasing in the upgrading/exit age ā for two reasons. First, in an
equilibrium with older firms, the relative productivity of the marginal operating
firm is lower; therefore, wages have to be lower and profits higher. Second, a
longer machine life increases the time span for which profits are accumulated.
Define r̄ ≡ r − g + ϕ = r − ψ + ωδ. The right-hand side of (4) increases
from 0 to 1/r̄ as ā goes from 0 to infinity. Taken together, these facts mean that
there exists a unique steady state age āCE whenever min{I0, Iu} < 1/r̄ . This
condition is natural: unless you can recover the initial capital investment at zero
wages using an infinite lifetime (

∫ ∞
0 e−r̄ada = 1/r̄ being the net profit from

such an operation), it is not profitable to start any firm. Finally, with a unit mass
of workers, all employed, the firm distribution is uniform with density 1/āCE ,
which is also the measure of entering/upgrading firms.

The Effect of Growth. Clearly, in this economy neither wage inequality nor
unemployment is affected by changes in the rate of technology growth: they are
both zero.

3. The Economy with Matching Frictions

Consider now an economy with same preferences, demographics, and technol-
ogy, but where the labor market is frictional in the sense of Pissarides (2000):
an aggregate matching function governs job creation. The nature of the firm’s
decision process remains the same as in the frictionless economy: there is free
entry of firms that buy a new piece of capital, participate in the search process,
start producing upon matching with a worker, and finally either upgrade their
capital once it becomes too old or exit if upgrading is too costly. Searching is
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costless: it only takes time. Existing matches dissolve exogenously at the rate σ :
upon dissolution, the worker and the firm are thrown into the pool of searchers.8

In this environment, vacant firms are heterogeneous in the vintage of their
capital for two reasons: first, newly created firms do not match instantaneously,
so they remain idle until luck makes them meet a worker; second, firms hit by
exogenous separation will also become idle. Note here a key difference with
the traditional search-matching framework (Mortensen and Pissarides 1998): the
traditional models assume that a new machine can be purchased at no cost and that
only posting a vacancy entails a flow cost. This assumption implies that the pool of
vacancies consists of the newest machines only, and that only matched machines
age over time.9 Our setup is built on the opposite assumption: purchasing and
installing capital is costly—an expense that is sunk when the vacant firm start
searching—whereas posting a vacancy is costless.10 As a result, it can be optimal
even for firms with old capital to remain idle.

This class of economic environments is a hybrid between vintage models and
matching models. The traditional assumption emphasizes the matching features of
the environment, while the explicit distinction between a “large” purchase/setup
cost for the machine and a “smaller” search/recruiting flow cost (zero in our
model) fits more naturally with its vintage-capital aspects, whose emphasis is
on capital investment expenditures as a way of improving productivity. In actual
economies, new and old vacancies coexist, as in our setup.

Matching. The number of matches in any moment is determined by a constant
returns to scale matching function m(v, u), where v ≡ ∫ ∞

0 ν(a)da is the total
number of vacancies of all ages v(a) and u is the total number of unemployed
workers. We assume that m(v, u) is strictly increasing in both arguments and
satisfies some standard regularity conditions.11 The rate at which a worker meets
a firm with capital of age a is λw(a) and the rate at which she meets any firm

8. We omitted separations from the description of the competitive equilibrium because, without
frictions, it is immaterial whether the match dissolves exogenously or not as the worker can be
replaced instantaneously by the firm at no cost.
9. Aghion and Howitt (1994) also describe a vintage capital model with initial setup costs for
capital, but they assume that matching is “deterministic”: at the time a new machine is set up,
a worker queues up for the machine, and after a fixed amount of time the worker and firm start
operations. Hence, in the matching process, all vacant firms are equal (although they do not embody
the leading-edge technology).
10. Vacancy heterogeneity will survive the addition of a flow search cost, as long as this cost is
strictly less than the initial setup cost I0.
11. In particular,

m(0, u) = m(v, 0) = 0,

lim
u→∞ mu(v, u) = lim

v→∞ mv(v, u) = 0,

lim
u→0

mu(v, u) = lim
v→0

mv(v, u) = +∞.
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is λw ≡ ∫ ∞
0 λw(a)da, where we assume that the integral is finite. A firm meets

a worker at the rate λf . Using the notation θ = v/u to denote labor market
tightness, we then have that

λf = m(θ, 1)

θ
, (5)

λw(a) = ν(a)

v
m(θ, 1). (6)

The expression for the meeting probability in (5) provides a one-to-one (strictly
decreasing) mapping between λf and θ . Thereafter, when we discuss changes
in λf , we imagine changes in θ . The measure of worker-firm matches with an a

machine is denoted µ(a) and total employment is µ ≡ ∫ ∞
0 µ(a)da.

Scrapping versus Upgrading. Values for the market participants are J (a) and
W(a) for matched firms and workers, respectively, V (a) for vacant firms, and U

for unemployed workers. We consider two forms of capital replacement and the
value functions will differ in the two cases. We proceed immediately by guessing
that there is a cutoff age for capital, ā, such that either scrapping or upgrading
takes place.

The Values of Matched Workers and Firms. Under both replacement decisions,
the flow value of a job for firm and worker for a ≤ ā is given, respectively, by

(r − g)J (a) =
max{e−ϕa − w(a) − σ [J (a) − V (a)] + J ′(a), (r − g)V (a)} (7)

(r − g)W(a) = max{w(a) − σ [W(a) − U ] + W ′(a), (r − g)U}. (8)

The return of a matched firm with an age a machine is equal to profit, i.e., produc-
tion less wages w(a) paid to the worker, minus the flow rate of capital losses from
separation plus the flow losses/gains due to the aging of machines.12 Analogously
for a worker, the return on being in a match with an age a machine is the wage
minus the flow rate of capital losses from separation plus the flow losses/gains
due to the aging of machines. For the match to be maintained, the flow return from
staying in the match must be at least as high as the flow return from leaving the
match, i.e., from the firm becoming vacant and the worker becoming unemployed.
Note that the capital value equations for matched workers and firms are defined
only for matches with machines not older than ā, since all machines either exit
or are upgraded at age ā.

12. In Appendix A we describe a typical derivation of the preceding differential equations.
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Values of Idle Workers and Firms. In the economy where capital is replaced by
scrapping, the values of idle workers and firms are

(r − g)V (a) = max{λf [J (a) − V (a)] + V ′(a), 0} (9)

(r − g)U = b +
∫ ā

0
λw(a)[W(a) − U ]da. (10)

The return on a vacant firm is equal to the capital gain rate from meeting a worker
plus the flow losses/gains due to the aging of capital. Vacant machines that are
older than the critical age ā exit.13 The return for unemployed workers is equal
to their benefits b plus the capital gain rate from meeting vacant firms.

When capital is upgraded, we have instead

(r − g)V (a) ={
max

{
λf [J (a) − V (a)] + V ′(a), 0

}
, a ≤ ā;

max
{
λf [J (0) − IJ

u (a) − V (a)] + V ′(a), 0
}
, ā < a ≤ â; (11)

(r − g)U = b +
∫ ā

0
λw(a)[W(a) − U ]da

+
∫ â

ā

λw(a)
[
W(0) − IW

u (a) − U
]
da. (12)

Vacant machines that are older than the critical age ā do not exit, but wait until
they meet a worker and then upgrade. At the time the machine is upgraded, the
firm pays its share of the upgrading cost IJ

u (a). When age â is reached, upgrading
becomes infinitely costly, so the vacant firm exits with value equal to zero. The
return for unemployed workers contains an additional term that gives the value of
meeting vacant machines older than ā. These firms will upgrade upon meeting a
worker, and the worker contributes IW

u (a) to the upgrading cost and starts working
with brand-new capital.

Wage Determination. In the presence of frictions, a bilateral monopoly problem
between the firm and the worker arises and, thus, wages are not competitive. As
is standard in the literature, we choose a cooperative Nash-bargaining solution
for wages. In particular, we assume that the parameter defining the relative bar-
gaining power is the same when the pair negotiates over how to split output and
over how to share the upgrading cost Iu. With outside options as in the previous
equations, the wage is such that at every instant a fraction β of the total surplus

13. This also means that a matched machine of age ā or higher would be scrapped, since there is
no cost for a vacant machine of waiting for a worker. Here the absence of a vacancy-posting cost
simplifies the nature of the equilibrium. With such a cost, unmatched firms would scrap capital at
an earlier age than would matched firms.
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S(a) ≡ J (a) + W(a) − V (a) − U of a type a match goes to the worker and a
fraction (1 − β) goes to the firm:

W(a) = U + βS(a) and J (a) = V (a) + (1 − β)S(a). (13)

Using the surplus-based definition (13) of the value of an employed worker
W(a) in equation (8) and rearranging terms, we obtain the wage rate as

w(a) = (r − g)U + β[(r − g + σ)S(a) − S′(a)]. (14)

Allocation of Upgrading Costs. The allocation of gains from upgrading is as-
sumed to maximize the joint surplus.14 Firms of age a and workers thus split the
gain from upgrading

G(a) ≡ J (0) + W(0) − Iu − J (a) − W(a), (15)

according to the surplus sharing rule with parameter β. Thus, they jointly solve

max
IW
u (a),IJ

u (a)
[J (0) − J (a) − IJ

u (a)]β[
W(0) − W(a) − IW

u (a)
]1−β

subj. to: IJ
u (a) + IW

u (a) = Iu.

(16)

The upgrading cost is then distributed according to

IW
u (a) = W(0) − W(a) − βG(a), (17)

IJ
u (a) = J (0) − J (a) − (1 − β)G(a).

4. Characterizing the Stationary Equilibrium of the Frictional Economy

We characterize the equilibrium of the matching model in terms of two variables:
the age at which a firm exits the market or upgrades its machine and the rate at
which vacant firms meet workers: (ā, λf ). The two variables are jointly deter-
mined by two key conditions. The first condition is labeled the job destruction
or job upgrading condition. In the economy with creative destruction (upgrad-
ing) this condition expresses the indifference between carrying on and scrapping
(upgrading) the machine for a match with capital of age ā. The second condi-
tion, labeled the job creation condition, expresses the indifference for outside
firms between creating a vacancy with the newest vintage and not entering. This
characterization is conditional on the steady-state employment and vacancy dis-
tributions. In Section 4.3 we show how these distributions can be characterized
in terms of the two unknowns (ā, λf ).

14. In an earlier version of the paper, we also considered another assumption, namely that the
firm bears all of the upgrading costs and maximizes its own gains from upgrading. The quantitative
difference in results was small.



