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Abstract

If the government cares more about workers than about capitalists and taxes capital income
to -nance redistribution to workers, how are inequality and capital accumulation a0ected in
the long run? Assuming that the government cannot commit to future taxes, a time-consistent
equilibrium – a di0erentiable subgame-perfect Markov equilibrium – is characterized. In this
equilibrium, the current government in part uses the tax, via capital accumulation, to manipulate
future governments into setting lower taxes. The equilibrium has substantially lower taxes on
capital income than 100%, even though workers do not save and even though the weight on
capitalists in government utility is negligible. c© 2002 Published by Elsevier Science B.V.
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1. Introduction

This paper lays out a simple economic model with two goals in mind: (i) to illustrate
how heterogeneity can in=uence the macroeconomy via endogenous policy making; and
(ii) to illustrate how recursive, functional-equation methods can be used to characterize
time-consistent equilibria. The setup is a neoclassical growth model in which there are
two classes – workers and capitalists. There is a proportional tax on production, and
the proceeds from this tax are used to fund transfers that go lump-sum to workers;
there is no government borrowing or lending. Several other simplifying assumptions
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are also made: workers (who are all alike) work but do not save, whereas capitalists
(who are also all alike) save but do not work. Furthermore, the tax rate in every period
is decided upon by a government whose utility is a weighted sum of that of workers
and capitalists. That is, the political struggle is summarized by an objective function
that gives each group some weight.
An important part of the analysis is the insistence on sequential decision making: the

current government only sets current tax rate, and it has no direct in=uence on how fu-
ture governments will tax. This lack of commitment is a binding restriction in general.
The current government cares about the future, and disagrees with future governments
about how to tax. In particular, each future government will view its initial capital
stock as inelastically supplied, whereas the current government sees it as elastically
supplied. The fact that the lack of commitment is binding signi-cantly complicates the
analysis, because it requires any rational policy maker’s choices to incorporate views
about the decision rules of the future policy makers. This paper focuses on solving
for di0erentiable Markov equilibria: equilibria where the decision rules followed by
any agent, government or otherwise, is only a function of directly payo0-relevant vari-
ables, such as the stock of capital. That is, no reputation mechanisms are considered.
Di0erentiability, moreover, is a key requirement. As in Klein et al. (2001), the ap-
proach is to characterize equilibria in terms of -rst-order conditions. These conditions
are derived both for the private sector – these are standard and we focus on their
functional-equation versions here – and for the policy maker. The -rst-order condi-
tion for the government, which is also expressed in its functional-equation form, is
not standard: its derivation requires the use of recursive methods and it has the un-
usual property of including derivatives of decision rules. It is generally referred to as a
“generalized Euler equation”, and it makes clear the inter- and intra-temporal tradeo0s
facing a current policy maker. For this equation, di0erentiability is -rst of all critical
as a selection device: there are potentially a large number of discontinuous Markov
equilibria (see Krusell and Smith, 2001), and these equilibria have reputation features,
even if they do not use history-dependence explicitly.
The second reason to exploit di0erentiability is numerical. It namely turns out that

a number of standard methods allowing controlled accuracy do not work here, but a
perturbation method, which critically relies on taking repeated derivatives, works very
well and is easy to implement. Krusell et al. (2001) and Klein et al. (2001) develop
and use this method.
The literature on redistribution in a similar context includes Judd (1985), who stud-

ies the commitment version of the problem herein for the case where workers and
capitalists have the same time preference rates. He -nds that taxes have to be zero
in the long run. 2 Kemp et al. (1993), in contrast, model the government as choosing
taxes without commitment (“closed loop”) for more general preferences. Their setup
is one of continuous time, and in continuous time the equilibrium de-nition simpli-es
in this particular model, because the marginal propensity of saving out of a current
tax change has to be one: any changes in current income caused by a tax change
will not in=uence permanent income, and therefore not consumption, unless you are

2 This result was also derived in Chamley (1986).
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constrained in savings=borrowing (in which case the marginal propensity to consume
would be zero). A discrete-time model, or a continuous-time model where taxes can
be committed to for a signi-cant period of time, seems much more realistic, however.
Such a model necessitates dealing with marginal propensities which are not degenerate:
it needs to incorporate a description of how the private sector nontrivially responds to
any current tax change. Lansing (1999), -nally, studies Judd’s problem again, but un-
der logarithmic utility. In that case, the commitment solution is time-consistent, and the
tax rate is positive in the long run; for any other curvature, long-run taxes are zero.
His -ndings are corroborated here. Moreover, we show that the long-run outcomes
for taxes in time-consistent equilibria without commitment vary continuously with the
curvature of the utility function; thus, zero taxes do not result. Finally, Bertola (1993)
also studies a case without commitment under preferences with constant elasticity of
intertemporal substitution.

