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Abstract

Survey respondents disagree strongly about return volatility and, increasingly,

macroeconomic uncertainty. This may have contributed to higher asset prices

through increased use of collateralized debt products, which allow investors with

different risk perceptions to realize perceived gains from trade. Collateralization

splits cash flow into senior debt, which investors with low perceived volatility value

as riskless, and junior debt or equity claims, whose upside potential is appreciated

by those who expect high volatility. This self-selection may have contributed signif-

icantly to the boom in structured securitizations as investors disagreed about the

volatility of aggregate economic conditions and their importance for default rates

in collateral pools. Disagreement about mean payoffs, in contrast, inflates prices

without collateralization, which may even discipline prices as risky loans are sold to

pessimists with lower collateral valuations.
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1 Introduction

From the mid-1990s to the beginning of the Great Recession, the world economy has seen

an unprecedented wave of financial innovation, partly in the form of new collateralized debt

products. At the same time, prices of collateral assets, such as real estate, but also stocks,

experienced an unprecedented increase. This paper links these two phenomena to a third, less

documented one: disagreement among investors about economic risk. We provide evidence for

this argument from several US surveys. We first show how the data analyzed by Amromin and

Sharpe (2008) and Ben-David et al. (2013) imply strong disagreement among both retail investors

and finance professionals about the dispersion of stock returns. Second, to analyze a longer time

horizon covering the Great Moderation period, we document that, since 1980, near-term GDP

forecasts from the Survey of Professional Forecasters show an increasing disagreement between

forecasters about the dispersion of GDP growth, while disagreement about mean growth has

fallen.

We show how these heterogeneous risk perceptions, when combined with financial innovation

in the form of collateralized debt products, can create asset price bubbles. In the absence of

collateralization, risk-neutral investors trade assets at their common fundamental value even if

they disagree about payoff risk. The introduction of collateralized debt increases asset prices

above this common fundamental value by unleashing perceived gains from trade. This is because

an investor who believes asset returns to be more dispersed than another perceives more upside

potential at the same time as more downside risk than her counterpart. Collateralization allows

them to trade those risks by splitting cash flow into senior debt and junior debt or equity claims.

Investors who perceive low volatility are happy to pay high prices for senior debt, which they

regard as riskless. Those who think volatility is high, in contrast, value the upside potential in

junior claims, which they leverage by selling cheap debt to their counterparts. Disagreement

about risk thus raises the equilibrium price of collateral assets as investors self-select into buying

the claims they value most highly. We show how this may have been an important driver of the

boom in ‘Structured Finance’ assets, such as collateral debt obligations (CDOs), whose senior
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tranches are attractive to investors who believe in diversification and thus think default rates

of collateral pools are stable. Those, in contrast, who think default rates are more reflective of

aggregate conditions, and thus more volatile, think senior tranches may still fail in bad times,

but are happy to pay for junior and equity tranches, which they expect to pay when conditions

are sufficiently good.

Importantly, this effect of disagreement about risk on prices is different to that with dis-

agreement about means. Our analysis is thus complementary to the large previous literature

on investor disagreement, where ‘optimists’ expect higher payoffs than ‘pessimists’.1 In the ab-

sence of short-selling, prices are thus determined by optimists and can exceed mean-valuations

even without collateralisation (Miller, 1977). Leverage through riskless collateralized loans may

raise prices further by increasing investment funds of optimists (Geanakoplos, 2003). When

collateralized debt is risky, for example due to low minimum asset payoffs, and beliefs satisfy

the common assumption of first-order stochastic dominance, optimists perceive both senior debt

to bear less risk and junior debt (or residual claims from leveraged asset holdings) to be more

profitable. They thus face a trade-off between raising funds for investments and selling downside

risk at unfavorable prices to pessimists. Only if optimism is about upside risk do pessimists have

a relative, but not absolute, advantage in buying collateralized debt. When optimism is about

downside risk, in contrast, collateralized contracts can discipline asset prices (Simsek, 2013).

Generally, equilibrium prices do not exceed the maximum asset valuation across investors who

disagree about mean payoffs even with collateralized debt products (although they may with

collateralized Arrow securities (Fostel and Geanakoplos, 2012)).2

With disagreement about payoff dispersion, in contrast, we show how the effect of collat-

eralization is fundamentally different. First, in the absence of collateralized contracts, such as

in Miller (1977)’s original setup, asset prices equal their fundamental value that all investors

agree on. In other words, a departure of prices from their fundamental requires financial in-

1See (Xiong, 2013) for a survey of the literature on disagreement.
2Harrison and Kreps (1978) show how in a dynamic framework equilibrium prices may exceed an

asset’s present discounted expected cash flow, but not the expectation of future returns, when current
investors speculate on higher prices that pertain when optimists enter the market in the future.
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novation, e.g. in the form of collateralized debt. Second, collateralization allows investors to

realize perceived gains from trade only when debt is risky. Then, by channeling upside and

downside risk to those that value them most highly, it can raise asset prices above the maximum

valuation across investors. This implies, third, that there is no trade-off, and no disciplining

effect of collateralization: issuing risky collateralized debt claims realizes pure perceived gains

from trade. Finally, an increase in disagreement makes collateralized loans and leveraged assets

more valuable to those that hold them, and thus always raises asset prices, while the opposite

may be true with disagreement about mean payoffs.3

Our results partly build on the well-known insight (Rothschild and Stiglitz, 1970; Stiglitz

and Weiss, 1981) that a rise in dispersion increases expected profits when the latter are a

convex function of fundamentals. We point out that, when risky collateralized debt issuance

splits payoffs into a convex (equity) and a concave (debt) payoff function, self-selection raises

equilibrium asset prices when risk-neutral investors disagree about risk. The proof of this result,

and its comparative statics extension, are, however, made difficult by the endogeneity of the

payoff functions, determined by investor choices on debt issuance. Collateralization is, effectively,

a substitute for trade in simple options whenever these are not available or not used. Our

benchmark results therefore apply most immediately to collateral assets that are not usually

referenced by options, such as a household’s or company’s real estate, the profits of private

companies, individual stocks of smaller enterprises, etc. We show, however, in an extension

of our results that even with trade in (cash-collateralized) call and put options disagreement

continues to imply a premium in collateral asset prices.

The first contribution of this paper is to document, in Section 2, the (increasing) disagree-

ment about the dispersion of asset returns and GDP growth in US surveys. The second con-

tribution is to point out how this raises equilibrium asset prices when investors trade risky

collateralized debt products. For simplicity, our benchmark theoretical results in Section 3 are

3Note that the effect we point out is also different to Phelan (2015), where, in the absence of disagree-
ment, the general equilibrium response of collateralized debt contracts to an increase in risk may raise
asset prices.
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derived in a simple two-period environment with risk-neutral investors who trade only debt

and an exogenous collateral asset. We show, however, that the main result, that disagreement

about risk raises the price of collateral assets, continues to hold in richer environments with

several debt ‘tranches’ (in Section 4), with risk aversion (in Section 5.1), and with trade in

(cash-collateralized) options (in Section 5.2). Contrary to the benchmark analysis, however,

where the systemic nature of risk is of little importance, the quantitative effect of disagreement

on asset prices with risk aversion is smaller when investors disagree about more aggregate risk,

associated to assets whose supply is large relative to total consumption.

Our third contribution is to quantify the effect of investor disagreement about risk on the

prices of ‘Structured Finance’ assets, which were blamed for their role in the US housing boom

and the financial crisis that followed after their issuance had experienced a spectacular rise in

the early 2000s. Specifically, Section 4 studies a model calibrated to capture the main features of

US subprime residential mortgage-backed securities (RMBSs) and RMBS-backed collateralized

debt obligations (CDOs). It shows how modest disagreement about the variability of default

rates, due to diverging views about the importance of aggregate risk in determining defaults, can

raise the market value of structured loan pools significantly above the expectation of collateral

cash flow (that we assume is shared by all investors). This ‘return-to-tranching’ is with between

50 and 110 basis points sizeable for RMBSs, but an order of magnitude larger for RMBS-backed

CDOs, whose payoff distributions are not bounded below by a minimum recovery value and

thus more sensitive to changing perceptions of risk. Disagreement about risk may thus be one

factor behind the boom in Structured Finance in the early 2000s. More specifically, our theory

provides an additional reason both for strong housing demand (by households who perceive

a high upside potential to the housing market) and increasing supply of mortgage finance as

financial liberalization draws a larger and more diverse pool of (international) investors into a

growing market of non-agency mortgage securitizations.

Although our theory does not predict the specific timing of the boom and bust in Structured

Finance in particular, nor of collateralised lending more generally, it suggests that three devel-
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opments made such a boom more likely from the late 1990s onwards: first, the advent of a large

pool of high-risk collateral accessible to a wide variety of investors in the form of US subprime

or Alt-A mortgages, whose growth has been attributed to the technological innovation in under-

writing procedures and, more controversially, affordable housing policies of the 1990s4; second,

the increase in disagreement about macroeconomic risks during the 1990s, as suggested by the

evidence from the SPF presented in Section 2; and third, the low interest rate environment that

started in the early 2000s, which may have made the perceived return differences pointed out

by our theory relatively more important.

Structured Finance is not the only asset class where our theory may be important. For

example, our results have implications for the theory of firm financing: contrary to Modigliani

and Miller (1958), they call for a mix of debt and equity finance that depends on the heterogeneity

of risk perceptions in the investor pool. Specifically, firms optimally issue debt to investors who

perceive risk to be low, and sell equity to those who perceive higher risk and thus stronger upside

potential to shares in the firm.

2 Data: Disagreement about risk in US surveys

This section shows evidence from US surveys that documents the extent to which investors, or

forecasters, disagree about risk, or the dispersion of outcomes around their expectations. For

this we use three data sources: first, the forecasts for S&P 500 returns by a sample of Chief

Financial Officers (CFOs) reported in Ben-David et al. (2013). Second, supplementary questions

to the Michigan Survey of Consumer Attitudes that, between 2001 and 2005, asked stock market

investors for the stock market returns they expect on average and the uncertainty around them

in the medium and long-run. And third, a longer history of GDP forecasts elicited in the Survey

4Gorton (2009) argues that technological innovation was the main driver of the rise in subprime
mortgages. For a discussion of the resulting ‘automated underwriting’ of mortgages, see also Gates et al.
(2002). The role of affordable housing policy in the subprime boom, in contrast, is controversial. On both
points see e.g. the Financial Crisis Inquiry Commission’s Report (Financial Crisis Inquiry Commission,
2011), p. 68-80. The FCIC concludes that the Community Reinvestment Act did not play a large role in
the subprime crisis. For a contrasting view see (Financial Crisis Inquiry Commission, 2011), p. 219.
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of Professional Forecasters (SPF) that contains a finer, fully specified histogram of near-term

GDP growth, which is interesting as one of the main macroeconomic determinants of investment

returns, if not a perfect predictor.

All three surveys describe perceived aggregate, or market, risks. While our benchmark

theory in Section 3 applies to disagreement about aggregate risk as much as to idiosyncratic,

or asset-specific, risks, survey data are typically only available for perceptions of market indices

or measures of aggregate output. The extension to risk aversion in Section 5.1 shows how

disagreement about idiosyncratic risks may have a larger impact on prices than disagreement

about aggregate risks.