“zwu004050282” — 2005/7/7 — page 1019 — #13

Hornstein, Krusell & Violante Replacement Problem in Frictional Economies 1019

4.1. The Economy with Creative Destruction

The Surplus Function. It is useful to start by stating the (flow version of the)
surplus equation. Using the definition of the surplus S(a) we arrive at

(r − g)S(a) = max{e−ϕa − σS(a) − λf (1 − β)S(a) − (r − g)U + S′(a), 0}.
(18)

This asset-pricing-like equation is obtained by combining equations (7), (8), (9),
and (13): the growth-adjusted return on surplus on the left-hand side equals the
flow gain on the right-hand side, where the flow gain is the maximum of zero and
the difference between total inside minus total outside flow values. The inside
value includes: a production flow e−ϕa , a flow loss due to the probability of a
separation of the match σS(a), and changes in the value for the matched parties,
J ′(a) + W ′(a). The outside option flows are: the flow gain from the chance that
a vacant firm matches λf (1 − β)S(a), the change in the value for the vacant firm
V ′(a), and the flow value of unemployment (r −g)U . Note a key difference with
the traditional model: the value of a vacancy is positive, and it contributes towards
a reduction of the rents created by the match.15

The solution of the first-order linear differential equation (18) is the function

S(a) =
∫ a

a

e−(r−g+σ+(1−β)λf )(ã−a)
[
e−φã − (r − g)U

]
dã. (19)

We have used the boundary condition associated with the fact that the surplus-
maximizing decision is to keep the match alive until an age ā when there is no
longer any surplus to the match, S(ā) = 0, and there is no gain from a marginal
delay of the separation, S′(ā) = 0. For lower a’s, the match will have strictly
positive surplus, and for values of a above ā, the surplus will be equal to zero.16

Intuitively, the surplus is decreasing in age a for two reasons: first, the time-
horizon over which the flow surplus accrues to the pair shortens with a; and
second, the value of a job’s output declines with age relative to that of the new
vacant jobs.

Equation (19) contains a non standard term associated with the non degenerate
distribution of vacancies: the non-zero firm’s outside option of remaining vacant
with its machine reduces the surplus by increasing the “effective” discount rate
through the term (1 − β)λf . Everything else being equal, the quasi-rents in the
match are decreasing as the bargaining power of the idle firm or its meeting rate
is increasing.

15. In equation (18) we have S ′(a) = J ′(a) + W ′(a) − V ′(a).

16. Straightforward integration of the right-hand side in (19) and further differentiation shows
that, over the range [0, ā), the function S(a) is strictly decreasing and convex; moreover, S(a) will
approach 0 for a → ā.
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The Job-Destruction Condition. The optimal separation rule S′(ā) = 0 together
with equation (19) implies that the exit age ā satisfies

e−ϕā = (r − g)U, (20)

for a given value of unemployment U . The left-hand side of (20) is the output of
the oldest match in operation, whereas the right-hand side is the flow-value of an
idle worker. The idea is simple: firms with old enough capital shut down because
workers have become too expensive, since the average productivity of vacancies
and, therefore, the workers’ outside option of searching, is growing at a constant
rate. Note that this equation resembles the profit-maximization condition in the
frictionless economy, with the worker’s flow outside option, (r − g)U , playing
the role of the competitive wage rate. In fact, from the wage equation (14), it
follows that the lowest wage paid in the economy (on machines of age a) exactly
equals the flow value of unemployment.

We can now rewrite the surplus function (19) in terms of the two endogenous
variables (ā, λf ) only, by substituting for (r − g)U from (20):

S(a; ā, λf ) =
∫ ā

a

e−(r−g+σ+(1−β)λf )(ã−a)
[
e−ϕã − e−ϕā

]
dã. (21)

In this equation, and occasionally below, we use a notation of values (the surplus
in this case) that shows an explicit dependence of ā and λf . From (21) it is
immediately clear that S(a; ā, λf ) is strictly increasing in ā and decreasing in
λf . A longer life span of capital ā increases the surplus at each age because it
lowers the flow value of the worker’s outside option, as evident from (20). A
higher rate at which firms, when idle, meet workers reduces the surplus because
it increases the outside option for a firm and shrinks the rents accruing to the
matched pair.

Using (10), (13), and (20) we obtain the optimal separation (or job-destruc-
tion) condition

e−ϕā = b + β

∫ ā

0
λw(a; ā, λf )S(a; ā, λf )da, (JD)

which is an equation in the two unknowns (ā, λf ). The rates λw(a) at which
unemployed workers are matched with firms also depend on the two endogenous
variables; the explicit dependence on ā and λf is described below.

The Job-Creation Condition. We define the value of a vacancy of age a using the
new expression (21) for the surplus of a match S(a; ā, λf ) together with (13). The
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differential equation for a vacant firm (9) then implies that the net-present-value
of a vacant firm equals

V (a; ā, λf ) = λf (1 − β)

∫ ā

a

e−(r−g)(ã−a)S(ã; ā, λf )dã, (22)

where ā equals the age at which the vacant firm exits. Since vacant firms do
not incur any direct search cost, they will exit the market at an age such that
this expression equals zero. This immediately implies that vacant firms will exit
at the same age ā at which matched firms exit and scrap their capital. Since in
equilibrium there are no profits from entry, we must have that V (0; ā, λf ) = I0,
and we thus have the free-entry (or job creation) condition

I0 = λf (1 − β)

∫ ā

0
e−(r−g)aS(a; ā, λf )da. (JCD)

This condition requires that the cost of creating a new job I0 equals the value of
a vacant firm at age zero, which is the expected present value of the profits it will
generate: a share 1 − β of the discounted future surpluses produced by a match
occurring at the instantaneous rate λf . The job creation condition is the second
equation in the two unknowns (ā, λf ).

In Hornstein, Krusell, and Violante (2003), we demonstrate that a solution to
the two equations (JCD) and (JD) in the pair (ā, λf ) exists and is unique under
general conditions: in particular, the (JCD) condition traces a strictly decreasing
curve in the (ā, λf ) space, whereas the (JD) condition traces a strictly increasing
relationship.

4.2. The Economy with Upgrading

We now consider an economy where the firm and worker jointly decide on when
the machine should be upgraded and both parties share in the cost of the project.

Optimal Upgrading. A worker-firm pair will not upgrade its machine as long
as the gains from upgrading are negative. The match values, being the discounted
expected present values of future returns, are continuous functions of the age.
Since upgrading is instantaneous, at the time a machine is upgraded the gain from
upgrading is then zero:

G(ā) = J (0) + W(0) − Iu − J (ā) − W(ā) = 0. (23)

At the optimal upgrading age not only is the gain from upgrading zero, but
so is the marginal gain from a delay of the upgrading decision. This means
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that at the upgrading age the derivative of the gain function is zero, that is,
J ′(ā) + W ′(ā) = 0. We can use this condition when we add the value func-
tion definitions of matched workers, (8), and firms, (7):

(r − g)[J (ā) + W(ā)]
= e−ϕā − σ [J (ā) + W(ā) − V (ā) − U ] + J ′(ā) + W ′(ā). (24)

Together, the two no-gains conditions then imply

(r − g)[J (0) + W(0) − Iu] = e−φā − σ [J (0) + W(0) − Iu − V (ā) − U ].
(25)

This condition states that at the optimal upgrading age ā the firm-worker pair is
indifferent between an upgrade and a marginal delay of the upgrade. The left-hand
side of this expression is the matched pair’s return on an upgraded machine at ā,
and the right-hand side is the flow return from a marginal delay of the upgrading
decision: the production flow minus the surplus capital loss from delay due to
separation.17

Optimal upgrading depends on the value of a vacancy at the upgrading age,
which in turn depends on the expected present value of a vacant firm’s gain from
upgrading upon meeting a worker (11). From the rule (17), which determines how
the gains from upgrading (15) are shared, we obtain

J (0) − IJ
u (a) − V (a) = (1 − β)[S(0) + I0 − Iu − V (a)], (26)

where we have used the free-entry condition V (0) = I0.18 Substituting this
expression in the definition of the value of a vacancy (11) for ā ≤ a ≤ â,
collecting terms, and solving the differential equation subject to the terminal
condition V (â) = 0, we obtain an expression for the vacancy value for a ≥ ā

V (a) = κV (a, λf )[S(0) + I0 − Iu], (27)

with κV (a, λf ) = [1 − e−ρV (â−a)](1 − β)λf /ρV and ρV = (1 − β)λf + r − g.
In an equilibrium the value of a vacancy is non negative at the upgrading age.

The surplus and the vacancy value at the upgrading age and the surplus
and vacancy value for a firm with a new machine differ only through the cost
of upgrading. To see this, use the surplus-sharing rule (13) and the free-entry
condition in the no-gains condition (23) and we arrive at

S(ā) + V (ā) = S(0) + I0 − Iu. (28)

17. In Appendix B we provide a heuristic derivation of this indifference condition based on the
limit of discrete time approximations.
18. Because we have imposed a maximum age for capital, there will always be machine exit, so
entry must occur in any steady state.
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This means that the surplus at the upgrading age is given by

S(ā) = [1 − κV (ā, λf )][S(0) + I0 − Iu]. (29)

In an equilibrium, both the surplus and vacancy value at the upgrading age are
nonnegative. Note that in the economy with upgrading, the surplus and vacancy
value at the upgrading age can be strictly positive, unlike in the creative destruction
economy where machines are scrapped at the exit age because the surplus of the
match is zero. Since κV ∈ (0, 1) either the surplus and vacancy value are both
zero or both strictly positive.

In the definition of the job-upgrading and job-creation conditions next, we use
the surplus function S(a; ā, λf ), defined for machines that have not yet reached
the upgrading age: 0 ≤ a ≤ ā. In Appendix C we show that we can write the
surplus as a function of the upgrading age and the worker meeting rate only. As
a first step towards that result, we derive an expression for the surplus value of a
new machine as a function of (ā, λf ) only, S(0; ā, λf ).