2. The baseline model

This section contains the description of the economy as well as the analysis of it.
Time is discrete and there are two classes of consumers: workers and capitalists. For
simplicity, we assume that they are of equal numbers. Agents in the same class are
identical: they have identical preferences and face identical economic problems as the
economy begins. Because their maximization problems have unique solutions, they also
remain identical over time, since they start out with the same initial conditions. There
are -rms, renting labor and capital inputs from consumers and selling their output to
the consumers; these markets are all competitive. Production is taxed at a proportional
rate �t in period t. The proceeds from the tax in period t are directly given to workers
in period t in a lump-sum manner. The government, thus, is restricted to a balanced
budget at all points in time; its only choice variable in period t is �t .
Worker and capitalist decisions are described next. Thereafter, the behavior of the

government will be discussed, leading to an equilibrium de-nition. The equilibrium
de-nition, in turn, leads onto a path of analysis consisting both of analytical and
numerical work.

2.1. The decision problems of consumers and 2rms

The worker chooses {cwt}∞t=0, given an endowment of 1 unit of time, to maximize
∞∑
t=0

�tu(cwt) subject to cwt = wt · 1 + Tt;

where Tt is the transfer from the government. That is, workers by assumption do not
save.
The capitalist chooses {cct ; kt+1}∞t=0 to maximize

∞∑
t=0

�tv(cct) subject to cct + kt+1 = (1− �+ rt)kt
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given a k0. That is, the capitalist saves, taking interest rates as given, but does not
work.
The functions u and v are assumed to be smooth and have standard properties: they

are strictly increasing and strictly concave. The parameter � lies strictly between zero
and one. The assumption that workers and capitalists have the same discount rate is
used to obtain an exact steady state. The setup with capitalist savers and worker non-
savers can be viewed as a simple version of Krusell and Smith (1998). There, a more
complicated model with small di0erences in discount rates between di0erent consumers
leads to a “reduced form” where a very small subset of consumers – capitalists – do
almost all the saving, leading to a very skewed, and realistic, wealth distribution.
Firms are price takers and choose (kt ; lt) to maximize

(1− �t)F(kt ; lt)− wtlt − ktrt :
This is a static problem; equilibrium prices for labor and capital services, wt and rt ,
respectively, will be such that -rms make zero pro-ts, as F is assumed to have constant
returns to scale.

2.2. Aggregate constraints and price determination

The economy is closed:

Cwt + Cct + Kt+1 = F(Kt; 1) + (1− �)Kt;
where capital letters refer to economy-wide averages. In this equation, we have used
the equal population shares to obtain unitary weights on the consumption levels of the
two classes of consumers.
The government’s balanced budget constraint reads

Tt = �tF(Kt; 1)

and prices are net-of-tax marginal products:

wt = (1− �t)Fl(Kt; 1)
and

rt = (1− �t)Fk(Kt; 1):
The pricing equations follow as -rst-order conditions to the -rm’s problem.
For ease of notation, we will summarize the equilibrium consumption behavior with

Cct = Cc(Kt; �t ; Kt+1) ≡ (1− �t)Fk(Kt; 1)Kt − Kt+1; (1)

Cwt = Cw(Kt; �t) ≡ Fl(Kt; 1) + �tFk(Kt; 1)Kt; (2)

where we have substituted in equilibrium expressions for prices and transfers.
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2.3. Behavior under commitment: The Ramsey problem

The objective of the government is
∞∑
t=0

�t(�v(Cct) + (1− �)u(Cwt)): (3)