2.1 Disagreement about US stock market returns

This section uses information from two US surveys to show how investors strongly disagree not

only about expected returns, but also about return risks. Table 2 reports summary statistics

of the supplementary questions in the Michigan Survey of Consumer Sentiments, covering 22

surveys in the years 2000 to 2005, taken from Amromin and Sharpe (2008).5

The first row of Table 2 shows that expected annual returns, averaged across respondents

and surveys, equal 9 percent, which coincides almost exactly with the average 10 year annual

returns on the S&P total returns index in the period before the last survey in 2005. Disagreement

about future mean returns, however, is strong, with 10 percent of respondents expecting an

average return of or below 5, and another 10 percent expecting above 16 percent. The perceived

riskiness of stock investments, however, also varies strongly across investors: while 10 percent of

respondents believe realized returns to fall within 2 percentage points of their expectation with a

probability of at least 80 percent, another 10 percent expect returns to fall outside this range with

at least 80 percent probability. Using a normality assumption to transform these assessments into

standard deviations, the 90-10 percentile difference of standard deviations equals 6.3, compared

5The authors eliminate incomplete responses, those deemed by the interviewer to have a low level
of understanding or a poor attitude towards the survey, and those that answered “50 percent” to all
probability questions.
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to 11 for expected returns.

Table 2: Return Expectations in the Michigan Survey 2000-2005
.

N Mean 10th pct 25th pct Median 75th pct 90th pct

Expected return Re 3,046 10.4 5 7 10 12 16

Prob |R−Re| < 2pp 3,015 43.3 20 25 50 50 80

Implied σ10−20 (in percent) 2,854 4.56 1.56 1.73 2.96 2.96 7.88

The first row reports the distribution of investors’ answer to the question about the “annual rate of return that you would
expect a broadly diversified portfolio of U.S. stocks to earn, on average”. The second row reports the probability ”that the
average return over the next 10 to 20 years will be within two percentage points of your guess”, and the third one shows
the corresponding standard deviation assuming normally distributed beliefs about stock market returns.

Ben-David et al. (2013) present similar survey evidence for a sample of senior finance exec-

utives, mainly Chief Financial Officers. They show how their respondents’ forecasts of US S&P

500 returns are ‘miscalibrated’, in the sense that respondents underestimate the uncertainty

around their expected returns both relative to history and relative to subsequent outcomes.

Interestingly for the present study, they also show how respondents strongly disagree in their

individual volatility estimates. For example, the individual standard deviations of 1-year-return

forecasts implied by their survey responses have a distribution whose 95-5 percentile difference

equals 15 percentage points (both for the whole sample from 2001 to 2011, and the 2011Q1

cross section). Interestingly, the disagreement about expected returns is similar to that about

expected volatility both in terms of the standard deviation across respondents (which equals 5.3

for expected returns and 4.3 for standard deviations) and the 95-5 percentile difference (equal

to 15 percentage points also for means).

2.2 Disagreement about US Macro Risk 1980-2010

The Survey of Professional Forecasters SPF is a quarterly survey that asks forecasters to indicate,

among other measures, their probability distribution for GDP growth in the current calendar

year.6 Specifically, forecasters report the probability that short-term growth falls in any of 6

6Since 1992, the survey also asks for the same distribution for the following year. We don’t use this
measure because of the short history.

8



brackets.7 This allows us to study the evolution of disagreement between forecasters about short-

term US growth prospects. Particularly, using a normal approximation of the distributions, as

in Giordani and Söderlind (2003) we can look at the distribution across forecasters of forecaster-

specific means µit and standard deviations σit for every quarter since 1980 (when the survey

changed from nominal to real GDP projections). Based on this cross-sectional distribution, we

look at two measures of disagreement about the mean and volatility of output growth across

forecasters: first, the standard deviations of µ̂it, σ̂it defined as8

µit = µ̂it + µt

σit = σ̂itσt. (1)

The second disagreement measure is based on the integral of absolute differences of any two

forecaster-specific normal densities, averaged across forecasters.

d =
1

N2
t

∑
i

∑
j

∫
|fi(gy)− fj(gy)|dgy, (2)

where Nt is the time-varying number of forecasters in the sample.9 We calculate the contribution

of the heterogeneity in standard deviations to this average disagreement using the formula in

(2) with the mean of the two normal distributions held constant (µit = µjt), and define the

remaining difference with overall disagreement as the contribution of heterogeneous means.

Figure 2.2 shows how the dispersion of means and standard deviations of short-term growth

forecasts has evolved over time in the survey. In the early 1980s, the standard deviations of

means (in the left panel) was about twice that of standard deviations (in the right panel).

But while mean forecasts converged - with their standard deviation falling to less than half

their initial value before rising abruptly at the beginning of the recent ’Great Recession’ - the

7The brackets have changed slightly in 1990.
8For the positive variable σit we use the normalized standard deviation to prevent it from falling to

zero mechanically as the mean of σit falls.
9This measure equals zero for any two identical distributions and is bounded above by 2 (for two

disjoint distributions).
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Figure 1: The left panel plots the time series of the standard deviations of σ̂it. The right
panel plots the corresponding measure for µ̂it and as defined in equation (1). The red line
shows the trend from an HP filter with smoothing parameter 1600.

dispersion of forecast standard deviations has increased strongly, amid noticeable cyclical swings.

Figure 2.2 shows the contributions to the overall disagreement measure d of heterogeneity in

forecaster-specific means (in the left panel) and standard deviations (in the right panel).10 While

overall disagreement (not shown) does not follow any trend over the sample, the (smoothed)

contribution of heterogeneous standard deviations increases by about 1/3 until the beginning of

the Great Recession. The contribution of mean growth dispersion, of about the same magnitude

at the beginning of the sample, falls by about 1/3 until the recession. Therefore the evidence

from the SPF suggests that the contribution of heterogeneous perceptions of growth dispersion

has risen strongly since the early 1980s, while disagreement about mean growth has become less

important.

Both the evidence from the Michigan Survey and the SPF thus suggest that there is strong

belief heterogeneity about the riskiness of stock market returns among US investors and about

macroeconomic risk among professional forecasters. Finally, given that there is presumably little

private information about future stock returns or GDP growth, we believe that the evidence

above reflects indeed agree-to-disagree type differences as opposed to informational differences.

10We only use the first quarter of every year to keep the forecast horizon constant and equal to the
remainder of the current year.
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Figure 2: The left panel plots the contribution of heterogeneous standard deviations to
overall disagreement d about current year GDP growth in the SPF as defined in equation
(2). The right panel plots the corresponding contribution of heterogenous means. The
red line shows the trend from an HP filter with smoothing parameter 25 (to adjust for
the annual frequency, see Ravn and Uhlig (2002).

3 Theory: Leveraged asset trade with disagreement

about risk

This section studies a simple equilibrium economy to show how disagreement about payoff risk

implies a ‘bubble’ in asset prices, defined as a situation where equilibrium asset prices exceed the

fundamental valuation (that is shared by all investors). We also show how a further increase in

disagreement inflates the bubble. To make the economic mechanism most transparent, we choose

a particularly simple environment with two investor types that differ in their risk perceptions

and trade only simple collateralized debt. Later sections consider additional and more complex

assets. A previous working paper version of this article (Broer and Kero, 2014) presents results

for the general case with a continuum of types.
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3.1 The general environment

3.1.1 Preferences and beliefs

We study an economy that exists for two periods t ∈ {0, 1}. There are two types of agents

i = H,L, both of unit mass. In period 0, agents of type i receive an endowment ni > 0 of

the unique perishable consumption good and 1 unit of a risky asset (a “tree”) that pays a

stochastic amount s ∈ S = [smin, smax], smin > 0 in period 1. All agents are assumed to be

risk-neutral, maximizing the present discounted sum of expected consumption in both periods

equal to Ui = ci + 1
REi(c

′
i), where Ei is the mathematical expectation of agent i, ci (resp. c′i)

denotes consumption in period 0 (resp. 1) and 1
R ≤ 1 is the discount factor.

We assume that types differ in their beliefs about the distribution of random payoffs s, summa-

rized by distribution functions fi : S −→ R+. Specifically, all agents expect payoffs to be the

same on average, but the ‘high-risk’ type H believes them to be less tightly distributed than the

‘low-risk’ type L. Specifically, for �2 denoting second order stochastic dominance, we assume

Assumption A1 EH(s) = EL(s) ≡ Es, fL �2 fH ,

3.1.2 Asset markets

Agents trade in 2 asset markets. In t = 0, agent i purchases ai−ai units of the physical asset in

exchange of p(ai−ai) units of the consumption good. In addition, agents can borrow by pledging

part of their future income. However, agents cannot commit to future payments, and therefore

have to collateralize their borrowing. For simplicity, in this section we look only at the simplest

form of these contracts, namely a debt contract, but consider more complex contracts below.

Debt contracts are characterized by a fixed promised face value. The absence of commitment

means that agents transfer to their creditor the face value of the loan or the payoff of the assets

that serve as collateral, whatever is smaller. We normalize contracts to be secured by 1 unit of

the asset as collateral.11 Thus collateralized loan contracts have unit payoffs equal to min{s, s},
11Note that one unit of a bond with face value 1 collateralized by x units of the asset is payoff-equivalent

to x units of a bond of face value 1/x collateralized by one unit of the asset.
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where s is the promised face value. In t = 0, agents trade these contracts at competitive price

q(s̄). Given that borrowing is subject to a collateral constraint, each unit of collateralized loans

agent i issues must be secured by at least one unit of the risky asset that agent i possesses and

can be used as collateral:

bi ≥ −ai. (3)

In the special case of a given unique s, the set of available assets implies that the budget

constraints of agent i in t = 0 and t = 1 respectively are:

ci + pai + qbi ≤ ni + pai, (4)

c′i ≤ ais+min{s, s̄}bi, (5)

where ai and bi represent agent i’s total holdings of risky assets, including the initial endow-

ment, and of collateralized loans respectively.

3.1.3 Expected profits

At a given vector of prices p, q and a given face value s, expected profits from buying a quantity

bi of collateralized loans with face value s are, for i = L,H:

Πl
i = bi[

Ei[min{s, s}]
R

− q].

The expected profits from buying ai units of risky assets partly financed through a collateralized

loan of equal size are

Πa
i = [

Ei(s)− Ei(min(s, s̄))

R
− (p− q)]ai. (6)

Finally, buying the asset outright using consumption goods as payment implies expected profits

equal to Πi = [Ei(s)
R − p]ai.

Figure 3.1.3 illustrates how gross unit profits in period 1 change as a function of the asset
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Unit-profits from collateralized loans Unit-profits from leveraged assets

Figure 3: The left panel plots the profits from collateralized loans that are concave in s
and the right panel plots those from leverage asset purchases, which are convex in s.

payoff s. The definition of profits implies that returns on collateralized loans are convex in s,

while those on leveraged asset purchases are concave in s. Given the second order stochastic

dominance relationship of beliefs, this immediately implies that investors with more (less) dis-

persed beliefs expect to make higher profits from investment in leveraged assets (collateralized

loans):

Proposition 1 - Profits and risk perceptions

Type L agents (with low risk perception) have higher expected profits from investing in collater-

alized loans of a given face value s̄ than type H agents (with high risk perception). The inverse

is true for profits from leveraged asset purchases:

Πl
H ≤ Πl

L ∀ s ∈ (smin, smax), ∀p, q,R,

Πa
H ≥ Πa

L ∀ s ∈ (smin, smax), ∀p, q,R.

Moreover, there exists s ∈ (smin, smax) such that both equalities are strict.

According to proposition 1, type L agents are the natural buyers of collateralized loans,

and H agents are the natural investors in leveraged assets. In other words, if there is trade in

collateralized loans in equilibrium −bH = bL > 0.
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3.2 Equilibrium characterization

Definition 1 A general equilibrium is a set of prices (p, q(s)) and allocations {ci, c′i, ai, bi(s)}i∈{L,H}

∀s, such that both agents optimally choose their consumption and investments subject to their

budget constraint and the collateral constraint (3), the demand for assets equals the fixed supply,

and the collateralized loan market clears,

bH(s) + bL(s) = 0, ∀s.