The Job-Creation Condition. The condition that ensures zero profits at entry is
always I0 = V (0; ā, λf ) but we now have a different expression for the value of
a vacant job. From (11) and (13), it is easy to see that, for a ≤ ā,

V (a; ā, λf ) = λf (1 − β)

∫ ā

a

e−(r−g)(ã−a)S(ã; ā, λf )dã

+ e−(r−g)(ā−a)V (ā; ā, λf ). (30)

Since the cost of upgrading a machine is independent of the age as long as the
machine is not too old, a ≤ â, vacant machines older than ā will be upgraded.
Vacant machines at the upgrading age ā therefore tend to have positive value,
unlike vacant machines at the exit age in a creative-destruction economy. We can
substitute (27) for the vacancy value at ā and obtain the job-creation equilibrium
condition as a function of the pair of unknowns (ā, λf ) only:

I0 = λf (1 − β)

∫ ā

0
e−(r−g)aS(a; ā, λf ) da

+ e−(r−g)āκV (ā, λf )[S(0; ā, λf ) + I0 − Iu]. (JCU)

Also this equation is easily comparable with the job-creation condition (JCD)
of the creative-destruction model, since it features only one additional positive
term.19 This term captures the additional value of using the upgrading option

19. Note however that the expression for the surplus function S(a; ā, λf ) and the distributions
λw(a; ā, λf ) are not the same in the two economies. We discuss the invariant distributions in
Section 4.3, and as noted before, we derive the expression for the surplus in Appendix C.
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when opening a job. This value is decreasing in Iu and also decreasing in λf ; the
reason is that the marginal gain of the upgrading option, compared to scrapping,
is large if the firm’s meeting process is slow.

The Job-Upgrading Condition. From the condition for the optimal delay of
upgrading (25), together with the expression for the vacancy value at the threshold
age ā (27) and the surplus definitions (13), it is easy to derive that

e−ϕā − κJ (ā, λf )[S(0; ā, λf ) + I0 − Iu] = (r − g)U, (31)

with κJ (ā, λf ) = r − g + σ [1 − κV (ā, λf )]. Now consider the flow value of
unemployment (12). Using the surplus-sharing rules (13) in the first integral term
and the upgrading cost-sharing rule (17) in the second integral term of the right-
hand side, and substituting expression (31) for the flow return on unemployment
on the left-hand side, we obtain an expression for the job upgrading condition
entirely as a function of (ā, λf ):

e−ϕā = b + β

∫ ā

0
λw(a; ā, λf )S(a; ā, λf ) da + [

S(0; ā, λf ) + I0 − Iu

]

×
{

κJ (ā, λf ) + β

∫ â

ā

λw(a; ā, λf )[1 − κV (a, λf )] da

}
. (JU)

Comparing this equation with the job destruction condition in the economy with
creative destruction (JD), we note again an additional term, always positive,
implying that the upgrading age ā is lower than the destruction age; how much
lower it is depends on the size of the extra term.

4.3. Invariant Employment and Vacancy Distributions

The two kinds of economies we are considering—one with creative destruction
and one with upgrading—have many parts in common but the distributions of
matched firm/worker pairs are quite different. In particular, in the former economy
the density of matched pairs is sharply increasing in the age of the capital, unlike
in the economy with upgrading. This is because new capital must be created prior
to the creation of the match. We now describe how to construct the employment
and vacancy distributions in some more detail. This characterization is interesting
for understanding wage inequality, but it is also important for finding explicit
expressions for the matching probabilities in terms of the endogenous variables
(ā, λf ).
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The Economy with Creative Destruction. Denote with µ(a) the measure of
matches between an a firm and a worker, and denote total employment with µ.20

The inflow of new firms is v(0): new firms acquire the new capital and proceed
to the vacancy pool. Thereafter, these firms transit stochastically back and forth
between vacancy and match: firms are matched with workers at rate λf and they
become vacant at rate σ . Finally firms exit at age ā, whether vacant or matched.
The evolution of employment and vacancies in a stationary distribution is then
determined by the differential equations

v′(a) = σµ(a) − λf v(a), for 0 ≤ a ≤ ā (32)

µ′(a) = λf v(a) − σµ(a), for 0 ≤ a ≤ ā. (33)

The evolution of matched machines is the mirror image of the evolution of vacan-
cies, i.e., µ′(a) = −v′(a). This implies that the number of vacant and matched
machines of age a less than ā remains constant:

v(a) + µ(a) = v(0) + µ(0), for 0 ≤ a ≤ ā. (34)

For a ∈ [0, ā), the evolution of µ(a) therefore follows

µ′(a) = λf [v(0) + µ(0)] − (σ + λf )µ(a). (35)

Because all firms proceed first to the search pool with their new machines, we
can solve this differential equation subject to the initial condition µ(0) = 0.
As Figure 1 reveals, the employment (vacancy) density is increasing and con-
cave (decreasing and convex) in age a. The reason for this is that for every age
a ∈ [0, ā) there is a constant number of machines, and older machines have a
larger cumulative probability of having been matched in the past. This feature
distinguishes our model from standard-search vintage models where the distribu-
tion of vacant jobs is degenerate at zero and the employment density is decreasing
in age a at a rate equal to the exogenous destruction rate σ .

With the vacancy distribution in hand, we now have the explicit expression
for the value of λw(a),

λw(a; ā, λf ) = λw

ν(a)

v
= m(θ, 1)

σ + λf e−(σ+λf )a

āσ + λf

σ+λf

(
1 − e−(σ+λf )ā

) , (36)

which depends only on the pair of endogenous variables (ā, λf ), given the strictly
decreasing relation between θ and λf , equation (5).21

20. In Appendix D we derive the differential equations that characterize the stationary employment
dynamics, equations (32) and (33).
21. The closed-form expressions for employment and vacancy densities, (E.2) and (E.3), are in
Appendix E.
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Figure 1. Employment and vacancy densities.

The Economy with Upgrading. In the economy with upgrading, the key differ-
ence is that after the machine of a firm reaches age ā, the firm does not exit, but it
upgrades the machine if it is matched to a worker and thereby resets the age to 0.
Only vacant firms that do not meet a worker by age â exit the economy. For firms
with relatively young machines, i.e., firms that do not upgrade their machines, the
evolution of employment and vacancies in a stationary distribution continues to
be determined by the differential equations (32) and (33), and equation (34). With
the possibility of the instantaneous upgrading of machines at age ā and ongoing
upgrading of vacant machines with age a ≥ ā, the employment density of new
machines is now strictly positive:

µ(0) = µ(ā) + λf

∫ â

ā

v(a)da. (37)

This means that in the economy with upgrading, the employment density is max-
imal for the newest vintage—it contains the machines which have just upgraded
in addition to all vintages which immediately upgrade upon meeting a worker.
Figure 1 illustrates how the two economies differ. Finally, the evolution of vacan-
cies that are older than the upgrading age is given by

v′(a) = −λf v(a), for ā < a ≤ â. (38)
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Since matched machines never reach age a > ā there are no additions from exoge-
nous separations. Once the machine of a vacant firm reaches age â, upgrading
becomes infeasible and the firm exits.

In Appendix E we show how to solve the system of equations (32), (33),
(34), (37), and (38) for the employment and vacancy distribution, µ(a) and v(a),
conditional on the pair (ā, λf ). With the vacancy distribution in hand, we use (6)
to obtain λw(a), i.e., the rate at which workers meet vacant firms.

5. The Quantitative Analysis

The calibration proceeds as follows. For both the creative-destruction economy
and for the upgrading economy, we target a common set of steady-state aggre-
gate variables not including any measure of wage inequality. We then look at the
implications for the level of frictional wage inequality given the resulting param-
eterizations. Next, we look at the effect of changing the rates of disembodied
and embodied technology growth on unemployment and other equilibrium labor
market outcomes.

5.1. Calibration

For each of the two model economies we choose the parameter values to match
the same set of steady-state values based on the U.S. economy. We choose a
Cobb–Douglas specification for our matching function, m = κvαu1−α , where
κ is the scale parameter. Hence, overall, we have 13 parameters to calibrate:
(r, κ, α, σ, β, δ, I0, Iu, â, ψ, ω, γ, b).

We set r to match an annual interest rate of 4%. We set the matching elasticity
with respect to vacancies, α, to 0.5, an average of the values reported in the
comprehensive survey of empirical estimates of matching functions by Petrongolo
and Pissarides (2001, Table 3).

We have two sources of growth in the model: disembodied productivity
change, occurring at rate ψ , and capital-embodied productivity change. Hornstein
and Krusell (1996) measure annual disembodied growth in the United States for
1954–1993 to be 0.8% per year, whereas more recently, Cummins and Violante
(2002) compute it to be 0.3% per year from 1965–2000. We set ψ = 0.5%. At
least since Greenwood, Hercowitz, and Krusell (1997), a number of authors have
suggested to measure the speed of embodied technical change through the (inverse
of the) rate of decline of the quality-adjusted relative price of capital. We argued
before that in our environment, embodied technical change is directly reflected in
the rate at which the relative price of new capital declines, γ −g. Gordon’s (1990)
influential work on quality-adjusted prices for durable goods suggests a value for
the annual rate of embodied technical change in the United States around 3%.
Given the observed 2% average U.S. output growth rate g, the rate of price decline
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for capital implies that γ = 5%. From the relation g − γ = ψ − (1 − ω)γ , we
obtain a capital elasticity parameter ω = 0.3.

For the creative-destruction economy we simultaneously calibrate the remain-
ing parameters (σ, β, δ, I0, κ, b) so that the steady state has (1) an unemployment
rate of 4% (the U.S. historical average); (2) an average unemployment duration
of 8–9 weeks, as reported by Abraham and Shimer (2001); (3) a labor income
share of 0.685 (Cooley and Prescott 1995); (4) an average vacancy duration of four
weeks as estimated by Hall (2003) based on data from the Job Openings and Labor
Turnover Survey; (5) an average age of capital of about 11.5 years, as reported
by the Bureau of Economic Analysis (2002); and (6) an average replacement rate
of 10%.22

The parameter b is supposed to summarize a wide range of benefit poli-
cies that vary with unemployment duration and family status (none of which we
model). The OECD Employment Outlook (1996) provides replacement rates for
unemployment benefits in OECD countries from 1961 to 1995 for two earnings
levels, three family types, and three durations of unemployment. The reported
average replacement rate (in terms of the average wage) for the United States in
that period was 10% and we choose b to replicate this number.

For the economy with upgrading one can think of the calibration as matching
the same targets but using Iu instead of I0. This is because with upgrading we
set the maximal age â beyond which machines cannot be upgraded at 30 years.
Given the matched steady-state rate at which vacant machines meet workers, this
high value of â means that almost all machines will eventually upgrade even
if initially vacant, and entry of new machines will essentially be zero. Since
effectively there is no entry, â and I0 only have a minor effect on the steady
state (so I0 can be solved for residually): we again match six variables with six
parameters.

The parameter values are summarized in Table 1. A clear conclusion emerges:
if we take the distance between parameters as a measure of closeness of the two
economies, then it appears that the economies are remarkably similar: very small
parametric differences are needed to match the same set of facts.