When the government can commit to future policy, it chooses {�t}∞t=0 to maximize
(3) subject to {Cct}∞t=0 and {Cwt}∞t=0 being competitive equilibrium consumption allo-
cations. This is referred to as the “Ramsey problem”. In terms of choosing capital and
tax sequences, it thus reads

max
{Kt+1 ;�t}∞

t=0

∞∑
t=0

�t(�v(Cc(Kt; �t ; Kt+1))) + (1− �)u(Cw(Kt; �t)) (4)

subject to

v′(Cc(Kt; �t ; Kt+1)) = �v′(Cc(Kt+1; �t+1; Kt+2))[1− �+ (1− �t+1)Fk(Kt+1; 1)]:
(5)

We will characterize steady-state Ramsey allocations in Section 2.5 below. At this
point, simply note that this problem leads to a “time-inconsistent” allocation. Why?
The variable Kt+1 appears in one more constraint for every t ¿ 0 than for t = 0, and
similarly for �t . For example, the tax rate at time 1 in=uences savings in period 0, and
this e0ect is absent in the choice of the tax rate at 0, since savings are predetermined
in that period. This means that the -rst-order conditions will have one more term for
all t ¿ 0, and reoptimization in any later period s would yield a -rst-order condition
for that period violating the one from optimization at 0.

2.4. Behavior when there is no commitment

Without access to a commitment mechanism, the government cannot choose future
taxes directly, but it still wants to maximize (3), and it still needs to select an al-
location among decentralized equilibria. We are looking for a time-consistent policy
equilibrium: the current government sets the current tax correctly foreseeing how the
future governments will set taxes. The key here is that the taxes set in any period will,
in general, depend on the capital the economy is endowed with as of the beginning of
that period. We will look for a stationary subgame-perfect Markov equilibrium, where
the tax rate at t does not depend on anything but the capital stock in period t, thus
ruling out explicit dependence on any history beyond that summarized in the current
capital stock.
By de-nition, then, we are looking for a government policy that obeys a recursive

rule given by the function �:

�t =�(Kt):

Thus, � is the key endogenous variable: a function. We will look for a � that is
di0erentiable.
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2.4.1. Recursive de2nition of equilibrium
We now apply recursive competitive equilibrium methods to characterize �: we

search for a di0erentiable subgame-perfect Markov equilibrium in government policy.
Formally, the game in a given period can be viewed as Stackelberg, with the govern-
ment leading o0 with a tax choice and the private sector, in particular the capitalist,
making a subsequent consumption=savings choice. Thus, within the period the govern-
ment has commitment.
In order to specify the government’s problem, we need its key inputs: a view of how

the private sector responds to its current tax choice. The speci-cation of this response
must include what will happen in the future in response to the current tax choice.
Given the Markov construction, the idea is to consider a one-period deviation from the
rule �(K): the current � is free of choice, but future taxes are set according to �.
For this construction, we will need to -nd an equilibrium function giving savings as a
function of the current tax rate, � (and of the current state, K):

K ′ = H (K; �);

we use primes to denote next-period values. The function H thus describes what the
private sector will do, for any given capital stock and for any current policy, given
that it expects future taxes to be set by future governments according to �. Future
savings, moreover, are expected to be given by the function H as well, but evaluated
on the equilibrium path, i.e., using �=�(K) (where K is any future capital stock).
To see in concrete terms how a given Kt and an arbitrary choice of �t a0ects

perceptions about future capital stocks and taxes, we apply the functions H and �
repeatedly:

Kt+1 = H (Kt; �t); �t+1 =�(Kt+1); Kt+2 = H (Kt+1; �t+1);

�t+2 =�(Kt+2); : : : :

To -nd the function H , we need a functional-equation version of the standard compet-
itive -rst-order condition (5) for the capitalist. To derive it, substitute the functions H
and � into the appropriate places in this equation to read

v′(Cc(K; �; H (K; �))) = �v′(Cc(H (K; �); �(H (K; �)); H (H (K; �); �(H (K; �))))) ·
(6)

[1− �+ (1−�(H (K; �)))Fk(H (K; �); 1)]:

Eq. (6) has to hold for all (K; �). That is, it de-nes H given �. It is important to
recognize that H is a determinant of �. A possibility would be to use the notation
H (K; �;�) to make this clear; if � were arbitrary, H would depend on it. Simi-
larly, as we shall see, � naturally depends on how the private sector responds, so
H is a determinant of �. Rather than making this interdependence between H and
� explicit in the notation, however, we will simply require the two functions to si-
multaneously satisfy two functional equations: thus, we only de-ne these functions “in
equilibrium”.
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Equipped with the knowledge of how the private sector responds to tax rates – H
– and how future government sets taxes – � – the government now simply solves

max
�;K′

�v(Cc(K; �; K ′)) + (1− �)u(Cw(K; �)) + �V (K ′)

subject to

K ′ = H (k; �);

where V is given by the recursion

V (K) = �v(Cc(K;�(K); H (K;�(K)))) + (1− �)u(Cw(K;�(K)))
+�V (H (K;�(K))):