In the following, we assume that type L agents who have less dispersed beliefs are cash-rich.

Assumption A2 nL ≥ Es
R .

Assumption A2 has two implications: first, the equilibrium asset price p is bounded below

by the fundamental value Es
R , since any lower price contradicts goods-market clearing in period

0, as it would give both types at least one investment possibility that they would strictly prefer

over current consumption. Second, the total value of type L agents’ endowment equals nL+p ≥

2Es
R ≥ 2maxs

EL[min{s,s}]
R ). So type L agents can afford to buy all collateralized loans at their

maximum expected payoff. Since, moreover, they do not expect to make strictly positive profits

from any other investment, they bid up the price of any collateralized loan issued by type H

agents to their expected discounted value, where they are indifferent between investing and

consuming, implying a bond price function

q(s) =
E0[min{s, s}]

R
. (7)

In turn, this implies that type H agents expect profits ΠH from buying assets outright to be

lower than from leveraged asset purchase.

Corollary 1 With q(s) given by (7) Πa
H ≥ ΠH ∀p, s, with strict inequality for some s ∈

(smin, smax).
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So without loss of generality, we can focus on equilibria where type H agents leverage their

entire asset holdings.

3.2.1 Type H’s simplified problem and the choice of s

Since under assumption A2 type L agents buy all collateralized loans at their reservation price

q(s), and type H agents leverage their entire asset holdings, the problem of type H agents

simplifies to the choice of current consumption, which through the budget constraint determines

their investment in leveraged assets, and the choice of the level of leverage s given p and the

price function q(s).

max
c1,s

U1 = c1 +
(n1 + p− c1)

R
Ra1. (8)

where Ra1(p, s)
.
= [Es−E1(min{s,s})]

p−E0{min{s,s}}
R

is the leveraged gross return of the asset using a loan with

riskiness s. The first order condition for s can be written as:

(nH + p)

Rp− EL{min{s, s}}
[(1− FH(s))−

RaH
R

(1− FL(s))] = 0. (9)

Proposition 2 - Interior choice of s.

Suppose that p satisfies Es
R = p < p < p

.
= Es+EL(min(s,s))−EH(min{s,s})

R for some s ∈

(smin, smax), such that agent 1 expects to make profits for some s when she buys assets at p

that exceeds the fundamental value. Then RaH(p, s) has an interior maximum at some s? ∈

(smin, smax).

Proof of Proposition 2.

Note that RaH(p, smax) = 0. Also, if p > Es
R , RaH(smin) = RaH < R. But if at some s′,

p < Es+EL(min{s,s′})−EH(min(s,s′))
R , then RaH(s′) > R. The statement then follows from continuity

of RaH .
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3.2.2 Existence and uniqueness of a bubble equilibrium

The following proposition, whose proof is in the appendix, shows that equilibrium is defined

by two conditions: first, the optimal choice of leverage s; and second, the market clearing for

leveraged assets, which defines the price such that type H agents either exhaust all their wealth

buying assets, or are indifferent between investing and consuming. Intuitively, as agent 1 wealth

rises, their increasing demand for assets bids up the price until it reaches indifference level p.

Proposition 3 - Existence and uniqueness of equilibrium.

Denote as nmax
1 (s) = n1 + 2E0[min{s,s}]

R the resources available to type H agents for net pur-

chases of assets when they issue collateralized loans backed by the whole asset endowment of the

economy. p and s are given by the unique solution of the following equations:

C ≡ [Es − E1(min{s, s})](1− FL)− (1− FH)(Rp− EL[min{s, s}]) = 0, (10)

p = max{p, p?}, (11)

p? = nmax
1 (s), (12)

where the left hand side of (12) are the net purchases of assets and the right-hand side equals

the available resources, both weighed by the mass of type H agents.

As Proposition 3 shows, with heterogeneous risk perceptions, collateralized contracts lead to

a bubble in asset prices, in the sense that equilibrium prices exceed the common fundamental

value of the asset, shared by all investors. Moreover, it is easy to see from (12) that a rise in

resources of type H agents (weakly) increases prices. In addition, as Proposition 2 has shown,

there is a unique endogenous choice for leverage s.12

12A previous working paper version of this article, Broer and Kero (2014), shows that similarly to the
two-type economy, with heterogeneity in perceived risks across a continuum of types, the equilibrium
prices of risky assets are necessarily above their common fundamental valuation. Unlike the two-type
economy, however, these results require an exogenous upper bound for the face value s̄.
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3.3 Comparative statics

This section looks at the effect of ‘belief divergence’, in the sense of a further mean-preserving

contraction to fL, or equivalently a dispersion of fH . For this, we concentrate on economies

where funds of type H agents are large either because their endowments are high, or because

they can raise enough funds from issuing collateralized loans. This is stated in assumption A3,

which implies that asset prices are at their upper bound, as lemma 1 states. Its proof, like that

of corollary 2, is in the appendix.

Assumption A3 nH ≥ nH = Es−EL(min{s,s?})−EH(min{s,s?})
R .

Corollary 2 For any symmetric distributions fH , fL, we have nH < 0. So Assumption A3

trivially holds.

Lemma 1 Assumption A3 implies p = p.

To look at belief divergence we assume that the distribution function fi is parameterized by a

variable v such that:

1. fi is continuous in v for all s, i = L,H.

2. Ei,v(s) = Es,∀v, i = L,H.

3. fi(v) second order dominates fi(v
′), i = L,H whenever v > v′.

4. FL(v, s) − FL(v′, s) is downward sloping in s whenever v > v′ and crosses the zero line

once at s?.

In the following we define ’belief-divergence’ as small changes in the beliefs of type L and H

agents, fL, fH , through a pair of small changes dvL ≥ 0, dvH ≤ 0 in their corresponding values of

vi, i = L,H, with at least one strict inequality, corresponding to a mean-preserving contraction

to fL and a mean-preserving spread to fH .

From the pricing equation for bonds (7), it is immediately clear that dvL > 0 increases the

valuation of collateralized loans by type L agents, and thus their price.
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Lemma 2 A fall in risk perceived by type L increases prices of collateralized loans

δq
δvL

> 0.

Also, under Assumption A3 we can identify the effect of belief divergence on asset prices.

Proposition 4 - Belief divergence increases asset prices.

Proof of Proposition 4.

Assumption A3 implies p = p = Es+EL(min(s,s))−EH(min{s,s})
R , and FL(s) = FH(s) from (10),

so s = s? from single-crossing. Since s? does not change in response to dvi, neither does

s. But p rises with a mean preserving spread {dvL ≥ 0, dvH ≤ 0} as δEL[min{s,s?}]
δvL

≥ 0 and

δEH [min{s,s?}]
δvH

≤ 0.

As Proposition 4 shows, divergence of risk perceptions across investors increases asset prices

because a mean-preserving spread to fH increases the perceived upside potential of leveraged

assets payoffs while a mean-preserving contraction in fL reduces the perceived riskyness of

collateralized loans. These results rely on assumption A3, which implies that prices rise along

the upper bound p = p, and that the optimal s is unchanged.13

4 Application: Disagreement about default correla-

tion and the Structured Finance boom

Both the US housing boom of the early 2000s, and the large losses of financial institutions

during the crisis that followed have been blamed on the rise of ‘Structured Finance’ assets, such

as residential mortgage backed securities (RMBSs), which allocate the cash flow from a pool of

collateral assets to different ‘tranches’ in order of seniority. This section shows how disagreement

13When Assumption A3 does not hold, in contrast, a mean preserving spread in beliefs has an ambiguous
effect on marginal profits and thus the optimal value of riskyness s. Specifically, while a rise in vL increases
the return at any given riskyness, it can increase or decrease 1 − FL, the marginal effect of a change in
s on profits at given returns. Although intuition suggests that the former effect would dominate, this is
difficult to show formally.
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about the riskyness of the collateral pool, or about the power of diversification through pooling

of many loans, affects the collateral price in a way that is very similar to disagreement about

the riskyness of a single asset that collateralizes simple debt contracts, studied in Section 3.

Particularly, investors who expect the loan pool’s default rate to be tightly distributed around

its mean regard senior tranches as riskless, and junior tranches that pay only in the event of

lower-than-expected default rates as worthless. Those who believe in volatile default rates, in

contrast, expect senior tranches to default in bad times, but junior tranches to pay when times

are sufficiently good. Self-selection of investors then raises tranche prices, and, by arbitrage,

the collateral price, just like with collateralized loan trade in Section 3. In fact, with only two

tranches and complete loss-given-default, the results in that section are easily re-interpreted as

applying to a pool of many identical loans with total face value smax whose random default rate

equals s
smax

.

Disagreement about the variability of default rates arises very naturally from different opin-

ions about the importance of idiosyncratic vs. aggregate risk for loan defaults as captured by

the default correlation in credit risk models, a parameter that is particularly difficult to estimate

for loan categories with a short history. This section quantifies the effect of disagreement about

default correlations on the market price of RMBSs, and collateralized debt obligations (CDOs)

backed by their tranches. The analysis is made easier by the fact that, contrary to most assets

that may be valued using different models with potentially many dimensions of disagreement,

Structured Finance products came with a unique “market standard’ (Morini (2011), p. 127)

model - the Gaussian copula with homogeneous correlations - with only three main parameters:

the average default probability, the value of loss given default, and the homogeneous correlation

of defaults. We concentrate on disagreement about this default correlation as the parameter

that determines the dispersion of the pool-wide default rate.14 This is partly for simplicity, but

also because, as Broer (2016) shows, disagreement about loss-given-default or average default

probabilities does not lead to the self-selection at the heart of this paper, since the value of all

14More precisely, for a pool containing a large number of identical loans with default probability π, the
variance of the fraction of defaulting loans rises from 0 to π(1− π) as their default correlation increases
from 0 to 1.
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(senior and junior) tranches is monotonically declining in both parameters. This is important

since the rising popularity of Structured Finance assets makes it difficult to argue that prices

were determined by only the most optimistic investors. With disagreement about correlations,

in contrast, an increasingly heterogeneous pool of investors increases prices as agents self-select

into buying their preferred tranches. In addition, the parameter uncertainty implied by their

short history and the lack of consensus about how best to estimate correlation patterns15 seems

to have been largely neglected by investors (Coval et al., 2009; Morini, 2011), making hetero-

geneous ‘point’ beliefs an appealing, if simplifying, assumption.16 Finally, the analysis assumes

that investors rely entirely on their own beliefs. They thus do not use market prices to adjust

their beliefs (in line with the dominance of over-the-counter trades) and do not exclusively use

information from rating agencies.17

4.1 A Gaussian copula model

Consider a version of the economy in Section 3 with k = 1, ..,K types of risk-neutral investors

who live for two periods t = 1, 2 and discount second period consumption by the common

discount factor 1
R . At the beginning of period 1, investors receive a non-storable consumption

endowment a, which they can consume or invest in assets collateralized by a given pool of

n = 1, ..., N mortgages of face value and mass 1, which are sold by a single originator. In period

2 a stochastic fraction d of mortgages defaults. Defaulted mortgages pay recovery value Vrec < 1.

Let π denote the common belief about the homogeneous default probability of mortgages.

15Thus, Luo et al. (2009) argue that the inclusion of an unobserved ’frailty’ factor would have substan-
tially improved the predictive power of portfolio credit risk models applied to CDO pricing.