In our calibration we have not tried to match the wage inequality generated
by the vintage induced productivity differences in the two economies. We use
two measures of wage inequality: the 90–10 wage ratio used widely in the empir-
ical labor literature, and the ratio of average wages to minimum wages.23 From

22. The unemployment rate together with the average unemployment duration imply an annual
separation rate for workers from employment to unemployment of 22% for either economy. This
value of the separation rate is in line with the data reported in Alogoskoufis et al. (1995, p. 10).
23. The latter measure is useful because we show in Hornstein, Krusell, and Violante (2005) that
the standard DMP model without capital makes very tight predictions on what this measure must be
given the usual steady-state statistics.
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Table 1. Calibration of benchmark economies.

Common parameters
r = 0.04, α = 0.5, ψ = 0.005, γ = 0.05, ω = 0.3

Economy with Economy without
upgrading investment upgrading investment

Model-specific parameters
κ 8.911 8.923
δ 0.061 0.064
σ 0.255 0.214
β 0.802 0.767
b 0.048 0.048
I0 4.599 4.281
Iu 4.278 NA
â 30.000 NA

Wage inequality
w90/w10 1.078 1.058

waverage/wmin 1.053 1.040

Table 1 we can see that the 90–10 wage ratio is about 8% (6%) in the econ-
omy with(out) upgrading, and the second inequality measure is about 5% (6%)
in the economy with(out) upgrading. The fact that the economy with upgrading
generates somewhat more wage inequality for both measures is related to the qual-
itative difference of employment densities discussed in Section 4.3. Even though
the maximal and minimal wages of the youngest and oldest vintages are very
similar in the two economies, there are relatively more high-productivity young
vintages in the economy with upgrading. This feature increases the upper cut-off
wage for the 90–10 wage ratio and it increases average wages in the economy
with upgrading.

To put these numbers on wage inequality in perspective, for observation-
ally equivalent workers Katz and Autor (1999) report 90–10 wage ratios around
1.5 and Hornstein, Krusell, and Violante (2005) report ratios of mean wages to
minimal wages (proxied by the first percentile) around 1.3. These numbers are
computed on the distribution of residuals in a typical wage regression, after con-
trolling for observable characteristics of the workers (gender, race, education,
experience) and fixed individual effects to capture “unobserved ability.” Hence,
the combination of matching frictions (“luck”) and vintage capital differentials
can only explain at best one-sixth of the observed inequality among ex ante equal
workers.

5.2. Creative-Destruction versus Upgrading: A Comparison

We now analyze, for the baseline parametrization, the response of the two
economies to accelerations in the rate of embodied technical change, γ , and
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in the rate of disembodied technical change, ψ , of an empirically plausible mag-
nitude. In our analysis we focus on the behavior of the unemployment rate, the
average unemployment duration, the critical age at which upgrading/exit occurs,
the wage income share, the ratio of average wages to lowest wages, and the 90–10
wage ratio.

Embodied Technical Change. Krusell et al. (2000) and, more recently, Cummins
and Violante (2002) have argued that the annual rate of embodied technical change
in the United States has increased substantially in the past two decades, up to 6.5%
over the years 1995–2000.24 This estimate, together with the assumption that ψ

and ω remain constant, means that γ has increased to 10% so as to generate a
decline in the relative price of capital of 6.5% per year.

The results of this experiment are reported in Figure 2. A faster rate of embod-
ied technical change increases the unemployment rate and wage inequality and
lowers the wage income share. The accelerated technical change shortens the

0.05 0.06 0.07 0.08 0.09 0.1
0.04

0.042

0.044

0.046

0.048

0.05
Unemployment Rate

0.05 0.06 0.07 0.08 0.09 0.1
0.16

0.17

0.18

0.19
Average Unemployment Duration

0.05 0.06 0.07 0.08 0.09 0.1
19

20

21

22

23
Separation/Upgrade Age

0.05 0.06 0.07 0.08 0.09 0.1

0.64

0.65

0.66

0.67

0.68

Wage Share

0.05 0.06 0.07 0.08 0.09 0.1

1.06

1.07

1.08

1.09

w10/w90

0.05 0.06 0.07 0.08 0.09 0.1
1.04

1.045

1.05

1.055

1.06

1.065
Average Wage/Minimal Wage

Upgrading

No Upgrading

Figure 2. Comparative statics for embodied technical change γ .

24. Other authors, using measurement techniques different from quality-adjusted relative prices,
arrived at very similar conclusions on the pace of embodied technical change in the postwar era (see
for example, Hobijn 2000) for the United States.
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useful lifetime of a machine, that is, machines are either upgraded at a faster
rate or they exit the economy at a faster rate. Although wages fall, reflected in
the declining wage income share, they do not fall enough to compensate com-
pletely for the shortened lifetime of machines. As a consequence, the value of
firms declines, but in equilibrium the value of a new machine has to equal the
constant (normalized) cost of a new machines. Therefore, the rate at which firms
meet workers has to increase, and correspondingly the rate at which workers
meet firms declines, that is the average duration of unemployment increases. This
means that the measure of active firms and employment declines.

Employment in the economy without upgrading declines somewhat more
than in the economy with upgrading because of the creative destruction effect:
upon firm exit workers enter the unemployment pool. Overall, the differences
across the two economies are minor along all dimensions examined.

Disembodied Technical Change. Mortensen and Pissarides (1998) have pointed
out that there is a qualitative difference between embodied and disembodied tech-
nical change. Whereas a higher rate of embodied technical change tends to lower
the value of existing machines, a higher rate of disembodied technical change
increases the value of machines because it increases the output over the lifetime
of a machine. Machines become more valuable, vacancy values increase, more
machines seek to match with workers, and therefore unemployment declines.
Wage inequality declines and the wage income share increases.

From Figure 3 we see (1) that the economies with and without upgrading
essentially respond in the same way to a change in the rate of disembodied tech-
nical change, and (2) that doubling the rate of disembodied technical change has
a negligible quantitative effect on labor market variables.

5.3. Interpreting the Findings: An Intuitive Argument

The facts that search frictions generate only a limited amount of wage inequality in
our vintage model and that the nature of the investment decision does not affect the
comparative statics in a quantitatively important way, result from two important
quantitative restrictions that calibration to the U.S. labor market imposes on the
equilibrium of our model.

First, on average a job/machine remains vacant in the U.S. economy for
about four weeks, to be compared to the expected lifetime of a new machine,
which is over 11 years. When the labor market frictions are so small from the
firm’s perspective, the firm becomes roughly indifferent between scrapping and
upgrading: for a given cost of new machines, the upgrading option is substantially
better than scrapping only if the matching process is long and costly.
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Figure 3. Comparative statics for disembodied technical change ψ .

Second, the average duration of unemployment in the U.S. economy is very
short, around eight weeks. In search models, unemployment duration is directly
related to the option value of search for the risk-neutral worker and the latter
depends positively on wage dispersion. A duration of unemployment as short as
it is in the data can therefore only be consistent with a minor amount of frictional
inequality.

Interestingly, our results are consistent with the conclusions of Ridder and
van den Berg (2003) who estimate the severity of search frictions in the United
States, the United Kingdom, France, Germany, and the Netherlands and find that
the labor market in the United States is, by far, the least frictional. The (inverse of
their) measure of search frictions—the arrival rate of job offers to the unemployed
workers—for the United States is 5 times larger than for the United Kingdom, 8
times larger than for Netherlands, 15 times larger than for France, and 22 times
larger than for Germany.

Technically, we show in Proposition (1) below that, for I0 = Iu and as match-
ing frictions vanish, the upgrading model collapses to the creative-destruction
economy. In addition, both economies converge to the frictionless benchmark of
Section 2 where the equilibrium displays a unique market clearing wage.
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Proposition 1. If I0 = Iu and the meeting rate in the labor market becomes
infinitely high (λf → ∞), the economy with upgrading converges to the economy
with creative destruction. Moreover, the two economies converge to the friction-
less benchmark which displays no wage inequality.

Proof. See Appendix F.

Finally, note that the result that the frictionless vintage capital model is
obtained as the limit when frictions vanish is a desirable and natural property
of our setup, which is not shared by the traditional framework. It is easy to verify
that the equilibrium of the traditional matching model with vintage capital, where
vacant firms do not purchase a machine upon entry but simply pay a flow cost to
post their vacancy (recall our discussion of Section 3), converges in the limit to an
economy where only the newest type of capital is in operation. Put differently, not
only do wage inequality and unemployment disappear as the matching frictions
fade, which is natural, but the vintage capital component of the model vanishes
as well.

Therefore, in the traditional model the vintage capital structure is not a result
of the nature of technical change and of the investment decision, but its existence
depends entirely on the fact that it is costly for firms to replace workers, and hence
that firms hold on to their machines longer. This latter effect is still present in our
model, but it is not the only force generating heterogeneity in the age of capital
in operation.

6. Extensions

Still within the context of identical workers, we now consider two additional
sources of inequality: productivity heterogeneity that is (i) machine-specific or
is (ii) match-specific. In the former case, an entrepreneur who enters the econ-
omy buys a new machine but the new machine may not be a good match with the
entrepreneur’s skills, and independently of the worker with whom the entrepreneur-
machine pair is matched, the idiosyncratic productivity level stays intact (control-
ling for the aging of capital). Thus, the relevant idiosyncratic specificity is between
the entrepreneur and the machine; once the machine is scrapped (or upgraded),
the specificity disappears. In the latter case, in contrast, the relevant idiosyncratic
specificity is between the entrepreneur-machine and the worker; once the worker
is gone, the specificity disappears.

In the economy with match-specific productivity, upgrading (as opposed to
creative destruction) helps firm-worker pairs keep the good matches for a longer
time. In the economy with machine-specific productivity, this effect is not present.
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6.1. Model Specifics

We now briefly outline some specifics of each of the extensions. The details of
each model can be found in the Appendix.

Machine-Specific Productivity. In the economy with machine-specific produc-
tivity, once a new machine is created it has initial productivity ez, which is drawn
from a probability density function f (z) with bounded support [0, ẑ]. As before,
machines age and depreciate such that the productivity of an age a machine at
time t relative to a new machine with initial productivity ez+gt is ez−ϕa . This
productivity does not depend on the worker the machine/firm is matched with. If
the machine is ever upgraded it will receive a new productivity draw from f (z).

Equilibrium is straightforward to define both in the cases of creative destruc-
tion and upgrading; we list the equations in Appendix G. Computation of an
equilibrium is not more difficult than before since machines can be ranked along
a productivity dimension that captures both age and machine-specific productiv-
ity. In this sense, the model here is isomorphic to the one without machine-specific
productivity. The difference between models, of course, is quantitative: inequality
in productivity across machines is now not limited to that implied by the relative
price data for equipment of different vintages.