The role of the recursion here is simply to e0ectively produce the in-nite discounted
sum of utilities in the objective (3).
It is now apparent what the -xed-point problem is: if, for every K , the solution to

the above problem is given by �(K), then the government is rational and we have a
subgame-perfect equilibrium.
We can thus describe the government’s equilibrium behavior as solving a dynamic-

programming equation:

V (K) = max
�;K′

{�v(Cc(K; �; K ′)) + (1− �)u(Cw(K; �)) + �V (K ′)} (7)

subject to

K ′ = H (k; �):

Recall that whereas H , and the � underlying it, are endogenous in this problem, Cc
and Cw are primitive functions.
A subgame-perfect Markov equilibrium is now a set of functions �, H , and V such

that H solves (6), V solves (7), and � attains the maximum in (7).

2.4.2. Time-consistent equilibrium
There may be many Markov equilibria. Krusell and Smith (2001), who analyze a

similar structure, show existence of a continuum of solutions for their policy function –
the equivalent of � here. The indeterminacy, however, can only arise with in-nite time
horizon and the associated policy functions are all discontinuous. The discontinuities
play a role similar to that played by histories in trigger-strategy equilibria. Since our
focus here is on a “fundamental” equilibrium that is a limit of -nite-horizon equilibria,
we thus want a time-consistent equilibrium to be one where � is not discontinuous.
In particular, we will require it to be di0erentiable (and for our computations, we will
assume that it is smooth). We now proceed toward such a de-nition. Existence will not
be discussed here; below we display a closed-form solution for a speci-c parametric
case.
The sequential version of (7) reads

max
{�t ;Kt+1}∞

t=0

∞∑
t=0

�t(�v(Cc(Kt; �t ; Kt+1)) + (1− �)u(Cw(Kt; �t)))
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subject to

Kt+1 = H (Kt; �t):

Whereas the maximization in the dynamic-programming problem in the previous section
represents the government’s actual choice problem – the choice of current taxes and
savings, leaving future taxes and savings to be set by other governments – the sequential
formulation here does not. In it, the government can choose any values of future tax
rates and capital stocks (subject to the constraints). The point, however, is that even
though the sequential problem allows choices that are not part of any government’s
choice set, its solution will coincide with that of the dynamic-programming problem!
This result is an application of Bellman’s principle, and it is useful mainly because
it allows a simple way of deriving the -rst-order conditions. Moreover, the sequential
problem is still part of a -xed-point problem, since its solution will depend on H and
therefore on �.
The -rst-order conditions are readily derived; �t is the control variable and plays the

role that consumption plays in a standard optimal growth problem. We will assume
that the -rst-order condition that results from a standard variational argument in this
sequential problem is unique, and thus suQcient for a maximum. 3

Di0erentiating with respect to �t , �t+1, and Kt+1 and simplifying yields

R� + Rk′H� + �H�

{
R′k −

H ′
k

H ′
�
R′�

}
= 0; (8)

where ′s denote next-period values and we have used the de-nition

R(K; �; K ′) ≡ �v(Cc(K; �; K ′)) + (1− �)u(Cw(K; �))
in order to make the condition more compact. Moreover, in (8), all current func-
tions are evaluated at (Kt; �t) = (K;�(K)) and all future functions at (Kt+1; �t+1)=
(H (K;�(K)); �(H (K;�(K)))) – their equilibrium values. This is a functional
equation: it has to hold for all K . It is our government’s -rst-order condition: the
“generalized Euler equation”, or GEE.
We can now de-ne our equilibrium. A time-consistent equilibrium is a set of dif-

ferentiable functions H and � satisfying the functional equations (6) and (8).