16See Gorton and Metrick (2013) for a description of the valuation of structured products by investors
who use “vendor-provided packages that model the structure of structured products, but the valuation
is based on (point estimate) assumptions that are input by the user” (p.112).

17While the market for Structured Finance was indeed a ‘rated market’, evidence from surveys suggests
that ratings were only one of many elements in the assessment of credit risks by investors (Fender and
Mitchell, 2005). Moreover, the junior tranches where, as it turns out, disagreement leads to the strongest
differences in value, were usually held by specialist investors who are likely to rely less heavily on ratings
in their judgments (see Fender and Mitchell (2005), p. 70). In fact, prices of both non-AAA tranches of
RMBSs (Adelino, 2009) and ABS-CDOs (Mählmann, 2012) did incorporate information over and above
credit ratings. See also Cuchra (2004).
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Investor k models the credit risk of the loan pool using a standard Gaussian copula model

with homogeneous correlation (Li, 2000; Laurent and Gregory, 2005). Specifically, she believes

mortgage n to default whenever the following condition is met

xn = ρk ·M +
√

1− ρ2
k ·Mn < x = N−1(π), M,Mn ∝ N(0, 1) (13)

The index variable xn can be interpreted as the value of creditor n’s assets. It equals the

weighted average of an aggregate factor M , capturing economy-wide conditions, and a loan- or

borrower-specific factor Mn, which are both distributed according to the standard normal dis-

tribution. Investors agree that loan n defaults whenever the index xn falls below a threshold x

equal to the inverse normal distribution evaluated at the default probability π, which this section

assumes is shared by all investors. Investors disagree, however, about the importance of aggre-

gate conditions in determining loan defaults, as summarized by the parameter ρk. Specifically,

ρ2
k equals the correlation between two individual creditors’ asset values perceived by investor k.

For example, investors who believe in ρk = 0 expect the default rate of the pool d, equal to the

share of loans whose asset values are less then the threshold, to equal π with certainty. Investors

with higher perceived ρk believe individual defaults to comove more strongly, and thus expect d

to be less tightly distributed around π. Together with the recovery value in case of default Vrec,

ρk and π completely determine the distribution of the cash flow from the mortgage pool equal

to C = 1− d(1− Vrec) ∀d.

The originator maximizes current profits from selling the loan pool to investors in one of

two ways: as shares in a ‘pass-through’ securitization that pays all investors their share in the

total cash flow that the collateral generates, equal to 1 − d(1 − Vrec) ∀d; or structured as an

RMBS by splitting the cash flow into ‘tranches’ that receive payments in strict order of their

pre-specified seniority. Specifically, tranche 1 promises to make a total payment of a1 < 1 to its

holders in period 2, where a1 is the ‘detachment point’ of tranche 1, and receives any cash flow

that defaulting and non-defaulting mortgages generate until a total of a1 is reached. Tranche 2

promises to pay a2 − a1, where a1 < a2 < 1, but only receives cash flow once a1 has been paid
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to holders of the first tranche, etc.

The Gaussian copula model (13) conveniently allows investors to also value CDOs whose

collateral consists of a pool of J RMBS tranches, rather than individual loans. The crucial addi-

tional parameter that determines the CDO’s payoff distribution is the additional diversification

gain from pooling tranches. For this, I assume that investor k perceives the aggregate factor M

in (13) to be the sum of a global factor M and an RMBS-specific factor Mj

M = ρ′k ·M +
√

1− ρ′2k ·Mj , M,Mj ∝ N(0, 1) (14)

The CDO’s payoff distribution is thus determined by a 3-factor Copula, with an asset correlation

that investor k perceives to equal ρ2
k for mortgages in the same RMBS, and ρ̂2

k = ρ2
kρ
′2
k ≤ ρ2

k for

mortgages in different RMBS pools.

Given one of the two securitization possibilities - structured or pass-through - an equilibrium

is defined as a vector of prices such that the originator maximizes current profits, investors

maximize utility, and demand for all assets equals supply. Investor optimality implies that the

expected return from all positive investments in their portfolio must be the same, at least equal

to R, and, in case it exceeds R, strictly higher than that from assets they do not hold.

4.2 Payoff distributions and valuation of tranches

This section illustrates how investors who perceive higher asset correlation ρ2
k (or ρ̂2

k) expect

collateral cash flow to be more widely dispersed around its mean and therefore have a relative

taste for the most junior tranches of RMBSs (or CDOs). To capture the characteristics of the

market for US subprime mortgage-backed securities prior to the crisis, I look at pools of 5000

mortgages in an RMBS and of 100 RMBS tranches of equal seniority in a CDO. Also, I choose

a common perceived default probability π equal to 12.5 percent, and a recovery value Vrec that

comoves inversely with the pool’s default rate d in a range of +/− 15 percentage points around

its average of V rec = 60 percent, in order to account for longer time-until-foreclosure and lower
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resale values when default rates are high.18 Since both RMBSs and CDOs usually had similarly

granular structures, the analysis uses the same 6 tranche structure as Coval et al. (2009) for both,

consisting of an equity tranche (100-97 percent), a junior tranche (97-93 percent), mezzanine

tranches I and II (93-88 and 88-80 percent respectively) and senior tranches I and II (80 to 65

and 65 to 0 percent).

The upper left panel of Figure 4 shows how, for ρ2
k = 0, the perceived distribution of payoffs

from an RMBS’s collateral pool collapses around the expected payoff equal to 1−π(1−V rec) = 95

percent. As ρ2
k rises, the distribution fans out at a decreasing rate, but the lowest percentile

remains above 75 percent as payoffs are protected by the recovery value.19

The remaining panels of Figure 4 depict the perceived payoff distributions from pools of 100

junior, mezzanine I and mezzanine II RMBS tranches as a function of ρ̂2
k, the weight on the

global factor in equation (14) that captures the perceived ‘remaining’ asset correlation, when

ρ2
k equals 0.1. The lower number of collateral assets implies that payoffs remain uncertain even

when the diversification gain is perceived to be perfect (ρ̂k = 0). More importantly, junior

tranches of RMBSs are not protected by the recovery value of the underlying mortgages from

the bottom, and, just as the underlying tranche payoffs, are not bounded away from a full payoff

at the top. The distributions thus fan out more strongly, implying stronger disagreement about

payoff variances. For example, probabilities of a zero payoff are greater than 1 percent for junior

RMBS tranches when ρ̂2
k exceeds 6 percent, while for mezzanine tranches, the upper percentiles

bunch increasingly at 100 percent as ρ̂2
k increases above 2 percent.

To illustrate how the heterogeneous perceived payoff distributions depicted in Figure 4 affect

the expected payoffs of RMBS and CDO tranches, Figure 5 shows the difference between their

payoffs expected by an investor with perceived asset correlation ρ2
k or ρ̂2

k (depicted along the

18The default rates for subprime mortgages differed strongly over time, fluctuating around 10 percent
during the years of strong house price growth up to 2006 and increasing to above 40 percent thereafter
(see, e.g., Beltran et al. (2013)). The recovery value equals Vrec = 0.6 + (d − d), where d is the average
default rate equal to π, but is bounded by a minimum of 45 percent.

19To interpret the magnitudes, note that ρ2k and ρ̂2k do not equal default correlations. In fact, as Figure
3 in Broer (2016) shows, the correlation between default events of any two mortgages in the RMBS is
about half as large as the correlation of the underlying asset value xn.
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Figure 4: Distribution of collateral payoffs
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The figure shows the distribution of collateral payoffs in an RMBS (upper left panel) and CDOs with

homogenous collateral consisisting of junior (upper right panel), mezzanine I (lower left panel), and

mezzanine II (lower right panel) RMBS tranches.

Figure 5: Expected value of tranches
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For RMBSs (upper left panel) and CDOs with homogenous collateral consisisting of 100 junior (upper

right panel), mezzanine I (lower left panel), and mezzanine II (lower right panel) RMBS tranches, the

figure shows the difference between their tranches’ payoffs expected by an investor with perceived asset

correlation ρ2k or ρ̂2k (depicted along the bottom axes) and that expected by a ‘zero correlation’ investor

(whose ρ2k or ρ̂2k equals 0), as a percentage of the underlying collateral’s face value (the ‘width’ of the

tranche).
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bottom axes) and that expected by a ‘zero correlation’ investor (whose ρ2
k or ρ̂2

k equals 0), as a

percentage of the underlying collateral’s face value (the ‘width’ of the tranche).

As expected, the collateral value, or total expected payoff from the mortgage pool (the

starred dashed line flat at 0), is unaffected by the perceptions of correlation as all investors

share the same average default probability. Because the ‘zero correlation’ investor expects the

payoff from the mortgage pool to equal 95 percent with certainty, she deems the junior and

equity tranches of the RMBS (in the upper left panel), with attachment points close to or above

95 percent, to be worth nothing or little. High ρ2
k investors, in contrast, who perceive both a

larger downside and upside risk, think that junior tranches are more likely to pay off, while they

expect the mezzanine tranches to default with positive probability. Interestingly, the downside

risk is never strong enough for investors to considerably disagree about the valuation of the

senior tranches.

In line with the stronger rise in payoff variation of CDO collateral in Figure 4, the disagree-

ment about tranche valuations is more widely spread there, and differences in valuation an order

of magnitude larger as a fraction of collateral face value. Thus, an investor who perceives no

diversification gain from pooling RMBS tranches (ρ2
k = ρ̂2

k = 0.1) expects payoffs as a fraction

of the face value from the three most junior CDO tranches backed by mezzanine I collateral to

be between 70 and 80 percentage points higher than his counterpart who expects diversification

gains to be perfect (ρ2
k = 0.1, ρ̂2

k = 0).20

4.3 The return to tranching

From figure 5, it is evident that disagreement about default correlations may raise securitization

profits if originators can sell tranches backed by collateral cash flow to investors who value

them particularly highly, rather than selling the cash flow as a pass-through securitization at

its common, lower valuation. The extent to which this is possible, however, depends on supply

20A final difference between RMBS and CDO tranche valuations is that the latter do not necessarily
rise or fall monotonically as ρ̂2k rises and the middle of the distribution ‘thins out’.
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relative to the demand by investors with different beliefs. With several assets and general

disagreement, it is usually not clear that an equilibrium price vector exists, or that it is unique.

In the context of this paper, the equilibrium price vector pi of tranches i = 1, ...I ordered by

seniority has to be such that supply equals demand for every tranche, and that any investor

k expects to earn on all positive investments in her portfolio an equal return Rk not smaller

than R, and greater than that she expects from any assets she does not hold. Since this implies

(K + 1) · I equilibrium conditions, solving for any such equilibrium is complex. In the case of

RMBSs, however, as Figure 5 suggests, the valuation of tranches is typically monotonic in ρ2
k:

high ρ2
k types value junior tranches more than low ρ2

k types, while the reverse is true for senior

tranches. The analysis exploits this feature to calculate the equilibrium price of all tranches

in the example of a subprime RMBS with a small number of ρ2
k types. We compare these

equilibrium prices to an alternative price vector that we call ‘maximum’ prices, which simply

equal the maximum valuation of investors (and are in fact equilibrium prices if the endowment

of any single investor type was large enough relative to the loan supply). The reason for this

is to show that the self-selection of investors to their preferred tranches implies equilibrium

prices that are close to maximum prices even when many investors participate in equilibrium.

Again, this contrasts with disagreement about means, where equilibrium prices are typically

smaller than maximum valuations. Given the monotonicity of valuations in ρk, we can interpret

maximum prices as equilibrium prices in an economy with only two types whose ρks equal the

bounds of the support for ρk.