Match-Specific Productivity. Once a new match is created it has productivity
ez, with z drawn from a probability distribution with density f (z) and bounded
support [0, ẑ]. As before, machines age and depreciate such that the productivity at
age a relative to a machine with initial productivity ez+gt is ez−ϕa . If the machine
is ever upgraded in an existing match it will maintain the same productivity draw z.

Characterization of equilibria is less straightforward under match-specific
productivity, because the firm-worker pair now has two nontrivial state variables:
age and productivity. Thus, whether there is scrapping/upgrading depends on the
(a, z) pair. We now briefly discuss the characteristics of the stationary equilibrium
in the case with creative destruction as well as in the upgrading case. The details
of the analysis are to be found in Appendix G.2.

In the economy without upgrading, the question is when to scrap a machine.
For every z, there is a scrapping age ā(z). Because scrapping means the dissolution
of the match, ā(z) is an increasing function: productive matches are dissolved
later.

In the economy with upgrading, matters are less transparent. There are three
possible outcomes in a hypothetical (a, z) match: stay and do not upgrade, stay
and upgrade, and separate. The option to separate now appears because of bad
matches: if z is low enough, the machine is better employed elsewhere. For high
enough values of z, however, separation never occurs, and the upgrading age
āU (z) is now decreasing in z: the better the match, the more frequent is upgrading,
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because vintage and productivity are complementary. Define the cutoff for this
region by z∗

1. When z is low enough, i.e., below a value z∗
0 < z∗

1, upgrading
never occurs but separation occurs for an age above āS(z). Thus, if the machine
is very new, for these values of z the match remains intact and produces, but at
a sufficient high age it is better for the machine to become vacant so as to find
a better match, upon which upgrading could occur and the a would be reset to
zero. The function āS(z), moreover, is increasing: for a given a, an increase in z

makes staying together more attractive.
Finally, when z is in an intermediate range, i.e., z ∈ [z∗

0, z
∗
1], then there are

three regions: if a is low enough, the match remains intact; if it is in an intermediate
range, the match separates and the machine looks for a better match; and ifa is high
enough, upgrading takes place. The three regions are thus defined by two cutoff
functions: āS(z), for indifference between staying and separating, and āU (z), for
indifference between separating and upgrading. Figure 4 summarizes the three
regions.

6.2. Results

The one-line summary of our experiments is that neither the introduction of
machine-specific nor of match-specific productivity heterogeneity changes our
main results: search frictions still generate only a limited amount of wage inequal-
ity in our vintage model, and the nature of the investment decision does not affect
the comparative statics in a quantitatively important way.

z

a

â

z0* z1*

âU(z)

âS(z)

UpgradeSeparate

Match

Figure 4. Optimal separation and upgrading decisions.
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We consider the four economies implied by the combination of the two
elements: (1) productivity heterogeneity (machine-specific or match-specific)
and (2) means of machine replacement (creative destruction or upgrading). For
each economy we assume a two-point support for productivity heterogeneity,
z ∈ {z1, z2}. We normalize z1 = 0 and let z2 > 0 be the high-productivity
machine/match. In particular, we consider economies with z2 ∈ Z2 = [0, z̄2] and
f2 ∈ F2 = [0, f̄2]. For values of (f2, z2) ∈ F2×Z2, we calibrate each economy to
the same steady-state values of the unemployment rate, unemployment duration,
replacement rate, wage income share, and average machine age as in Section 5.1.25

The Comparative Statics of Technological Change. Recall that in the bench-
mark models we have shown that (1) embodied technical change increases the
unemployment rate, the unemployment duration, and wage inequality, and that it
lowers the wage income share; and that (2) disembodied technical change lowers
the unemployment rate, the unemployment duration, and wage inequality, and that
it increases the wage income share. The models with additional heterogeneity all
display the same comparative statics as the benchmark models, both qualitatively
and quantitatively.26 Figure 5 plots the comparative statics with respect to γ and
ψ in the economy with match-specific heterogeneity and upgrading. The graphs
for the other three economies look remarkably similar, so we omit them.

Productivity Heterogeneity and Wage Dispersion. For the case of machine-
specific productivity heterogeneity, we find that both the 90–10 wage ratio and
the ratio of average wages to minimum wages are very insensitive to all the val-
ues of (f2, z2) that we consider; recall that our one-type model is reproduced
by setting either of these two variables to zero. In the model with machine-
specific heterogeneity, the wages paid by high-and low-productivity machines
are very close since differences in machine-specific quality are reflected in the
firm’s productivity and in the firm’s outside value option. These two effects enter in

25. For the economies with machine-specific heterogeneity we match all steady-state targets for
the range defined by z̄2 = 0.2 and f̄2 = 0.5. The calibration of economies with match-specific
heterogeneity is somewhat more difficult. For the economy without upgrading we match all steady-
state targets except the average age of machines on the same range of (f2, z2). For low values of
f2 and high values of z2, the average age of machines increases to 13 years, which is larger than
the 11.5 year target. For the economy with match-specific heterogeneity and upgrading we match
most of the steady-state targets on a smaller range defined by z̄2 = 0.2 and f̄2 = 0.2. Similarly to
the case without upgrading, we have some problems here in matching the average age of machines
for the combination of low f2 and high z2 values. In addition, for high z2 values our calibration
procedure yields unemployment rates of 5% rather than the 4% target. It should also be pointed out
that for this calibration exercise we are matching five variables with six parameters: we have dropped
the average vacancy duration as a steady-state target. Nevertheless the calibration problem for the
economy with match-specific heterogeneity is sufficiently nonlinear that we are unable to mach all
steady-state variables for all (f2, z2) combinations.
26. The comparative statics analysis of our four economies are all taken for the same point in the
interior of our set F2 × Z2, i.e., f2 = 0.1 and z2 = 0.1.
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Figure 5. Comparative statics for embodied technical change γ and disembodied technical change
ψ in the model with match-specific heterogeneity and upgrading.

the wage determination with opposite signs: high machine-productivity increases
wages, but it also raises the outside option of the firm, reducing wages. Therefore,
wages (and wage dispersion) are largely unaffected by this type of productivity
dispersion.

Match-specific productivity-heterogeneity, on the other hand, does affect our
measures of wage inequality quite substantially. This is the only new feature of our
economies with heterogeneity. In the economy with creative destruction the ratio
of average wages to minimum wages is essentially independent of the (f2, z2)

values, but the 90–10 wage ratio can increase from 5% to 10% for low values of
f2 and high values of z2. In the economy with upgrading both measures of wage
inequality are affected by productivity heterogeneity. The ratio of average wages
to minimum wages increases only marginally from 5% to 7%, but the 90–10 wage
ratio can increase up to 20% for low values of f2 and high values of z2. See the
last panel in Figure 5.
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In this economy the surplus in a high-productivity match is substantially
higher than in the low-productivity match because the outside option of machines
is independent of the current match-specific productivity, so we only have a posi-
tive productivity effect on wages. The same vintage machine pays a substantially
higher wage if it is in a high-productivity match. Furthermore, due to upgrad-
ing, there is indeed a substantial positive mass of new machines with high z,
since upgrading occurs most frequently for good matches (see Figure 4). All this
together means that the top 10% of all wage earners are essentially all in good
matches with young machines. Thus an increase of the high productivity level
translates almost directly into an increase in the relative wage of the top percentile
group, and in the 90–10 wage ratio, whereas the average-to-minimum wage ratio
is less affected.

7. Conclusions

The existing literature has pointed out that it matters qualitatively for equilib-
rium unemployment whether technological progress benefits only new matches
or also ongoing relationships (Aghion and Howitt 1994; Mortensen and Pissarides
1998). In this paper we have shown that, if one takes the view—common in mod-
ern macroeconomics—that economic models should be calibrated and tightly
parameterized to replicate certain key features of aggregate data, then the quali-
tative ambiguity of the growth-unemployment relationship resolves into a stark
quantitative answer: the various approaches to the capital replacement problem
in frictional economies all yield near-equivalent quantitative results. This con-
clusion is reinforced once one includes into the picture the equilibrium income
shares and wage inequality, beyond the unemployment rate.

The driving force behind this result is that, quantitatively, the labor market
frictions are very small: the average duration of vacancies and unemployment in
the US is just 8 weeks, whereas the average life of capital is over 11 years. As
a result, upgrading gives only a very small advantage compared to innovating
through creative-destruction. Moreover, we explained that the fact that the cali-
brated model is so close to the frictionless model, quantitatively, is also responsible
for the finding that equilibrium wage dispersion is tiny in the model. Only the
model combining match-specific heterogeneity and upgrading generates sizeable
frictional inequality. Three important caveats apply to our conclusions.

First, in economies where frictions are more severe, like continental-European
labor markets where average unemployment duration can reach 6–8 months, our
equivalence result could be weaker.

Second, the two replacement models may not be equivalent for the evaluation
of the effects of certain labor market policies. For instance, the two approaches
have different implications for employment protection policies: in a world where
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the introduction of more productive capital requires a reorganization of production
and a firm-worker separation, employment-protection policies can have a large
impact on average productivity, whereas in a world where capital can be upgraded
without shedding labor, the effects of these policies will be minor.27

Third, throughout the analysis we maintained the hypothesis that workers
are homogeneous and every source of heterogeneity that we analyzed originates
from the firm’s side. Random matching models with simultaneous firm and worker
heterogeneity are particularly difficult to analyze because, generally, they have
multiple steady states (Sattinger 1995). Thus, the right modeling strategy seems
to be to introduce directed search with segmented markets. One particularly inter-
esting dimension of workers’ heterogeneity, in the context of our investigation,
is age. The incentives to upgrade an existing machine are higher, the younger is
the worker. Hence, creative destruction should occur mostly for older workers,
whereas upgrading should be concentrated among younger workers. In line with
this prediction, Bartel and Sicherman (1993) document that technical progress
reduces employment for old cohorts and increases employment for younger work-
ers. Future work should be directed toward evaluating the robustness of our finding
with respect to various dimensions of workers heterogeneity.

Finally, our result has useful implications from the perspective of a recent
literature that tries to identify the relative importance of disembodied technical
change vis-à-vis capital-embodied productivity advances in the US by exploiting
the different implications these shocks have on job creation, job destruction,
and the unemployment rate (see Lopez-Salido and Michelacci 2003; Pissarides
and Vallanti 2003). In our analysis, all conclusions are based on steady-state
comparisons. In other words, our equivalence result holds in the long run, but we
have not yet studied the short-run predictions of the different models. In this sense,
we provide a cautionary remark and a suggestion: our findings here suggest that
it is likely very difficult to disentangle the different sources of technical change
from a low-frequency analysis of the data. However, a high-frequency analysis of
the response of labor market flows to technology shocks might prove to be more
informative.