2.4.3. Interpretation
We can think of the GEE as a “variation”: given values for K and K ′′; � and �′

are varied in the best possible way. The e0ect of an increase in � can be interpreted
as follows. First, there will be an increase in Cw, which provides a direct boost to
utility for the worker: Cw� = Fk(k; 1)K ¿ 0 – his marginal propensity to consume out
of the new resources is one. As for the capitalist, his behavior is less trivially a0ected.
Under the normal goods assumption, when the capitalist is left with less resources, he
chooses to consume less of all goods, current and future: his savings fall, H�¡ 0, as

3 This assumption, like in most Ramsey problems, is hard to verify in general but can be defended
numerically. It is implicit in what follows.
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does his consumption, Cc� = −Cw� − H�¡ 0. With a � close to zero, the net current
bene-t of the tax increase is positive for the government.
The fall in K ′ has two e0ects. An immediate e0ect is that on future incomes; if the

production function is such that both capital and labor income are increasing in capital,
then the fall in savings will decrease both C′

w and C′
c.
4 Thus, this reduces next-period

utility.
The second e0ect of a fall in K ′ is to decrease �′: it has to be reduced by −H ′

k =H
′
�

times the change in capital next period in order to keep K ′′ from falling; we obtain
this from di0erentiation of K ′′ = H (K ′; �′) with dK ′′ = 0. That is, the increase in the
current tax rate must lead to a decrease in next period’s tax rate, and thus to lower
(higher) consumption for the workers (capitalists) that period.
In summary, with a focus on the workers, a tax hike today has an immediate positive

bene-t in the form of increased consumption, and two negative e0ects on consumption
next period.

2.4.4. A more compact formulation: A comparison with the Ramsey problem
The de-nition of a time-consistent equilibrium makes clear the distinction between

the di0erent players and how they move in sequence: �(K) describes optimal behavior
of the government when they freely choose a current �, and H (K; �) describes optimal
behavioral response of the private sector to any current � choice of the government.
An alternative, more compact de-nition is possible as well, and it yields identical
outcomes. This alternative does not de-ne the behavioral response of the private sector
to any current �; instead, it uses a function H (K) to describe on-the-equilibrium-path
behavior. Now, we would think of the government as simultaneously choosing both
� and K ′. The restrictions on these variables, then, would still have to include the
-rst-order condition of the capitalist, in which the private sector’s “response” to any
current tax rate is incorporated. This restriction on (K ′; �) would, thus, read

v′(Cc(K; �; K ′)) = �v′(Cc(K ′; �(K ′); H (K ′)))[1− �+ (1−�(K ′))Fk(K ′; 1)]:
(9)

The alternatively de-ned subgame-perfect Markov equilibrium would then be the set
of functions �; H , and V such that V solves

V (K) = max
K′ ;�

{�v(Cc(K; �; K ′)) + (1− �)u(Cw(K; �)) + �V (K ′)} (10)

subject to (9) and H and � attain the maximum in (10).
It is straightforward to verify that this formulation generates the GEE, either by use

of the envelope theorem or by standard di0erentiation of the corresponding sequential
problem

max
{�t ;Kt+1}∞

t=0

∞∑
t=0

�t(�v(Cc(Kt; �t ; Kt+1)) + (1− �)u(Cw(Kt; �t)))

4 Labor income goes up provided that labor and capital are complements in the sense of Fkl ¿ 0, and
Cwk = Fkl + �(FkkK + Fk), which by F being constant returns to scale equals (1− �)Fkl + �Fk ¿ 0. Capital
income goes up provided Fkl ¡Fk , which is satis-ed for a Cobb–Douglas function.



764 P. Krusell / European Economic Review 46 (2002) 755–769

subject to

v′(Cc(Kt; �t ; Kt+1)) = �v′(Cc(Kt+1; �(Kt+1); H (Kt+1)))[1− �+ (1−�(Kt+1))
Fk(Kt+1; 1)]:

We now see that this problem is very close to the Ramsey formulation. The only
di0erence is that the latter allows the savings and tax choices in the future to be
subject to choice also in the constraint; here, in contrast, these variables are given by
the endogenous functions H and �. Thus, there is still a -xed-point problem here, and
the equilibrium is conceptually a very di0erent object than under commitment.

2.5. Steady states

We will now analyze both the time-consistent equilibrium and the Ramsey solution.
We will make use of functional-form restrictions for convenience, and we will mainly
look at steady states. Throughout, we will assume that F is Cobb–Douglas with capital
share � and a TFP normalized to 1, and that �= 1.