4.3.1 Calibrating disagreement

As argued above, the distribution of cash endowments across ρk-types is crucial for equilibrium

prices. This section does not aim at an exact calibration of this distribution. Rather, we first

choose a support for {ρk}Kk=1 ∈ [ρmin, ρmax] that is meant to be conservative, and then show

how the distribution of cash endowments on that support is only of limited importance even

for equilibrium prices. The choice of support {ρk}Kk=1 ∈ [ρmin, ρmax] is informed by three facts:
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first, the large uncertainty around estimates of default correlation parameters on short histories

of data21; second, the ratings of RMBS and CDO tranches by the main ratings agencies; and

finally, the default experience in the US subprime mortgage market.22

We use two pairs of values {ρ2
min, ρ

2
max} which I label ‘weak’ and ‘strong’ disagreement. In

the case of weak disagreement, to capture the intuition that structures were designed to give

senior tranches top credit ratings, and that rating agencies often had optimistic assessments of

default probabilities (Griffin and Tang, 2011), I choose a ρ2
min equal to the maximum correlation

compatible with an AAA rating of both senior RMBS tranches.23 To calibrate ρ2
max, I assume

that the highest-correlation investors perceived a small but significant probability of default rates

rising to levels experienced during the crisis. In the case of ‘weak’ disagreement I interpret this

to be a 0.5 percent probability of default rates in the RMBS pool reaching 40 percent or more, as

observed in 2007 for US subprime mortgages (see, e.g., Beltran et al. (2013), especially figure 4).

This calibration yields values of ρ2
min and ρ2

max equal to 7 and 12 percent, respectively (equivalent

to default correlations of roughly 3 and 5 percent). In a ‘strong’ disagreement specification, I

extend the range of values such that the ρ2
min-investor would also just give the mezzanine II

tranche an AAA rating, and such that the ρ2
max investor perceives a probability of 1 percent of

default rates rising to 40 percent or above. This yields values of ρ2
min and ρ2

max equal to 2 and

16 percent, respectively (corresponding to default correlations of 1 and 6.5 percent).

To calibrate, in a similar fashion, the two extremes of the ρ̂2
k distribution, capturing disagree-

ment about the additional diversification gain from pooling RMBS tranches, is more difficult. I

choose ρ̂2
min to yield a default correlation of mezzanine RMBS tranches approximately equal to

that calculated by Griffin and Nickerson (2015) for the main rating agencies, when fixing ρ2 at

21Figure 4 in Broer (2016) shows the wide standard errors of these estimates.
22I do not consider information from RMBS and CDO tranche prices. This is, first, because their

prices are often determined over the counter and thus unobserved. Moreover, the aim of the exercise
is to isolate the effect of disagreement about default correlations on equilibrium prices via expected
payoffs. Observed prices, on the other hand, were affected by many other factors, such as risk aversion
or investment mandates of some investors.

23In line with this, Ashcraft et al. (2010), p.13 find that the average fraction of subprime RMBS that
received an AAA rating was 82 percent.
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a mean value of 10 percent.24 This yields a diversification gain 1 − ρ′2k in equation (14) equal

to 88 percent, or ρ′2k = 0.12. This diversification gain has been criticized as too optimistic25,

partly since most RMBSs were already geographically diversified (see, e.g., Cordell et al. (2011)).

I thus use this value as the lower bound of the ρ′k-distribution ρ′2min, and set ρ′2max to yield a

lower additional diversification of 70 and 50 percent in the weak and strong disagreement cases

respectively.

For the support of ρ2 and ρ̂2, I choose a particularly simple, uniform distribution on

[ρ2
min, ρ

2
max] with 5 support points. I then calibrate the supply of mortgages and investors’

consumption endowment such that at least three ρ2
k-types are needed to buy the mortgage pool.

Specifically, I normalize the mass at each support point to 1 and set the endowment a equal to

3
7 for all investors. This implies that 20 percent of the consumption endowment is located at the

extremes. As it turns out, this usually suffices for all junior tranches, whose valuation increases

with ρ2
k, to be bought by the ρ2

max investor.

4.3.2 The return to tranching subprime mortgage pools

This section concentrates on the ‘return to tranching’ subprime mortgage pools into RMBSs,

defined as the difference in market values between the RMBS and that of the collateral when

sold as a non-tranched, pass-through securitization. Table 3 shows how, when all prices are at

their maximum, this return equals 35 (85) basis points in the weak (strong) disagreement case.

Interestingly, although the equilibrium prices of all RMBS tranches are approximately equal to

maximum prices, the return to tranching in Table 3 is higher with equilibrium prices. This is

because the equilibrium price of the non-tranched, pass-through securitization (the denominator

of the return-to-tranching), equal to the valuation by the median investor, is lower than its

maximum valuation (by the ρ2
min investor). The reason for this is that loss-given default rises

slightly with default rate d. Payoffs, which decline in both, thus have a concave relationship

24Griffin and Nickerson (2015) back out an average default correlation of 0.03 for Moody’s, and 0.042
for S&P. We choose ρ̂2min to yield a default correlation of mezzanine II tranches equal to 3.8 percent.

25See e.g. the investor statements reported in the Financial Crisis Inquiry Commission’s Report (Fi-
nancial Crisis Inquiry Commission, 2011), p. 193-4.
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with default rates, such that their expectation declines with the variance of defaults, or with

the correlation parameter ρ2
k, due to a Jensen’s inequality effect. An online appendix evaluates

the importance of this effect for the results.

Equilibrium tranche prices equal their maximum valuation for two reasons. First, ρ2
max

investors can afford to buy the two most junior tranches - which they value most highly -

because their small attachment range and low payoff probability make them cheap. Similarly,

the two mezzanine tranches, whose valuation is declining with ρ2 in the upper left panel of

Figure 5, are affordable to the ρ2
min investors. Second, the valuation of the remaining 2 senior

tranches, which are not affordable to any single investor since their attachment range is large

and expected loss negligible, is approximately the same across the three investors with the lowest

ρ2
k, who all view them as basically riskless. Thus, their price is, again, equal to their maximum

valuation. Moreover, none of the investors has an arbitrage opportunity at these prices, as they

are indifferent between their investments and consuming their endowment. In fact, this is a

general pattern which in this setting of structured assets dampens the equilibrium effect that

reduces asset prices under disagreement in other contexts: tranching makes the valuation of the

bulk of senior tranches insensitive to disagreement. Rather, disagreement about valuations is

concentrated in the junior tranches, which are cheap and can thus be bought by a small number

of specialized investors. This increases the equilibrium return to tranching, as the collateral

pool as a whole, or the pass-through securitization, is typically priced at less than its highest

valuation.

We do not model the mortgage market in this simple exercise, assuming for simplicity that

a single originator reaps all the surplus from a return to tranching of between 45 and 110 basis

points in equilibrium. An alternative, more complex environment where the surplus accrues

to mortgage borrowers, would predict a corresponding fall in mortgage rates from selling the

loan pool in tranches. We think that the magnitude of this fall is sizeable when compared to

the low real interest rates of the early 2000s and the expected loss rates on mortgage pools of

only 5 percent. As it turns out, the return from tranching pools of RMBS tranches into CDOs,
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Table 3: Return to tranching

Max Equ

Weak disagreement about ρ2 34 44

Strong disagreement about ρ2 84 111

The table presents the return to the originator of selling the mortgage pool in tranches rather than as a non-tranched
pass-through securitization, measured in basis points (100th of a percent) of the latter’s market price.

Table 4: Return to re-tranching

Junior MezzI MezzII

Weak disagreement about ρ̂2 496 207 44

Strong disagreement about ρ̂2 960 400 85

The table presents the return from selling a pool of junior / mezzanine I / mezzanine II RMBS tranches in the form of a
CDO, measured in basis points (100th of a percent) of the price of the non-structured pool.

however, is an order of magnitude larger. Unfortunately, it is prohibitively complex to compute

the equilibrium prices of tranches and collateral pools in the case of CDOs. The following

analysis therefore concentrates on returns to (re-)tranching RMBS tranches into CDOs based

on their maximum prices, noting that the previous results and intuition suggest these to be a

lower bound for the equilibrium estimates.

4.3.3 CDOs and the ‘returns to re-tranching”

Table 4 shows the returns to (re-)tranching RMBS tranches of three different levels of seniority

into CDOs when investors disagree about ρ̂2
k but agree on ρ2, the asset correlation within any

given RMBS (set equal to 10 percent). The returns for both weak (top row) and strong disagree-

ment (bottom row) are an order of magnitude higher than for RMBSs, explained by the greater

sensitivity of the CDOs’ cash flow distributions (in figure 4) and tranche valuations (in figure

5) to disagreement about ρ̂2
k. Particularly, to an originator, selling junior RMBS tranches as a

CDO yields a return of between 500 and 1000 basis points, as disagreement increases tranche

values strongly and the price of the non-structured RMBS tranches is low due to a high average

expected loss (somewhat below 50 percent, corresponding to an average RMBS payoff in the

middle of the junior tranche’s attachment range).
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By arbitrage, the re-tranching of RMBS tranches into CDOs increases the value also of the

original mortgage pools. The extra return this implies relative to that of selling the RMBS

tranches to investors without re-tranching in Table 3 is sizeable (with values between 15 and

40 basis points), but small relative to the large returns from packaging junior RMBS tranches

in CDOs in Table 4. This is because the value of RMBSs is dominated by the senior tranches

whose expected payoff is perceived to be, essentially, riskless due to the substantial recovery

value of 60 percent on average, and thus unaffected by disagreement.26

5 Extensions: risk aversion and options trade

5.1 Risk-averse investors

Like almost all studies of investor disagreement, including those where leverage amplifies payoff

risk, such as Geanakoplos (2010), Fostel and Geanakoplos (2012), or Simsek (2013), our bench-

mark results are derived under the assumption that investors maximize expected profits, and

are therefore risk-neutral. In this section we show how the main result, that leveraged asset

trade increases asset prices when investors disagree about risk, also holds in a version of the

environment with risk aversion.27 As we will see, however, with risk-averse preferences, the

quantitative effect of disagreement about payoff risk on the price of collateral assets is decreas-

ing in the asset supply as agents are more reluctant to leverage aggregate risks that comove

strongly with consumption, as opposed to idiosyncratic risks.

Consider the two-type environment of Section 3 but with preferences that have constant

26See Broer (2016) for details. An online appendix shows how the quantitative results are affected by
alternative assumptions about the average default probability and the specification of the recovery value.

27The analysis is related to Dow and Han (2016), who prove existence of equilibrium in a similar
environment with heterogeneity in endowments and give numerical examples for asset price overvaluation.
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relative risk aversion equal to γ28

U = u(c) +
1

R
u(c′), u(c) =

c(1−γ) − 1

1− γ
(15)

We continue to abstract from discounting for simplicity by setting R = 1, and normalize the

endowment of consumption goods in the first period to ni = 1, i = L,H. Moreover, for tractabil-

ity, we assume that type i = L,H expects payoffs to follow a uniform distribution on a support

[1− εi, 1 + εi], with εH > εL > 0.

Both agents solve a version of problem (8) adjusted for the risk-averse preferences (15),

and the additional investment opportunities (non-collateralizable assets and storage). A general

competitive equilibrium is then a set of prices {p1, p2, q(s)}, consumption plans cj and c′j , storage

dj and financial portfolios {a1
j , a

1
j , bj(s)} for both types j = L,H, such that all agents solve their

problem at given prices subject to their budget set, non-negativity constraints on storage, short-

sale constraints on assets, as well as collateral constraints on loans, and the markets for securities

and consumption goods clear.29 Note that the price and quantity of collateralized loans are,

again, a function of their face value s.