Appendix A: Derivations of Typical Value Functions

The value functions of our continuous-time model can be derived as limits of a
discrete time formulation. A typical derivation of the differential equations for
value functions (7)–(10) goes as follows. Consider the value of a vacant firm
with capital of age a ≤ ā at time t , Ṽ (t, a). For a Poisson matching process, the

27. See Ljungqvist (2002) for a discussion of the impact of firing costs in a large class of environ-
ments, among others a standard matching model.
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probability that the vacant firm meets a worker over a small finite time interval
[t, t + �] is �λf . We can define the vacancy value recursively as

Ṽ (t, a) = �λf [J̃ (t + �, a + �) − Ṽ (t + �, a + �)] + e−r�Ṽ (t + �, a + �),

where the first term is the expected capital gain from becoming a matched firm
with value J̃ and the second term is the present value of remaining vacant at the
end of the time interval. On a balanced growth path all value functions increase at
the rate g over time, i.e., Ṽ (t, a) = egtV (a) and J̃ (t, a) = egtJ (a). Subtracting
Ṽ (t + �, a) from both sides, substituting the balanced growth path expressions
for Ṽ and J̃ , and dividing by �eg(t+�), we can rearrange the value equation into

−e−g�V (a)
eg� − 1

�
= λf [J (a + �) − V (a + �)] + e−r� − 1

�
V (a + �)

+ V (a + �) − V (a)

�
.

As we shorten the length of the time interval and take the limit for � → 0, we
obtain the differential equation (9):

−gV (a) = λf [J (a) − V (a)] − rV (a) + V ′(a).

Appendix B: Derivation of Optimal Upgrading Condition

Consider the following discretization of the investment decision when a worker–
firm pair maximizes the joint value of the match.28 The length of a time period is
�. At ā the firm and worker prefer to upgrade at ā rather than delaying it by one
period:

W(0) + J (0) − Iu ≥ e−ϕā�

+ e−(r−g)�
{
(σ�)[V (ā + �) + U ] + (1 − σ�)[W(0) + J (0) − Iu]

}
The left-hand side is the joint capital value after upgrading at ā, and the right
hand side is the flow return from production without upgrading plus the expected
present value from upgrading in the next period. Note that the match separates
with probability σ� and loses the upgrading opportunity. Rearranging terms and
dividing by � we get

[W(0)+J (0)−Iu]1 − (1 − σ�)e−(r−g)�

�
≥ e−ϕā+σe−(r−g)�[V (ā+�)+U ].

28. We consider the formulation of the problem after variables have been made stationary, that is
normalized.
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Taking the limit as � → 0 yields

[W(0) + J (0) − Iu](r − g + σ) ≥ e−ϕā + σ [V (ā) + U ].
At age (ā − �) the firm and worker prefer not to upgrade, but to delay until ā:

W(0) + J (0) − Iu

≤ e−ϕ(ā−�)�+e−(r−g)� {(σ�)[V (ā) + U ] + (1−σ�)[W(0) + J (0) − Iu]} .

Rearranging terms and taking the limit as � → 0 we get

[W(0) + J (0) − Iu](r − g + σ) ≤ e−ϕā + σ [V (ā) + U ].
Therefore we must have that

[W(0) + J (0) − Iu](r − g + σ) = e−ϕā + σ [V (ā) + U ],
which is equation (25) in the main text.

Appendix C: Derivation of the Surplus Function with Upgrading

In Section 4.1 we derived the differential equation for the surplus value of a
matched firm–worker pair in a creative-destruction economy. This equation deter-
mines the surplus as a function of the age of the firm’s machine and it is defined
from the time of entry to the time of exit, 0 ≤ a ≤ ā. The surplus value in an
economy with upgrading satisfies the same differential equation but the terminal
condition for the surplus value differs. In the creative-destruction economy, the
firm/machine exits at age ā and the surplus at the time of exit is zero, S(ā) = 0. In
the economies with upgrading the machine is upgraded at age ā and the surplus
at that age S(ā) is defined in equation (29).

Substitute (31) for (r − g)U into the differential equation for the surplus
value (18), and solve that equation subject to the terminal condition (29) for S(ā),

S(a; ā, λf ) =
∫ ā

a

e−ρs(s−a)
{
e−φs − e−φā

}
ds

+ [S(0) + I0 − Iu]
{
[r − g + σ(1 − κV (ā, λf ))]

∫ ā−a

0
e−ρssds

+ (1 − κV (ā, λf ))e−ρs(ā−a)

}
, (C.1)
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with ρs = r − g + σ + (1 − β)λf . This is an expression for the surplus as a
function of the two unknowns (ā, λf ) and S(0). Now evaluate this expression at
a = 0 and solve for the surplus value of a new machine S(0). We obtain

S(0; ā, λf ) = �1J + (I0 − Iu)�2J

1 − �2J

, (C.2)

with

�1J (ā, λf ) ≡
∫ ā

0
e−ρsa

{
e−ϕa − e−ϕā

}
da,

�2J (ā, λf ) ≡ {
r − g + σ [1 − κV (ā, λf )]} ∫ ā

0
e−ρsada

+ [1 − κV (ā, λf )]e−ρs ā .

Appendix D: Derivation of the Steady-State Employment Dynamics

The equations describing employment dynamics are derived as follows. Consider
the measure of matched vintage a firms at time t . Over a short time interval of
length �, the approximate change in the measure is

µ(t + �, a) = µ(t, a − �)(1 − �σ) + �λf ν(t, a − �).

Subtracting µ(t, a) from both sides and dividing by � we obtain

µ(t + �, a) − µ(t, a)

�
= −µ(t, a) − µ(t, a − �)

�

− σµ(t, a − �) + λf ν(t, a − �).

Taking the limit for � → 0 we obtain

µt(t, a) = −µa(t, a) − σµ(t, a) + λf ν(t, a).

At steady state, these measures do not change with t , and we obtain the result
stated in (33). In the economy with upgrading the initial measure of matched
firms with new machines evolves according to

µ(t + �, 0) = µ(t, ā) + (�λf ) · v(t, 0) +
â/�∑

i=ā/�

(�λf ) · v(t, ai).

Taking the limit for � → 0 we get (37) for the steady state.
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Appendix E: The Invariant Employment and Vacancy Distributions

We solve the differential equation (35) for matched pairs backwards and get

µ(a) = λf [µ(0) + v(0)]
∫ a

0
e−(σ+λf )(a−ã)dã + µ(0)e−(σ+λf )a, (E.1)

and v(a) = v(0) + µ(0) − µ(a) for 0 ≤ a ≤ ā.
In the economy without upgrading µ(0) = 0 and we get closed-form expres-

sions for the employment and vacancy densities

µ(a)/µ = 1 − e−(σ+λf )a

ā − 1
σ+λf

(1 − e−(σ+λf )ā)
, (E.2)

v(a)/v = σ + λf e−(σ+λf )a

āσ + λf

σ+λf
(1 − e−(σ+λf )ā)

. (E.3)

In the economy with upgrading we have to solve for the employment density
of new machines µ(0). We solve the differential equation (38) for vacancies on
the interval [ā, â] backwards and get

v(a) = e−λf (a−ā)v(ā). (E.4)

The total measure of vacancies on [ā, â] is then

∫ â

ā

v(a)da = v(ā)A2 with A2 ≡
∫ â−ā

0
e−λf ada. (E.5)

We evaluate expression (E.1) at ā to get the measure of existing matches that
upgrade:

µ(ā) = [µ(0) + v(0)]λf A1 + µ(0)e−(σ+λf )ā with A1 ≡
∫ ā

0
e−(σ+λf )ada.

(E.6)

We substitute (E.6) and (E.5) into (37) and get

µ(0) = µ(ā) + λf A2v(ā)

= µ(ā) + λf A2[µ(0) + v(0) − µ(ā)]
= [1 − λf A2][{µ(0) + v(0)}λf A1 + µ(0)e−(σ+λf )ā]

+ λf A2[µ(0) + v(0)].
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We can solve this expression for the density of new employed machines as a
function of new vacant machines

µ(0) = Bv(0), with (E.7)

B = (1 − λf A2)λf A1 + λf A2

1 − (1 − λf A2)(λf A1 + e−(σ+λf )ā) − λf A2
.

Note that B can be simplified to

B = 1 − e−λf (â−ā){1 − [1 − e−(σ+λf )ā]λf /(σ + λf )}
e−λf (â−ā)

[
1 − e−(σ+λf )ā

]
σ/(σ + λf )

.

For the calibration of our economy, B is very large since the denominator is close
to zero. This will be important when we obtain numerical solutions of the steady
state.

Substituting (E.7) and (37) into the expression for the density of employed
machines at the upgrade age ā, (E.6), yields µ(ā) = v(0)(1 + B)λf A1 +
Bv(0)e−(σ+λf )ā or

µ(ā) = C1v(0), with (E.8)

C1 = (1 + B)λf A1 + Be−(σ+λf )ā .

Evaluating (37) at ā and solving for v(ā) we have v(ā) = µ(0) + v(0) − µ(ā).
After we substitute (E.8) for µ(ā) and (E.7) for µ(0) we have

v(ā) = C2v(0), with (E.9)

C2 ≡ (1 + B)(1 − λf A1) − Be−(σ+λf )ā .

Integrating the employment density (E.1) over the interval [0, ā] yields total
employment

∫ ā

0
µ(a)da = λf [µ(0)+v(0)]

∫ ā

0

[∫ a

0
e−(σ+λf )ãdã

]
da+µ(0)

∫ ā

0
e−(σ+λf )ãdã.

Substituting (E.7) for µ(0) in (37) yields

∫ ā

0
µ(a)da = C3v(0), with (E.10)

C3 = (1 + B)λf (ā − A3)/(σ + λf ) + BA3

A3 =
∫ ā

0
e−(σ+λf )ada.
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We can now calculate the total measure of vacancies on the interval [0, ā]. Using
(37) we get

∫ ā

0
v(a)da =

∫ ā

0
[µ(0) + v(0) − µ(a)]da = [µ(0) + v(0)]ā −

∫ ā

0
µ(a)da,

and using equations (E.7) and (E.10) we get

∫ ā

0
v(a)da = C4v(0), with (E.11)

C4 = (1 + B)[ā − (ā − A3)λf /(σ + λf )] − BA3.