2.5.1. Logarithmic utility
Consider the Ramsey problem -rst, and suppose that u and v are both logarithmic.

Then it is straightforward to verify that the capitalist saves in a “myopic” manner:
his current savings decision does not depend on future interest rates or taxes. The
reason for this is that income and substitution e0ects of these variables cancel in the
logarithmic case. More speci-cally, the capitalist’s -rst-order condition can be replaced
by the equation

Kt+1 = ��(1− �t)K�t ;
since it solves that -rst-order condition for any contemplated sequence of tax rates.
Furthermore, this means, since the -rst-order condition is recursive, delivering next
period’s capital as a function of current capital and the current control, that the Ramsey
problem is a standard recursive problem and therefore time-consistent! This property
was also noted in Lansing (1999). It is straightforward to solve for the tax rate; it
will be constant over time and equal 1 − � − �(1 − ��)=�. Thus, taxes will not be
zero in the long run. In order to make taxes go to zero so as to induce -rst-best
accumulation, future taxes would have to be used in order to induce savings to increase,
but logarithmic utility does not allow the channel from the future to the present to
operate.
Since the Ramsey problem is time-consistent, we have automatically also found the

time-consistent equilibrium without commitment. For

H (K; �) = �(1− �)�K� (11)

and

�(K) = 1− � − � 1− ��
�

(12)

can be shown to solve the functional equations in this case by simply substituting into
Eqs. (6) and (8).



P. Krusell / European Economic Review 46 (2002) 755–769 765

Since we wish to view the time-consistent equilibrium as the limit of -nite-horizon
equilibria, consider for a moment a -nite-horizon version of this economy. Consider
-rst the special case where � is zero. In that case, all -nite-horizon economies, and thus
their limit too, would lead to 100% tax rates and no savings – the economy “dies” in
one period. 5 Nevertheless, if � is arbitrarily close, but not equal, to zero, the situation
is actually quite di0erent. Because of continuity, this equilibrium will almost look like
the one for � = 0 for any -nite-horizon economy; in the very last period, tax rates
will be (very close to) 100%, and under rational expectations on the part of capitalists,
there will therefore be (almost) no saving in the preceding period, and the tax will still
be very high. However, working backwards, as the remaining time horizon becomes
large, savings increase and taxes fall, and in the limit, we obtain a discretely di0erent
equilibrium: we obtain, as the limit of these -nite-horizon economies, (11) and (12),
which are far from 0 and 1, respectively! That is, we learn that so long as the -nal
period does not have a literally degenerate outcome (“almost” 100% taxes works), the
Markov equilibrium can propagate outcomes that are substantially di0erent from the
degenerate outcome. 6

2.5.2. Constant elasticity of intertemporal substitution
Now assume that u(v)=v(c)=(c1−�−1)=(1−�), with �¿ 0. To analyze the Ramsey

problem as set up in Section 2.3, derive its -rst-order conditions and set (Kt; �t)=(K; �)
for all t. The resulting equations can easily be shown to only be consistent with �=0,
unless �=1. That is, long-run taxes are discontinuous in the elasticity of intertemporal
substitution parameter around � = 1: whenever utility is not logarithmic, it is optimal
to set the tax to zero in the long run.
The intuition for these results has been discussed elsewhere (see, e.g., Judd, 1985;

Lansing, 1999). Most importantly, savings have to be Pareto optimal in the long run,
since it is possible to line up the marginal rates of substitution for workers and capi-
talists. It is then as if workers save directly using the technology.
In contrast, as we shall now see, the long-run properties of the time-consistent equi-

librium under lack of commitment do not change discontinuously at � = 1. It is no
longer possible to solve for the equilibrium in closed form. We therefore use numerical
techniques, as discussed in detail in the next section. However, it is possible to obtain
intuition from the -rst-order condition for taxes: the generalized Euler equation, (8). In
order to simplify the discussion, we will look at the case where � is arbitrarily close
to zero: the welfare of the capitalists is (almost) irrelevant for the government. 7 In

5 The equilibrium given by the above equations still exists in the in-nite-horizon economy in this case,
but as an additional, “sunspot” equilibrium that relies on optimistic expectations.