The introduction of risk aversion changes the analysis in two important ways: First, risk-

neutral agents concentrate all their investments in the highest yielding opportunity, whose equi-

librium price equals investor resources per unit of supply, or its expected value discounted at

the rate of time preference, whatever higher. With risk aversion, in contrast, and in the absence

of second period income, the ability to invest in alternative, particularly (lower-yield) riskless

assets, is important for collateralization incentives.30 We thus assume that agents can transfer

resources to period 1 through one of three ways: as before, they can issue an amount bj in loans

by providing collateral (as there is no commitment to promises) and buy the exogenous asset.

28We make this assumption partly for simplicity. A well-behaved utility function with a strictly positive
third derivative is sufficient for the analytical results below.

29See (Geanakoplos and Zame, 2014) for an equivalent definition of competitive equilbrium in a more
general economy with collateral constraints, as well as a proof of existence of equilibrium.

30Trivially, with CRRA utility, agents will never leverage their whole asset holdings using risky loans
when they have no other claims to future consumption.
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In addition, however, we add the possibility to invest dj units in a storage technology with gross

return of R, normalized to 1.

A second difference arises because, unlike with risk neutrality, where expected payoffs dis-

counted at the rate of time preference Es
R are an obvious benchmark value of the asset, with risk

aversion there is no such ’fundamental value’. To characterize how disagreement about payoff

risk affects asset prices with and without trade in risky collateralized loans, one can either study

the relative price of collateralizable and non-collateralizable assets in the equilibrium of an econ-

omy where both are traded (which we call the ’within-economy collateral premium’, studied,

for example, in Dow and Han (2016)), or across equilibria of economies with different collat-

eralization possibilities (the ’cross-economy collateral premium’, as in Allen and Gale (2000)’s

analysis of price bubbles due to limited liability). Below, we characterize the within-economy

premium analytically, and provide quantitative examples for the cross-economy premium. For

this we assume that agents are endowed with two kinds of assets 1 and 2 whose quantities satisfy

a1 + a2 = a. Both assets have identical payoffs but only asset 1 can be used as collateral for

loans (for example because payoffs from asset 2 are observable only to the owner). We denote

as aij type j’s holdings of asset i at the end of the first period, as aj = a1
j + a2

j j’s total asset

holdings, and as pi the equilibrium price of asset i.

Figure 6 illustrates how risk aversion changes the incentives to trade collateralized loans. As

a function of (uniformly distributed) asset payoff s ∈ {0.1, 1.9}, it depicts payoffs of collater-

alized loans (in the left panel) and leveraged assets (in the right panel) discounted using type

H’s ‘autarky pricing kernel’, equal to her stochastic discount factor when optimally choosing

storage but keeping her asset endowment a unchanged, for s = 1 and different values of a and

risk aversion γ.31 For low asset endowment and low risk aversion, the discounted payoffs ap-

proximately equal those under risk-neutrality. Collateralized loan payoffs are thus a concave

function of the underlying asset payoff s while leveraged asset payoffs follow a convex function.

31Given their identical endowments these ’autarky valuations’ are similar for both types (and only
differ because of small differences in precautionary storage), but their expectations differ because of
disagreement about payoff dispersion.
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At high values of risk aversion, and with large asset holdings a, however, the shape of the pricing

kernel, which follows a declining and (with CRRA preferences) convex relation with consump-

tion in the second period, affects more strongly the relationship of discounted payoffs with the

underlying payoff s. Apart from increasing precautionary savings (and thus reducing the level

of the discounted payoffs, which otherwise would all cross the point (1, 1) in the left panel), the

fact that low payoffs become more valuable relative to high payoffs has two effects: First, it

reduces the average discounted payoffs of leveraged assets (which pay nothing below s) relative

to those of collateralized loans. Second, discounted payoffs no longer inherit the convexity and

concavity properties from the risk-neutral case. The first effect dampens the impact of disagree-

ment on asset prices through leveraged asset trade when risk aversion is high and asset supply

large. The second effect makes it, essentially, impossible to derive general analytical results for

the environment with risk aversion. With uniform payoffs, we can, however, show that type

H agents always buy assets using leverage, and that the within-economy collateral premium is

strictly positive for exogenous and extreme levels of leverage.

5.1.1 Equilibrium leverage and the within-economy collateral premium

To derive analytical results, we assume that assets are endowed to outside agents who derive

utility only from first period consumption, as in Simsek (2013). This eliminates wealth effects of

price changes. We return to the standard assumption of asset endowments in the quantitative

analysis.

Proposition 5 - Leveraged asset trade in equilibrium

Consider an economy where asset 1 is traded and collateralized loans of face values 1− εL and

1 + εL are available. In any equilibrium, type H always buys a strictly positive amount of asset

1 and uses at least part of it as collateral for loans.

The proof of proposition 6, in the appendix, shows that there is no equilibrium without collat-

eralized loans as, in any such equilibrium, type H would perceive a profitable deviation from
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Figure 6: Discounted asset payoffs in autarky with risk aversion
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As a function of asset payoffs s ∈ [0.1, 1.9] along the bottom axis, the figure plots the discounted ‘autarky’ payoffs of

collateralized loans
u′(c′(s))
u′(c) min{s, s} and leveraged assets

u′(c′(s))
u′(c) max{s−s, 0} when agents choose their storage optimally

but keep their asset endowment a unchanged, for s = 1 and different values of relative risk aversion γ, and two levels of the
asset endowment a whose expected payoffs equal, respectively, 10 and 40 percent of average per-period consumption.

selling collateralized loans to type L that the latter either perceives as riskless (s = 1 − εL) or

payoff-equivalent to the asset itself (s = 1 + εL). The following proposition shows, however, that

even with equilibrium leverage there is no within-economy collateral premium unless type H

buys the whole supply of collateral assets using leverage.

Proposition 6 - Within-economy collateral premium I

Consider the economy where both assets are traded (a1 > 0, a2 > 0). There is no within-economy

collateral premium unless type H agents buy the whole supply of asset 1 using leverage.

Proof. Note that type L agents would never use leverage to buy asset 1. Thus, they buy asset

1 only at a price that does not exceed that of asset 2. Moreover, even when type H holds the

whole supply of asset 1 but does not use all of it as collateral, arbitrage between assets 1 and 2
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using type H’s equilibrium pricing kernel implies p1 ≤ p2.

Since it is difficult to characterize equilibria where s is optimally chosen as in the benchmark

case, the remainder of this section takes as given a single exogenously given level of leverage s.

Proposition 7 - Within-economy collateral premium II

Consider the economy where both assets are traded. The equilibrium price of asset 1 strictly

exceeds that of asset 2 if either of the following conditions holds

1. s = 1 + εL and the endowment of asset 1 does not exceed that of asset 2 (a1 ≤ a2).

2. s = 1− εL and asset endowments are small in the sense that bL > (1− εL)a1 and aH > a1.

Note that, since storage bL approaches 1
2 as a approaches 0, and since aL > 0 and aH > 0

whenever a > 0, there are numbers a > 0 and a1 > 0 that fulfill the condition in 2. The proof is

in an appendix and exploits the fact that, for a sufficiently small supply of collateralizable asset 1

and either of the two extreme levels of s, type L is happy to substitute her investments in either

storage or outright asset purchase with the entire collateralized loan supply at an unchanged

expected return. At the price that prevailed in the absence of leverage, H’s expected return

from the marginal unit of leveraged assets thus exceeds its costs, implying an increase in the

equilibrium asset price.

Note that all results in this section hold when we relax the assumption of uniform distribu-

tions, as long as the support of payoffs perceived by type H has upper and lower bounds that

are, respectively, strictly greater and lower than those of type L agents.

5.1.2 A quantitative analysis of the cross-economy collateral premium

The analytical results focused on extreme values of leverage equal to the bounds of type L’s

perceived payoff distribution and the resulting within-economy collateral premium. This is

because it is difficult to theoretically study intermediate leverage levels, or to characterize the

cross-economy collateral premium, equal to the relative asset price in identical economies with
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and without collateralized loan trade. Since it is similarly difficult to compute within-economy

collateral premia, requiring the solution to a four-asset general equilibrium portfolio problem,

with accuracy, the rest of the section looks at the cross-economy collateral premium in several

quantitative examples of risky collateralized lending when leverage equals the intermediate value

s = 1, the optimal face value with risk-neutrality under assumption A3. For this, we set

εH = 0.9 and look at two different values for εL such that the standard deviation of asset

payoffs s perceived by type L is, respectively, 20 percent (’weak disagreement’) and 40 percent

(‘strong disagreement’) lower than that of type H. To highlight the importance of the portfolio

share of risky assets, we set a such that expected asset payoffs approximately equal 2.5, 20

and 40 percent of average per-period consumption, which we call ‘low’, ‘medium’ and ‘high’

asset supply, respectively.32 For different values of risk aversion γ (along the bottom axis),

Figure 7: Cross-economy collateral premium and portfolios with risk aversion

For different values of risk aversion γ along the bottom axis the figure presents, in its left hand column, the cross-economy
collateral premium (calculated as the percentage difference of asset prices in an economy where the whole asset stock can be
used as collateral for loans and those in an economy without collateralization) and, in its right hand column, the leveraged
and non-leveraged assets held by type H as a percentage of the total asset supply.

32We focus on the share of average consumption as it is unaffected by equilibrium prices. The corre-
sponding values of a are 0.0125, 0.1, and 0.25 respectively. To compute the equilibria, we use discrete
uniform distributions with 7 support points.
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Figure 7 depicts in its left hand column the cross-economy collateral premium, calculated as

the percentage difference of asset prices in an economy where the whole asset stock can be

leveraged (a1 = a) and those in an economy without collateralization (a2 = a). With risk-

neutral agents, the premium is independent of the economy’s asset supply (as all cases we look

at fulfill assumptions A2 and A3), and at around 10 percent about twice as large under strong

disagreement (in the bottom left panel) compared to weak disagreement (in the top left panel).

As suggested by Figure 6, rising risk aversion γ reduces the attractiveness of leveraged assets,

and thus the collateral premium. And, as expected, for a large asset supply the premium declines

faster (to about a tenth of its risk-neutral value at γ = 8) than at low endowments (where the

premium at γ = 8 is still 90 percent of its risk-neutral value in the case of strong disagreement).

In fact, type H agents are increasingly less willing to hold a large stock of assets using leverage

at higher risk aversion. As the right-hand panels of Figure 7 show, when the incentives to

diversify their portfolio rise with γ, type H agents eventually invest in assets without leverage.

Their leveraged investments decline faster than non-leveraged investments rise, however. This

is because type L agents start buying the asset as its price drops with rising risk aversion.

Importantly, even when both agents buy a positive quantity of assets without leverage, the

cross-economy collateral premium remains positive. This is in contrast to the within-economy

collateral premium, which, according to proposition 6, drops to zero in this case. In fact, at

high values of γ, a small quantitiy of asset 2 would achieve the same price as asset 1. This

price, however, exceeds that in an economy without collateralization: using part of her asset

holdings as collateral for loans sold to type L agents makes type H’s consumption less sensitive

to downside payoff risk and thus increases her valuation even of non-leveraged assets.