Combining equations (E.5), (E.9), and (E.11) yields total vacancies as

∫ â

0
v(a)da = C5v(0), with (E.12)

C5 ≡ (1 + B)[ā − (ā − A3)λf /(σ + λf ) + A2(1 − λf A1)]
− B

[
A3 + A2e

−(σ+λf )ā
]
.

To get the density of new firms coming into the economy with new machines we
use the definition of labor market tightness

θ =
∫ â

0 v(a)da

1 − ∫ ā

0 µ(a)da
= C5v(0)

1 − C3v(0)

and solve for v(0)

v(0) = θ

θC3 + C5
.

Note that both C3 and C5 are linear in B, and since B is large for the calibration of
the economy, entry is essentially zero. A good approximation of the employment
and vacancy densities is then obtained by multiplying v(0) with B and dividing
all densities with B, or

ṽ(0) = Bv(0) = θ/[θC̃3 + C̃5], with

C̃5 = (1 + 1/B)[ā − (ā − A3)λf /(σ + λf ) + A2(1 − λf A1)]
− [A3 + A2e

−(σ+λf )ā]
≈ [ā − (ā − A3)λf /(σ + λf ) + A2(1 − λf A1)] − [

A3 + A2e
−(σ+λf )ā

]
C̃4 = (1 + 1/B)λf (ā − A3)/(σ + λf ) + A3

≈ λf (ā − A3)/(σ + λf ) + A3
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C̃3 = (1 + 1/B)λf (ā − A3)/(σ + λf ) + A3

≈ λf (ā − A3)/(σ + λf ) + A3

C̃2 = (1 + 1/B)(1 − λf A1) − e−(σ+λf )ā

≈ (1 − λf A1) − e−(σ+λf )ā

C̃1 = (1 + 1/B)λf A1 + e−(σ+λf )ā

≈ λf A1 + e−(σ+λf )ā

µ(0) = ṽ(0), µ(ā) = C̃1ṽ(0), v(ā) = C̃2ṽ(0).

Appendix F: Proof of Proposition 1

We model the disappearance of the matching friction by letting the shift parameter
of the matching function κ → ∞. Given that all the relevant equations are written
in terms of the endogenous variable λf , which is increasing in κ , our line of
proof will be based on taking limits as λf → ∞. We use the key equilibrium
conditions of the two replacement models (creative-destruction and upgrading) to
show that (i) the economy with upgrading converges to the economy with creative
destruction and that (ii) the latter converges to the frictionless economy when the
instantaneous meeting rate for firms becomes large enough and I0 = Iu.

Precisely, we first show that as λf → ∞ the “extra” terms that appear in the
conditions (JCU) and (JU), but do not appear in the conditions (JCD) and (JD),
vanish. Second, we show that the expressions for the surplus function converge
as well. Third, we show that the (JCD) condition converges to the frictionless
free-entry condition (4) and that the wage function w(a) implicitly defined in
(14) collapses to the marginal product of labor e−ϕā, i.e., the unique competitive
wage. Finally, we show that the distribution of employed machines in the two
economies converge to the competitive equilibrium distribution.

Proof. Consider the extra term in (JCU) and let λf → ∞. The expression
κV (ā, λf ) converges to 1 and S(0; ā, λf ) converges to zero. The latter limit
is clear from simple inspection of (C.2) in Appendix 7, since both �1J (ā, λf )

and �2J (ā, λf ) converge to zero as λf gets large. Hence, the extra term in (JCU)
converges to zero. Consider now the extra term in (JU) and let λf → ∞. Since
κV (a, λf ) converges to 1 for all a’s, S(0; ā, λf ) converges to zero, and I0 = Iu,
then this term goes to zero as well.

It is easy to see, from (C.1) in Appendix C, that the extra term (the second
and third lines) in the surplus function of the economy with upgrading goes to
zero as λf → ∞, and thus the expressions for the surplus in the two economies
converge.
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Now consider how equation (JCD) changes as λf → ∞. Using the surplus
expression (21) in (JCD) and integrating the right-hand side, yields

I0 = (1 − β)λf

ρ2

{
1 − e−(r−g+ϕ)ā

r − g + ϕ
− ρ2

ρ1
e−ϕā 1 − e−(r−ϕ)ā

r − ϕ

+ e−ρ2ā
1 − egā

σ + (1 − β)λf

ϕ

ρ1

}
, (F.1)

where we have introduced the notation ρ0 = r − g + σ , ρ1 = ρ0 + (1 − β)λf ,
and ρ2 = ρ1 + ϕ. Taking the limit of expression (F.1) as λf → ∞, we get

I0 = 1 − e−(r−g+ϕ)ā

r − g + ϕ
− e−ϕāmin 1 − e−(r−g)ā

r − g

=
∫ ā

0
e−(r−g+ϕ)a

[
1 − e−ϕ(ā−a)

]
da,

which is the key equilibrium condition (4) of the frictionless model in Section 2.
Now, consider equation (18) that implicitly defines the surplus function. As λf →
∞, it is easy to see that the termλf (1−β)S(a; ā, λf ) converges to

(
e−ϕa − e−ϕā

)
.

Using this result and the equilibrium condition (r − g)U = e−ϕā , we notice
immediately that equation (18) implies that (r − g + σ)S(a) − S′(a) = 0. Using
this result in the wage equation (14), we obtain that w(a) = e−ϕā for every a,
which is the competitive wage.

It only remains to show that the vacancy and employment distributions con-
verge, but this is trivial once it is recognized that as the meeting rate for firms goes
to infinity, the measure of vacancies tends to zero and the employment density is
simply µ(a)/µ = 1/ā like in the frictionless economy.

Appendix G: Equilibrium with Machine-Specific Productivity Differences

G.1. The Economy without Upgrading

Optimal Entry and Exit. Capital values are functions of a machine’s age a and
quality z. Machines age, but the quality of a machine does not change over time.

(r − g)J (a, z) = max
{
ez−ϕa − w(a, z) − σ [J (a, z) − V (a, z)] + Ja(a, z),

(r − g)V (a, z)
}
, (G.1)

(r − g)W(a, z) = max {w(a, z) − σ [W(a, z) − U ] + Wa(a, z), (r − g)U} ,

(G.2)
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(r − g)V (a, z) = max{λf [J (a, z) − V (a, z)] + Va(a, z), 0}, (G.3)

(r − g)U = b +
∫ ẑ

0

∫ â

0
λw(a, z)[W(a, z) − U ] da dz. (G.4)

The surplus value of a match is

S(a, z) = [J (a, z) − V (a, z)] + [W(a, z) − U ],
and the worker receives a share β of the surplus:

W(a, z) − U = βS(a, z) and J (a, z) − V (a, z) = (1 − β)S(a, z).

The implied differential equation for the surplus value is then

[r − g + σ + λf (1 − β)]S(a, z) = ez−ϕa − (r − g)U + Sa(a, z). (G.5)

This differential equation can be solved conditionally on the terminal condition
that defines the optimal time of exit ā(z) (the job-destruction condition)

S[ā(z), z] = Sa[ā(z), z] = 0. (G.6)

This implies that

ez−ϕā = (r − g)U or z − ϕā(z) = κ = log[(r − g)U ], (G.7)

and the surplus capital value is

S(a, z) =
∫ a(z)

a

e−[r−g+σ+(1−β)λf ](ã−a)
[
ez−ϕã − (r − g)U

]
dã

=
∫ [z−φa−κ]/φ

0
e−[r−g+σ+(1−β)λf ]ã [

e(z−ϕa)−ϕã − (r − g)U
]
dã

= S(z − φa).

The vacancy value is

V (a, z) = λf (1 − β)

∫ ā(z)

a

e−(r−g)(ã−a)S(z − ϕã)dã

= λf (1 − β)

∫ [z−ϕa−κ]/φ

0
e−(r−g)ãS(z − ϕa − ϕã)dã

= V (z − ϕa).

The free-entry condition reads

I0 =
∫ ẑ

0
f (z)V (z)dz.
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Employment and Vacancy Measures. We have

va(a, z) = σµ(a, z) − λf v(a, z), for 0 ≤ a ≤ ā(z), (G.8)

µa(a, z) = λf v(a, z) − σµ(a, z), for 0 ≤ a ≤ ā(z). (G.9)

The evolution of matched machines is the mirror image of the evolution of vacan-
cies, i.e., µa(a, z) = −va(a, z). This implies that the number of type z vacant
and matched machines of age a < ā(z) remains constant:

v(a, z) + µ(a, z) = v(0, z) + µ(0, z), for 0 ≤ a ≤ ā(z). (G.10)

Because all firms proceed first to the search pool with their new machines,
µ(0, z) = 0. For a ∈ [0, ā(z)], the evolution of µ(a, z) therefore follows

µa(a, z) = λf f (z)ef − (σ + λf )µ(a, z).

The solution of the differential equations yields

µ(a, z) = f (z)ef λf

∫ a

0
e−(σ+λf )ãdã,

v(a, z) = f (z)ef {1 − λf

∫ a

0
e−(σ+λf )ãdã}

for 0 ≤ a ≤ ā(z). Given the vacancy distribution v(a, z) the rate at which workers
meet machines is λw(a, z) = λwv(a, z)/

∫
v(a, z̃)dz for 0 ≤ a ≤ ā(z) and zero

otherwise.

G.2. The Economy with Upgrading

Optimal Entry and Upgrading. The definitions of the capital values for a matched
machine and worker are the same as without upgrading, equations (G.1) and (G.2).
The capital values of a vacancy and an unemployed worker are

(r − g)V (a, z)

= max
{
λf

[
max

{
J (a, z), Ez̃[J (0, z̃)] − IJ

u (a, z)
}
−V (a, z)

]
+Va(a, z), 0

}
,

(G.11)

(r − g)U

= b +
∫ ẑ

0

∫ â

0
λw(a, z)

[
max

{
W(a, z), Ez̃[W(0, z̃)] − IW

u (a, z)
}
−U

]
da dz,

(G.12)
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where Ez̃ denotes the expectation with respect to the density f (z̃). The gains
from upgrading in an existing match are

G(a, z) = Ez̃[J (0, z̃) + W(0, z̃)] − Iu − J (a, z) − W(a, z)

= Ez̃[S(0, z̃)] + I0 − Iu − S(a, z) − V (a, z),

using the surplus-sharing rule and the free-entry condition. An existing match
will upgrade the machine as soon as the gains from upgrading are nonnegative
and there are no gains from a marginal delay of the upgrading decision:

G[ā(z), z] = Ga[ā(z), z] = 0.