6 There is, of course, another smooth equilibrium in the special case of �=0: �=�(K)=1 and H (K; �)=0
for all K , i.e., complete expropriation of capital (recall that depreciation is 100%) and no saving – the
economy “dies” in one period. This equilibrium, in fact, is the limit of the -nite-horizon equilibria, and
the solution given in the text is just an additional “optimistic” equilibrium which relies on the in-nite time
horizon. Whenever �¿ 0, the equilibrium in the text is the limit of the -nite-horizon equilibria.

7 Recall footnote 6: the relevant Markov equilibrium for � = 0 is 100% taxation.
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steady state, the solution for the time-consistent equilibrium satis-es

H��
(
Hk
H�

− Cwk
Cw�

)
= 1:

Since Cwk = Fkl + �(Fk + FkkK) and Cw� = FkK , with a Cobb–Douglas production
function the value of Cwk=Cw� equals (1− � + ��)=K . Moreover, the e0ects on Hk=H�
can also be calculated: from the -rst-order condition for savings, Eq. (6), di0erentiation
with respect to K and � yields Hk=H� = −(1 − �)(Fk + FkkK)=(FkK) = −�(1 − �)=K ;
in this computation, of course, we are using di0erentiability of �. It is possible to
compute this ratio closed form because the e0ects of K and � on savings are very
similar: they both originate purely through initial income, which is predetermined in
the present period. That is, we arrive at a steady-state condition

−H�� = K
in the case of Cobb–Douglas production. To -nd the e0ect of changes in the curvature
parameter � on the steady state, we thus need to know how it makes H� change.
An increased tax rate, which lowers capitalist savings, raises future interest rates. If
the curvature parameter is above 1, such interest rate changes will lead to decreased
savings, since the income e0ect dominates in this case; if �¡ 1, the reverse occurs.
Thus, if �¿ 1, the income e0ect reinforces the initial drop in savings: H� is higher
in absolute value, the higher is �. This means that capital has to increase. Comparing
to (12), thus, taxes would be lower than 1− � for �¿ 1 and higher for �¡ 1 (recall
that � is (arbitrarily close to) zero in this experiment). The e0ect is a continuous one:
there is no discontinuous drop in taxes around � = 1.
Intuitively, the discussion here simply means that a contemplated government tax

hike today has a stronger retarding e0ect on saving with more curvature in the utility
function of the capitalists. Since this e0ect is unwanted – it lowers future consumption,
as seen in the GEE – the government chooses to tax less in such an economy.
In our experiments, we use � = 0, � = 0:95, and � = 0:3. We use the same utility

function for the capitalists as for the workers; the curvature of the utility function of
the workers matters here. For � = 1:5, taxes go down to 3% from 5% for logarithmic
utility. When �=0:5, taxes are up to 9% in steady state. When �¿ 1, it is interesting
to note that we -nd �′(K)¡ 0: an increase in the current tax rate, which lowers
savings, thus increases the tax rate next period as well: there would be a permanent
e0ect of any temporary tax hike contemplated by the government.

2.6. Model solution

We now discuss how to solve the model with numerical methods. We have two
equations, (6) and (8), in two unknown functions, H and �. The former has to hold
for all (K; �), and it de-nes a function of two variables, whereas the latter has to hold
for all K , since it de-nes a function of only one variable. Like in the corresponding
functional-equation version of the optimal growth model (which contains one equation
only in the planners savings function), there is no simple way to -nd a solution;
in general, a closed-form solution does not exist. However, this set of functional
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equations is a level more complicated still, because (8) contains derivatives of endoge-
nous functions: (H�; HK). Intuitively, this means that even if one is only interested in
-nding a steady state (H), one needs to simultaneously solve for the dynamics (Hk)
around the steady state! Moreover, the dynamics enter because the current government
needs to evaluate responses of future decision makers; since these are in disagreement
with the current government (as, in particular, they view future capital as less elasti-
cally supplied than the current government views it), no envelope argument is available
to say that these responses must be of second-order importance.
Can we obtain the derivatives from simply di0erentiating (6)? First, the derivative

cannot in general be solved out explicitly this way. Second, even if it could be, it
would depend on the derivative of �, which is not known. The derivative exists,
by assumption, but we would be left with a government FOC which is a functional
equation containing the derivative of � in addition to � itself. Thus, derivatives of
the unknown function(s) are an unavoidable part of the solution, unlike in the standard
model.
Can a steady state be computed numerically? It can. Using a “perturbation” method,