5.2 Options trade

In the benchmark environment, the equilibrium price of assets is elevated because of their

collateral value: collateralized loans are the only means of exploiting perceived gains from trading

upside and downside risk. Collateralization can thus be viewed as a substitute for trade in simple
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(European) options, whenever these are not available, too costly or simply not used. This section

shows, however, that with disagreement about risk, collateralization continues to be used for

speculative purposes and collateral prices continue to include a premium even when options

are available and traded. The size of the premium, however, depends crucially on collateral

requirements for options.33

When there is no other collateral than the exogenous asset, put options, whose payouts

are high when assets pay little, cannot be collateralized. Call options, in contrast, pay in high

payoff states and can thus be collateralized by the asset or any other claim collateralized by

it. In equilibrium, type L agents thus optimally use their loan portfolio as collateral for issuing

call options, whose payouts they expect to be low. As is easy to show formally34, this raises

the expected return on collateralized loans, the equilibrium loan price q and ultimately the

price of the collateral asset above its value in the absence of options trade. That options trade

increases asset prices is, in fact, not surprising: when more complex contracts allow agents to

better exploit perceived gains from trade, collateral for financial trade becomes more valuable,

implying a higher equilibrium price of collateral assets.

The rest of this section concentrates on trade in options when there is an additional cash

technology to collateralize them. Typically, this widening of the collateral pool reduces the

price of other collateral assets through collateral arbitrage. In our environment, however, cash

is an inefficient form of collateral for call options relative to the asset itself: while, for any given

strike price, one unit of the asset always suffices to collateralize a call option, the cash collateral

requirement rises one-for-one with the maximum asset payoff. Proposition 8 shows how this

implies that, when cash is not too unequally distributed among investor types, the asset price

continues to include a premium, similar to the equilibrium without options trade.

33To see how trade in collateralized loans and options imply the same payoffs, note that issuing a put
option with strike price sp collateralized by sp units of riskless debt is equivalent to buying risky debt
with face value sp collateralized by the asset: both have payoffs equal to min{s, sp} in period 1. Similarly,
buying the asset using a collateralized loan of face value s as leverage has the same stochastic payoff as
buying a call option with strike price sc = s, or - due to to ’put-call-parity’ - as buying the asset plus a
put option with equal strike price and issuing riskless debt equal to s.

34Results for this case are contained in a previous draft that is available from the authors upon request.
There, we also provide an example where trade in call options doubles the equilibrium collateral premium.
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This section sets smin = 0 and R = 1 to ease notation. In addition to the exogenous

asset and collateralized loan of Section 3, agents can also trade simple (European) put and call

options, whose issuer receives a fee pc and pp in return for payments equal to max{s−sc, 0} and

max{sp−s, 0}, respectively, in period 1, where sc and sp are the strike prices of the options. The

equilibrium definition is the same as that in section 3, amended to include two additional assets

with associated collateral requirements. Suppose there is a cash asset, or storage technology,

which returns R = 1 units of consumption in period 1 for 1 unit of consumption invested

in period 0 and can be used as collateral for options trade. Importantly, this eliminates the

kind of cash-rich equilibria we focused on in the previous section, because the consumption

endowment now represents not just asset demand, but also collateral supply. Option prices are

thus a function of supply (through type L’s endowment) and demand (type H’s endowment).

Depending on their relative size, the perceived gains from trading them accrue to the issuer, the

buyer, or both, implying that the average expected portfolio return Ri, i = L,H of one or both

agents exceeds their discount factor R = 1. The exogenous asset supply continues to be used as

collateral either for call options or loans, which yields higher returns than buying assets outright.

Prices are determined by ’collateral arbitrage’, such that agents are indifferent between posting

cash or the asset as collateral.

We show how the asset price continues to include a premium, as the returns on the exogenous

asset Es
p are lower than those on options as long as both agents share the perceived gains

from trade (equivalent to RL, RH > R). Asset prices may or may not, however, exceed the

fundamental value Es
R . Intuitively, the cash required to collateralize options is a function of the

maximum payoffs only, equal to either sp (for put options, since we normalize the lower bound

smin = 0) or smax − sc (for call options). The value of the collateral asset, however, depends

on its whole payoff distribution, not just the extremes. The higher the probability of low asset

payoffs (which reduces the fundamental asset value) and the wider the range of payoffs (which

increases the required amount of cash collateral), the cheaper the exogenous asset becomes as a

form of collateral relative to cash. The proof of a positive asset price premium even with options

trade, in the appendix, is complicated by the fact that strike prices are endogenous and may
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differ between the four assets (cash-collateralized calls and puts, asset-collateralized loans and

calls). We therefore use a ’revealed portfolio preference’ argument: whenever cash-collateralized

call and put options are traded, their return must not be lower than that on asset-collateralized

calls or loans respectively, which - at the same strike prices - would have the same period 1

payoffs. This bounds the price of the asset from below.

Proposition 8 - Asset prices with option trade and cash collateral

When cash-collateralized put and call options are traded, and endowments are such that perceived

gains from trade are shared (in the sense that both agents expect positive returns RL, RH > R =

1), the asset price exceeds discounted values expected by either type: p > Es
Ri
, i = L,H.

The following proposition shows, by example, how asset prices may be above their fundamental

value Es
R even when cash-collateralized put and call options that reference its payoff distribution

are traded.

Proposition 9 - Asset prices may exceed their fundamental value

When cash-collateralized put and call options are traded, the asset price may exceed its funda-

mental level Es
R .

Proof of proposition 9. The proof is by example. Suppose S = {0, 1, 2} with fL = {5
8 ,

2
8 ,

1
8},

fH = {3
4 , 0,

1
4}, nL = 11

30 and nH = 19
30 . Take expected portfolio returns RL = 5

4 and RH = 15
14 ,

and an asset price p = 16
30 >

Es
R = 1

2 . To see how this is indeed an equilibrium, note that type L

and H perceive sp = sc = 1 and s = 1 as, respectively, optimal strike prices for options and an

optimal face value of collateralized loans, because return functions all have a kink at s = 1.35

Puts are then priced by type L agents such that

EL[min{1, s}]
1− pp

=
5

4
(16)

35Concentrating on put options and loans, since all assets issued are priced at the assumed portfolio re-
turns, we have price functions pp = 14

15EH [max{sp−s, 0}] and q = 4
5EL[min{s, s}]. This implies an issuer

return of EL[min{sp,s}]
sp− 14

15EL[min{sp,s}] =
1
4min{sp,1}+ 1

8 s
p

6
20 s

p for put options and EH [max{s−s}]
p− 4

5EL[min{s,s}] =
1
4 (2−s)

p− 4
5 (

1
4min{s,1}+ 1

8 s)

for loans. The former is flat below and declining above sp = 1. The latter is increasing below and
decreasing above s = 1.

42



implying pp = 7
10 , and similarly pc = q = 3

10 . Type H’s expected return from buying cash-

collateralized put and call options at these prices are RpH = 15
14 and RpH = 10

12 respectively, im-

plying that cash-collateralized call options are not actually traded. Leveraged asset investments

by type H agents have an expected payoff equal to EH [max{s−1,0}]
p−q which implies an arbitrage

asset price equal to 16
30 .36 At the assumed endowments (plus the return from selling put options

and their asset endowment equal to 1), type H agents can exactly afford to issue 1 unit of put

options and buy all 2 units of collateralized loans. Similarly, type H agents can afford to buy

all put options and all assets using leverage.

Note that the asset returns in the example crucially depend on relative endowments: it is

easy to see that when nL ≥ 3
5nH + 2

5 type H agents’ endowment is sufficiently small to lower

option and loan prices to type L’s reservation level, implying RL = 1, and RH = 2. In other

words type H agents harvest all perceived gains from trade. The reverse is true when type L’s

endowments are small enough, or nH ≥ 3nL, implying RH = 1, and RL = 2. In both cases, the

asset price equals its fundamental value: p = Es
R = Es.

6 Conclusion

Motivated by the strong, and in the case of GDP forecasts rising disagreement about the dis-

persion of outcomes in US surveys of investors and forecasters, this paper has looked at the role

of collateralized asset trade in economies where investors disagree about risk, rather than mean

payoffs as in the literature. A simple static model of investor disagreement showed how the

introduction of simple collateralized loans allows investors who perceive high payoff dispersion

to purchase upside risk by buying assets and using them to collateralize loans that their low-risk

counterparts value highly. Extensions of the benchmark analysis showed how similar results

hold with risk-averse investors and more sophisticated collateralized contracts. A quantitative

36At this asset price and type H’s valuation of a call option, type L expect a return from issuing
asset-collateralized call options equal to their portfolio return. They are thus indifferent between issuing
them or not. We look at an equilibrium where call options are not traded, other than implicitly through
leveraged asset trade.
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application to the market of US subprime RMBSs and CDOs showed how disagreement about

the volatility of default rates, or the importance of aggregate factors for mortgage defaults,

raises the price of junior RMBS tranches by between 40 and 110 basis points. For junior CDO

tranches, the rise is an order of magnitude larger.

The theory presented in this paper has additional empirical predictions that can be compared

to data even without information on the, typically unobserved, risk perceptions of investors.37

For example, our mechanism requires that investors can issue non-recourse collateralized loans.

It thus predicts an effect of heterogeneous risk perceptions on the price of private-label residen-

tial mortgage-backed securities (but not of seemingly government-guaranteed agency securitiza-

tions), or on house prices in jurisdictions with non-recourse residential mortgages (but not, or

less so, in those with recourse mortgages such as some US states and most European countries).

Moreover, we would expect larger effects in markets where risk is important (in the sense of

substantial default probabilities), and where disagreement about risk is likely to be stronger

(such as for assets or contracts with a shorter history). Finally, we would expect the effect to

increase over time both because disagreement about risk has seemingly increased (at least in

the given sample of forecasters interviewed by the SPF), and because issuers of collateralized

assets were increasingly able to draw on a more international and diverse investor pool. We

leave formal empirical tests of these predictions to future research.

We also hope that our analysis opens some avenues for further theoretical research. Thus,

a dynamic analysis, where risk arises both from future payoffs and price movements, seems

particularly interesting,38 as do concrete applications of the theory to other financial markets.

Finally, an investigation into the sources of disagreement, or the determinants of risk perceptions,

would be valuable.

37A case of observed disagreement is that about ratings, as documented by Norden and Roscovan
(2014) in a large sample of US and European firms. It would be interesting to study empirically how
credit rating disagreement affects asset prices.

38The working paper version of this paper (Broer and Kero, 2014) presents a simple example of a
dynamic equilibrium in a scenario with learning that tries to capture the main features of the Great
Moderation in the US. As a subset of investors adjusts their posterior estimate of volatility more quickly
to the Great Moderation than the rest, increasing divergence of posteriors raises asset prices between 5
and 20 percent.
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Our results imply that investors on average make losses relative to their required rate of

return. This suggests that there might be welfare-improving policy interventions that would

be interesting to study.39 Moreover, the fact that disagreement about payoff dispersion makes

investments more risky and raises leverage in the economy should be of interest for policy makers

and regulators.
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7 Appendix: Omitted proofs

Proof of Proposition 3.

Equation (10) is simply the optimality condition for leverage choice. To understand equations

(11) and (12), note that for any p < Es
R all agents would like to buy risky assets, which cannot

be an equilibrium. Equivalently, for any p > p
.
= Es+EL(min(s,s))−EH(min{s,s})

R both type L and

type H agents would like to sell their risky assets, again contradicting equilibrium. Agent 1

optimality implies that they invest all resources in leveraged assets when Es
R ≤ p < p, but are

indifferent between buying leveraged assets and consuming at p = p. Thus, for s(p) the value

of s that solves (10) when p = p, if nmax
1 (s(p)) ≥ p, type H’s endowment is large enough to

buy type L’s assets at the maximum price p that ensures her participation. There is thus an

equilibrium price p at which type H agents are happy to consume in period 0 any resources that

remain after purchasing all of type L’s assets.