These two conditions imply

Ez̃[S(0, z̃)] + I0 − Iu = S[ā(z), z] + V [ā(z), z], (G.13)

(r − g + σ)S[ā(z), z] = ez−ϕā(z) − (r − g){V [ā(z), z] + U}. (G.14)

The differential equation for the surplus of existing matches, S(a, z) for
a ≤ ā(z), is defined as in (G.5). There are no existing matches with machines of
age a ≥ ā(z). When a previously vacant type z machine of age a > ā(z) meets
an unemployed worker the gains from upgrading are

Gm(a, z) = Ez̃[J (0, z̃) + W(0, z̃)] − Iu − V (a, z) − U

= Ez̃[S(0, z̃)] + I0 − Iu − V (a, z).

Incorporating the optimal upgrading decision, the differential equation for
the vacancy value function becomes

(r − g)V (a, z) − Va(a, z) =
{

λf (1 − β)S(a, z) for a < â(z),

λf (1 − β)Gm(a, z) for a ≥ â(z).

Using the surplus-sharing rule the flow value of unemployment (G.12) now
becomes

(r − g)U = b + β

∫ ẑ

0

[∫ ā(z)

0
λw(a, z)S(a, z)da

+
∫ â

ā(z)

λw(a, z)Gm(a, z) da

]
f (z) dz.
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Employment and Vacancy Measures. Define the total measure of machines that
are upgrading at a point in time as

µ(0) =
∫ ẑ

0

{
µ[ā(z), z] + λf

∫ â

ā(z)

v(a, z)da

}
dz.

This is also the measure of all new machines. The distribution over new machines
according to type z is then

µ(0, z) = f (z)µ(0) and v(0, z) = f (z)ef .

For type z machines the employment distribution for a ≤ ā(z) is described in
the same way as in the case of no upgrading, equations (G.8), (G.9), and (G.10).
Vacant machines that are older than the critical upgrading age but younger than
the critical age when they can no longer be upgraded, ā(z) ≤ a ≤ â, stay in the
vacancy pool until they find a worker and upgrade

va(a, z) = −λf v(a, z). (G.15)

To solve for the employment and vacancy distributions we proceed the same way
as in the upgrading case without machine-specific productivity heterogeneity.

Appendix H: Equilibrium with Match-Specific Productivity Differences

H.1. The Economy without Upgrading

Optimal Entry and Exit. The definitions of the capital values of employed and
unemployed workers are the same as in the economy with machine-specific het-
erogeneity and no upgrading, equations (G.2) and (G.4). The capital value equa-
tions for a matched and a vacant machine are

(r − g)J (a, z) = max
{
ez−ϕa − w(a, z) − σ [J (a, z) − V (a)] + Ja(a, z),

(r − g)V (a)
}
, (H.1)

(r − g)V (a) = max
{
λf Ez̃[J (a, z̃) − V (a)] + Va(a), 0

}
. (H.2)

The differential equation for the surplus value is

{r − g + σ }S(a, z) = ez−ϕa − (r − g)U − λf (1 − β)Ez̃[S(a, z̃)] + Sa(a, z).

(H.3)

Since productivity z is match-specific and random, the flow return on the outside
option of a machine vacancy is now with respect to the expected surplus, cf.
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equation (G.5). Optimal separation of a match depends on the match-specific
productivity, and at the separation age ā(z) the surplus is zero and there are no
gains from a marginal delay of separation, equation (G.6). It is apparent that the
flow return on surplus is increasing in the match-specific productivity. Therefore,
more productive matches will separate later, i.e., ā(z) is increasing.

The job-destruction condition is implied by the zero gain from a marginal
delay of separation:

ez−ϕā(z) = λf (1 − β)Ez̃{S[ā(z), z̃]} + (r − g)U. (H.4)

Different from the economy with machine-specific productivity-heterogeneity
there may now be a positive flow return on the outside option of a vacancy since
the machine might draw a higher match productivity. This chance of finding a
match with a higher productivity increases the cost of staying in a match with
given productivity. Machines in a match of quality z separate at age ā(z). A vacant
firm stays in the vacancy pool until it reaches the maximal age for active matches
ā = maxz ā(z). Given the zero terminal value of the surplus at the separation
age we can solve the surplus differential equation forward for the surplus capital
value

S(a, z) =
∫ a(z)

a

e−(r−g+σ)(ã−a)

×
{
ez−φã − λf (1 − β)Ez̃[S(ã, z̃)] − (r − g)U

}
dã.

Since all machines exit at age ā, the terminal vacancy value is zero, V (ā) = 0.
Using the surplus-sharing rule we can solve the differential equation (H.2) for the
vacancy value forward and conditionally on the terminal value obtain the capital
value of a vacancy,

V (a) = λf (1 − β)

∫ ā

a

e−(r−g)(ã−a)Ez̃[S(ã, z̃)]dã.

The free-entry condition for new machines is I0 = V (0).

Surplus and Vacancy Functions with a Finite Set of z Types. Using the fact
that āi < āi+1 we can define a sequence of differential equation systems for the
surplus function {Si(a) = S(a, zi)}. On the interval āi−1 ≤ a ≤ āi the system
defines the surplus functions Sj (a), for j = i, . . . , Z, through

S′
j (a) = [r − g + σ + λf (1 − β)fj ]Sj (a)

+ λf (1 − β)
∑
k>j

fkSk(a) − ezj −ϕa + (r − g)U.
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These systems can be solved sequentially working backwards using the terminal
conditions Si(āi) = 0. Conditional on the piecewise-defined surplus functions,
we can then solve the differential equation for the vacancy value recursively

(r − g)V (a) = λf (1 − β)
∑
j≥i

fjSj (a) + Va(a) on [āi−1, āi].

Employment and Vacancy Measures with Finite z Types. Without loss of gener-
ality assume that all matches operate at least for some time, that is ā1 = ā(z1) > 0.
The total measure of young machines with age a ≤ a1 evolves according to

µ(0) = 0 and v(0) = ef ,

µ′(a) = λf v(a) − σµ(a),

v′(a) = σµ(a) − λf v(a).

Thus for a ≤ ā1

v(a) + µ(a) = v(0) + µ(0).

The measure of match type i is then given by

µi(a) = fiµ(a).

In general, the distribution evolves according to

µ(āi+) = µ(āi−)

[∑
j>i

fj

]/[ ∑
j>i−1

fj

]
,

v(āi+) = v(āi−) + fiµ(āi−),

v′(a) = σµ(a) − λf v(a)
∑
j>i

fj for āi ≤ a ≤ āi+1,

µ′(a) = −σµ(a) + λf v(a)
∑
j>i

fj for āi ≤ a ≤ āi+1,

µj (a) =
{

fjiµ(a) for j > i with fji = fj

/ ∑
s>i fs,

0 for j ≤ i,

where g(ā+) denotes the right-hand side limit of the function g at ā, g(ā+) ≡
limε>0,ε→0 g(ā + ε). The employment distributions are continuous functions of
age and the total employment and vacancy functions are piecewise continuous
with discontinuities at the critical exit ages. Again we normalize the employment
and vacancy distribution by dividing through with the entry rate of new machines.



“zwu004050282” — 2005/7/7 — page 1054 — #48

1054 Journal of the European Economic Association

H.2. The Economy with Upgrading

Optimal Entry, Separation, and Upgrading. The definitions of the capital values
for vacancy and an unemployed worker are

(r − g)V (a) = max

{
λf

{
Ez̃

[
max{J (0, z̃) − IJ

u (a, z̃), J (a, z̃)}] − V (a)
}

+ Va(a), 0

}
(H.5)

(r − g)U = b +
∫ â

0
λw(a)

{
Ez̃

[
max

{
W(0, z̃) − IW

u (a, z̃), W(a, z̃)
}] − U

}
da

(H.6)

and the capital value definitions of a matched machine and worker are the same
as without upgrading, equations (H.1) and (G.2). We get the differential equation
for the surplus value from the surplus definition and the expression for the capital
value of a matched worker and machine

(r −g+σ)S(a, z)+(r −g)[V (a)+U ] = ez−ϕa +Sa(a, z)+Va(a, z). (H.7)

Note that we can no longer eliminate the vacancy value from the surplus
expression, rather we have to solve the differential equation system for the surplus
and the vacancy value jointly. To this end, define the gains from upgrading in a
match with an age a machine and type z productivity

G(a, z) = J (0, z) + W(0, z) − Iu − J (a, z) − W(a, z).

We distinguish between the separation age of a match āS(z) and the upgrading
age of a match āU (z), āS(z) ≤ āU (z). If āS(z) = āU (z) then existing matches do
not separate. Using the surplus-sharing rules, the expression for the gains from
upgrading simplifies to

G(a, z) =
{

S(0, z) + I0 − Iu − V (a) − S(a, z) for a ≤ āS(z)

S(0, z) + I0 − Iu − V (a) for a > āS(z).

Furthermore, the gains from a marginal delay of upgrading in an existing match,
a ≤ āS(z), are

Ga(a, z) = ez−ϕa − (r − g)[U + V (a)] − (r − g + σ)S(a, z).

We can use the surplus-sharing rule for existing matches and the gains from
upgrading in the expression for the vacancy value and obtain

(r−g)V (a) = (1−β)λf Ez̃

[
max {S(0, z̃) + I0 − Iu − V (a), S(a, z̃)}] +Va(a).

(H.8)
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Equations (H.7) and (H.8) define a system of differential equations in S(a, z) and
V (a), which has to be solved jointly.

For a finite number of productivity types z the optimal separation/upgrading
decisions are characterized by the critical age values

{
āS
i , āU

i : i = 1, . . . , Z
}

such that

āS
i < āU

i : Si(ā
S
i ) = S′

i (ā
S
i ) = 0, Gi(ā

S
i ) < 0, Gi(ā

U
i ) = G′

i (ā
U
i ) = 0

āS
i = āU

i : Si(ā
S
i ) ≥ 0, Gi(ā

U
i ) = G′

i (ā
U
i ) = 0.

Employment and Vacancy Measures. Define the total measure of type zi matches
that are upgrading at a point in time

µi(0) =



µi(ā
U
i ) + fiλf

∫ â

āU
i

v(a)da for āS
i = āU

i ,

fiλf

∫ â

āU
i

v(a)da for āS
i < āU

i .

The employment distributions evolve according to

µ′
i (a) = fiλf v(a) − σµi(a) for 0 ≤ a ≤ āS

i ,

µi(a) = 0 for āi < a ≤ â.

The vacancy distribution evolves according to

v′(a) = σ
∑

i

µi(a) − λf v(a)
∑

i

χ(a ≤ āS
i or a ≥ āU

i )fi

and
v(āS

i +) = v(āS
i ) + µi(ā

S
i ) if āS

i < āU
i ,

subject to the initial condition v(0) = ef .
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