as in Krusell et al. (2001) and Klein et al. (2001), it is quite straightforward to -nd
a steady state, and one can also solve for dynamics. This method builds on setting
the derivatives of � of order n (large) and higher equal to zero, taking n successive
derivatives of the -rst-order conditions, and then solving for all levels and all deriva-
tives in a joint, nonlinear system. Then, n is increased until the low-order derivatives
of interest do not change.
For somewhat more detail, and for our initial equilibrium de-nition, in the -rst

iteration one would make H a linear function, H (1)(K; �) = a(1)1 + a(1)2 K + a(1)3 �, and
� a constant, �(1)(K) = a(1)4 , thus leaving four parameters to be determined. A -fth

unknown, the steady state, TK
(1)
, can also be de-ned by H (1)( TK

(1)
; a(1)4 )= TK

(1)
. We then

need four equations to determine a(1)=(a(1)1 ; a
(1)
2 ; a

(1)
3 ; a

(1)
4 ). For this, we use (6) and (8)

as well as the two equations obtained by di0erentiation of (6) with respect to K and
�, respectively, all evaluated at steady state. In taking the derivatives, the derivative of
� is needed, but at this stage of the iteration it is zero. Thus, we have four equations
in four unknowns in a nonlinear system. As a result, we obtain a steady state.
In the second iteration, H (2)(K; �) is a quadratic, thus containing a vector a(2) of six

unknown parameters; similarly, �(2)(K) is linear, with two unknown parameters. We
have the same four equations as before, evaluated at a new steady state, TK

(2)
, plus four

new equations. Three of the new equations are obtained by second-order di0erentiation
of (6), and the remaining one comes from -rst-order di0erentiation of (8). Thus, we
have a system of eight equations in eight unknowns, delivering a steady state. This
steady state can be compared to the one of the previous step; if they are closer than
some prespeci-ed tolerance level, stop. If not, proceed to the next iteration. 8

The iterative procedure just outlined leaves open three questions: (i) What if the
nonlinear equation system has more than one solution?; (ii) Even if it does not, what

8 For high-order versions of this procedure, it is recommended to use the more compact equilibrium
de-nition, since it saves on unknown coeQcients: there, H is a function only of one variable.
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if it is hard to solve?; and (iii) How can the successive di0erentiation of the -rst-order
equations be done eQciently? In response to (i), in fact, in the very -rst iteration
there are two solutions, delivering a stable and an unstable steady state (as given by
whether a(1)1 is greater than 1 in absolute value). Here, select the stable one. In our
applications so far, further multiplicity has not been found. As for (ii), there is no
general answer, but with starting guesses from the previous stage, the problem may
not be so diQcult, and the -rst stage is typically easy. And for (iii), the most eQcient
route is to take numerical derivatives, given that all functional forms are known: they
are the primitive functions plus our polynomials. Numerical derivatives can be obtained
easily with centered -nite di0erences.
The reader might ask why it is necessary to give detail about numerical solutions

– could not standard linearization, or standard nonlinear (global) methods, be used?
Linearization around the steady state, as in Krusell and RUVos-Rull (1999), amounts to
the -rst round of iteration above. However, it does not deliver a steady state with
controlled accuracy: at the subsequent iterations, the steady states are di0erent. The
key value of the perturbation method is its focus on the -rst-order conditions and its
repeated di0erentiation of these conditions: it critically exploits the di0erentiability of
the time-consistent equilibrium. Methods that do not rely on di0erentiability may not
work, since a continuum of (discontinuous) solutions likely exist in contexts such as
the present one (see Krusell and Smith, 2001).

3. Concluding comments

In a democratic world with sel-sh voting, workers would be an important group
behind taxation decisions. In this paper, this idea is represented by assuming that
workers are in=uential in setting income taxes and transfers. In the setup considered in
this paper, taxation of income will persist in the long run, provided that taxes cannot
be committed to: there will be a positive tax on income, leading to lower long-run
output. In a world with commitment, in contrast, taxes will be zero in the long run,
and output is at its -rst-best steady state.
Only special cases were considered here, both in terms of parameter values and

assumptions more generally; for example, it was assumed that workers cannot save. It
is straightforward to use the techniques herein for more general problems. An important
purpose in this paper has been to communicate a method allowing characterization of
time-consistent equilibria more broadly. The set of models for which commitment is
not available and this constraint binds is large.
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