If for some price p : Es
R ≤ p < p nmax

1 (s(p)) < p, type H agents cannot buy all assets at that

price but expect to make strictly positive profits RaH > R, so invest all their resources to buy

type L’s assets, implying market clearing condition (12).

Finally, to prove uniqueness, since (12) is trivially strictly upward-sloping, it suffices to show

that (10) is downward-sloping. This follows by differentiating (10) totally

dp

ds
= −

dC
ds
dC
dp

(17)

Weak concavity of RaH(s) at the optimum choice of s implies that the numerator is weakly

negative. Since C
dp < 0,∀p, s the result follows.

Proof of Corollary 2.
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Note that for any symmetric distribution Es = s? = 1
2(smax + smin). So

nH =
Es − EL(min{s, s?})− EH(min{s, s?})

R

≤ Es − 2s?(1− FL(s?))

R

=
Es − 2Es

1
2

R
= 0, (18)

where the last line follows from s? = Es and 1− FL(s?) = 1− FH(s?) = 1
2 due to symmetry.

Proof of Lemma 1.

Under Assumption A3 we have

nmax
1 (s?) ≥ Es − EL(min{s, s?})− EH(min{s, s?}) + 2E0[min{s, s?}]

R

≥ Es + E0[min{s, s}]− EH(min{s, s?})
R

= p (19)

which implies that type H agents have resources larger than the value of assets evaluated at any

p ≤ p. So equilibrium requires type H agents to be indifferent between consuming and investing

in leveraged assets, implying an equilibrium price equal to p.

Proof of proposition 6.

In the absence of leverage, both agents are indifferent between assets 1 and 2. Type H always

purchases a strictly positive total amount of assets ai > 0 that is strictly smaller than that

purchased by type L.40 When collateralized loans are available, there are deviations from this

portfolio that type H perceives as strictly profitable. First, if type L stores a positive amount,

type H can issue at least a small positive quantity of collateralized loans with unit face value

s = 1 − εL. Type L perceives this loan as riskless and is happy to substitute it at the unit

price 1 − εL for (part of) her storage. Storing the proceeds in a separate account, type H’s

payoffs strictly dominate those of the original portfolio, as she earns an additional amount

40To see this, assume that either type holds 0 assets. Her portfolio is thus riskless, and she values the
asset at the fundamental value Es, which exceeds any price the second type will be happy to pay when
holding the whole asset supply, independent of her amount of storage. A similar contradiction can be
derived assuming aL <= aH .
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(1− εL)− siH > 0 whenever payoffs are below 1− εL.

If type L does not store, type H can still offer to buy some of her asset holdings in exchange of

a collateralized loan with face value 1 + εL. Type L is exactly indifferent between the asset and

that loan, which she perceives to have identical payoffs since, for her, min{s, 1 + εL} = s. Type

H, however, expects to receive a net payment of s− (1 + εL) for high realizations of s > 1− εL.

There is thus no equilibrium without leverage.

Proof of proposition 7.

Ad 1. We show how, in any equilibrium with leverage at s = 1 + εL, type L agents hold

collateralized loans and non-collateralized assets that they regard as payoff equivalent, implying

q = p2. Type H’s perceived net profits from leveraged asset purchase then imply p1 > p2.

In the absence of leverage, both assets trade at the same price pnc and type L agents, who hold

a larger quantity of assets than type H, can buy the whole supply of asset 1 since a0 > 1
2a ≥ a

1.

Suppose instead type H buys the entire supply of asset 1 financed by collateralized loans of

face value 1 + εL. Type L agents see those loans as payoff-equivalent to both assets. Whenever

min{q, p1, p2} does not exceed pnc, their combined demand of assets and loans thus strictly

exceeds the total quantity of collateralized loans (equal to a1). Moreover, since demand for

non-collateralized assets by type H agents is strictly reduced by their leveraged asset purchases

(whose net payoff is perfectly correlated with non-collateralized asset payoffs for s > 1 − εL),

we can rule out a price of asset 2 above pnc. Market clearing together with type L’s arbitrage

condition for assets and loans thus requires p2 ≥ q and p1 ≥ q with at least one equality. Type

H agents’ optimality condition and market clearing for asset 1 imply

p1 = EH [
U ′(c′H)max{s− (1 + εL)}

U ′(cH)
] + q > q (20)

implying p2 = q and p1 > p2.

Ad 2. When aH > a1 type H agents can buy the entire stock of asset 1 and collateralize it

using loans issued at s = 1−εL to type L agents. The price of this loan is simply q = 1−εL from

arbitrage with type L’s remaining storage investment, which is positive since bL > (1 − εL)a1.
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Type H agents’ optimality condition and market clearing thus imply

p1 = EH [
U ′(c′H)max{s− (1 + εL)}

U ′(cH)
] + 1− ε (21)

= EH [
U ′(c′H)

U ′(cH)
s] + EH [

U ′(c′H)

U ′(cH)
max{(1 + εL)− s, 0}]] > p2 (22)

where the last inequality follows because the payoff of a marginal unit of asset 1 perceived by

type H dominates that of asset 2 for every state i = 1, ..., N (and strictly so for states where

s < 1− εL). Since type H’s pricing kernel is strictly positive, this implies a higher equilibrium

price of asset 1.

Proof of proposition 8.

Suppose cash-collateralized put options are traded. A put option with strike price sp collateral-

ized by sp units of cash gives a type L issuer a period 1 payoff equal to min{s, sp} and requires a

net injection of cash collateral equal to sp−pp > 0 . Type H can thus always sell type L at price

q = sp−pp a collateralized loan of face value sp that yields the same period 1 payoff min{s, sp}.

The resulting expected return must not be larger than the portfolio return expected from type

H’s actual investments (which include the put option by assumption): RH ≥ EH [max{s,sp}]
p−q . This

puts a lower bound on the asset price

p ≥ EH [max{s− sp, 0}]
RH

+ sp − pp

=
EH [max{s− sp, 0}]

RH
+ sp − EH [max{sp − s, 0}]

RH

=
Es
RH

+
RH − 1

RH
sp (23)

where the second line follows since type H agents expect a return from put options equal to their

portfolio return RH = EH [max{sp−s,0}]
pp and the third from ’put call parity’ at the common strike

price sp. The asset price thus strictly exceeds type H’s ’fundamental valuation’ Es
RH

whenever

RH > 1.

By a similar reasoning, when cash-collateralized call options are traded at a strike price
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sc, the return from issuing them using smax − sc units of cash as collateral must equal type

L’s expected portfolio return: RL = EL[max{smax−s,smax−sc}]
smax−sc−pc . Asset prices must be such that

the type L issuers do not strictly prefer to issue asset-collateralized calls whose return equals

EL[min{s,sc}]
p−pc . This again bounds the asset price

p ≥ EL[min{s, sc}]
RL

+ pc

=
EL[min{s, sc}]

RL
+
EL[max{smax − s, smax − sc}]

RL
+ smax − sc

=
Es
RL

+
RL − 1

RL
(smax − sc) (24)

where the third line follows since EL[min{s, sc} + EL[max{smax − s, smax − sc} = Es. Again,

p > Es
RL

whenever RL > 1.

8 For online publication only: Robustness of the re-

sults in Section 4

This section shows how the effect of disagreement on the price of the structured collateral cash

flow increases with the default probability π, and when recovery values Vrec depend negatively

on default rates, as in the benchmark analysis, as opposed to a constant Vrec.
41 The fact that

high default rates and default-rate-sensitive recovery values are characteristics of US subprime

mortgage markets suggests that investor disagreement about default correlation may have been

of particular importance there.

Alternative assumptions about the default probability Tables 5 and 6 show the

returns from structuring the mortgage pool at values of the default probability π higher and

lower than the benchmark of 12.5 percent.42 Note that asset correlations between 0 and 1

41A previous version of this paper also shows how the effect is higher with a larger number of assets in
the pool, reducing stochastic ‘noise’ in default rates, and thus increasing the role of the default parameter
ρ in determining default distributions.

42The effect of alternative assumptions about the recovery value on the payoff distribution, and thus
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Table 5: Return to structuring the mortgage pool for different values of π
π = 7.5% π = 20%

Weak disagreement about ρ2 21 61

Strong disagreemen about ρ2 57 161

The table presents the return to the originator of selling the mortgage pool in tranches rather than as a non-tranched
pass-through securitization, measured in basis points (100th of a percent) of the latter’s market price, for different values
of the default probability π.

Table 6: Return to re-tranching for different values of π
π = 7.5% π = 20%

Weak (weak) disagreement about ρ2 (ρ̂2) 28 91

Weak (strong) disagreement about ρ2 (ρ̂2) 37 123

Strong (weak) disagreement about ρ2 (ρ̂2) 61 182

Strong (strong) disagreement about ρ2 (ρ̂2) 66 207

The table presents the return to the originator of selling the mortgage pool in tranches rather than as a non-tranched
pass-through securitization, measured in basis points (100th of a percent) of the latter’s market price, for different values
of the default probability π.

map into default variances between 0 and π(1 − π). At default probabilities below 50 percent,

any given disagreement about ρ thus implies a larger disagreement about the distribution of

default rates as π increases. For example, when the probability of default equals 20 percent, the

maximum return to tranching is between 35 and 75 basis points higher than in the benchmark

case. Similarly, the maximum return when also selling RMBS tranches to investors who disagree

about ρ̂2
k, or the diversification gain of pooling different RMBS tranches, rises to about 210 basis

points in this case, as can be seen in Table 6.

Constant recovery value Vrec

The benchmark quantitative results of this paper were derived under the assumption that

recovery values of mortgages are negatively affected by realized default rates in order to account

for longer time-until-foreclosure and lower resale values when default rates are high. Since losses

on individual mortgages are then large (small) when many (few) loans default, this increases the

payoff variance from the mortgage portfolio for any given ρ > 0, and thus amplifies the effect of

disagreement about ρ. Indeed Tables 7 and 8 show that returns from structuring the mortgage

on the prices of CDO and RMBS tranches, is very similar to that of alternative default probabilities, and
thus omitted here.
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Table 7: Return to structuring the mortgage pool with constant recovery value Vrec
Max Equ

Weak disagreement about ρ2 30 30

Strong disagreement about ρ2 71 71

The table presents the return to the originator of selling the mortgage pool in tranches rather than as a non-tranched
pass-through securitization, measured in basis points (100th of a percent) of the latter’s market price, when the recovery
value Vrec is constant at 60 percent.

Table 8: Return to re-tranching with constant recovery value Vrec
Weak disagreement Strong disagreement

about ρ2 about ρ2

Weak disagreement about ρ̂2 45 83

Strong disagreement about ρ̂2 60 95

The table presents the partial equilibrium return to the originator of selling the mortgage pool in tranches rather than as a
non-tranched pass-through securitization, measured in basis points (100th of a percent) of the latter’s market price, when
the recovery value Vrec is constant at 60 percent.

pool are between 5 and 15 basis points lower than those in Table 3 when the recovery value Vrec

is constant at 60 percent. Interestingly, both returns in Table 7 are now equal. To understand

this, remember that the higher equilibrium return in the benchmark results was entirely due to a

lower equilibrium price of the pass-through securitization. This was because, when the recovery

value declines with default rate d, payoffs fall faster as d rises, implying a concave relationship

between payoffs and default rates. Expected payoffs thus decline with the variance of defaults,

or with the correlation parameter ρ2, due to a Jensen’s inequality effect. When the recovery

value is constant, in contrast, this effect of ρ on the price of the pass-through securitization is

absent. So investors agree about its expected value and there is no difference between maximum

valuation and equilibrium price.
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