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Examples

• Example 1: Betting on an African dice

• Example 2: Betting on your post-PhD salary

• Example 3: A simple Macroeconomic model of Optimal

Growth

maxct ,kt+1E0

∞∑
t=0

βtU(ct) s.t. kt+1 = ztF (kt)− ct



Aim of the course

• Provide the necessary background for the compulsory courses.

• Enable students to master more advanced texts in probability

and measure theory.

• More particulary, the course wants to

• provide tools to formally describe and analyse random

experiments using axiomatic probability theory.

• introduce the concepts of discrete and continuous random

variables and their distributions.

• provide an overview of the main univariate and multivariate

probability distribution functions.

• show students how probability theory is a special case of the

theory of measures.

• provide enough possibilities for practice.



Probability Theory - Statistics - Econometrics

• Probability Theory analyses characteristics of probability

mechanisms on the basis of a limited number of definitions

and axioms.

• On the basis of data on trials and some maintained

assumptions about a probability mechanism Statistics

”estimates” its parameters, or assesses ”hypotheses” about

them.

• Econometrics applies statistics to assess the likelihood of

economic models and theories.



Outline

1. Probability Spaces and axiomatic probability theory

2. Conditional probability and combinatorics

3. Univariate random Variables

4. Integral theory, mathematical expectations, and moments of

RVs

5. Some common univariate distributions

6. Multivariate random variables
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Section I Probability spaces and axiomatic probability

theory

1.1 Random Experiment, Events, and Sigma-Algebras



Working definition of Probability

In a random situation, probability aims to attach to possible

statements about the future a number that describes their

likelihood to be true in a consistent manner.



Random Experiment Ξ

• A random experiment Ξ is a situation with different possible

outcomes (follow-on situations), such that

1. There is always exactly one outcome.

2. All possible outcomes are known a priori.

3. In a particular trial, the outcome is not known a priori.

4. The situation is repeatable.

• A particular realisation of a random experiment, yielding a

particular outcome, is called a trial.

• Example 1: Repeated coin toss

• Example 2: Rainfall in Florence in August



Sample Space S of a random experiment

The set of all possible outcomes of a random experiment Ξ is

called the ”Sample Space” S.

Elements of S are called outcomes or ”elementary events”.

• Example 1: Repeated coin toss:

S = {{H,H}, {H,T}, {T ,H}, {T ,T}}.

• Example 2: Rainfall in Florence in August: S = R+.



Event

An event is ”any proposition associated with Ξ which may occur or

not at each trial” (Spanos). Since every proposition describes a

subset of S, we get more formally:

Definition: Any collection of outcomes, or subset of the sample

space S, is an event, including sure (S) and impossible event (∅).
An event ”occurs” if one of the outcomes it comprises occurs.

• Example 1: At least one head in 2 coin tosses.

• Example 2: Rainfall in Florence in August of more than 20

liters (per m2).



Events and ”derived” events

For two events A1 and A2, the following are also events:

• ”not A1”, which is the complementary set of A1 relative to S,

or Ac
1.

• ”A1 and/or A2”, which is the set equal to the union A1 ∪ A2.

• ”A1 and A2”, which is the set equal to the intersection

A1 ∩ A2 = (Ac
1 ∪ Ac

2)
c .

• ”A1 but not A2”, which is the set A1\A2 = (Ac
1 ∪ A2)

c .

(Note: We have reduced 4 set operations to 2.)



Consistent sets of events Ω

This implies that, for every event Ai in Ω

1. Ac
i = S \ Ai must be in Ω.

2. ”A1 ∪ A2 ∪ ...” must be in Ω for a sequence of events

{Ai} : Ai ∈ Ω,∀i .

3. From 1 and 2, the event ”A1 ∪ Ac
1 = S” is the ”sure event”

equal to the set of all possible outcomes, so S ∈ Ω.

4. From 1 and 3, the ”impossible event” Sc = ∅ ∈ Ω.



Sigma-algebra = of S

Definition: A family = of subsets of any set S is called a

”Sigma-algebra” of S, if

1. For every A ∈ =, Ac = {s ∈ S : s 6∈ A} ∈ =. (= is closed

under complementation.)

2. For every sequence of Ai ∈ =, i = 1,2,...,
⋃∞

i=1 Ai ∈ =. (= is

closed under countable union.)

This implies:

3. S ∈ = (since A ∪ Ac ∪ ∅ ∪ ∅ ∪ ... = S ∈ =)

4. ∅ ∈ = (since Sc = ∅ ∈ =)

5. (
⋃∞

i=1 Ai )
c =

⋂∞
i=1 Ac

i ∈ =



Sigma-algebra = of S

• The pair (S,=) is called a ”measurable space”.

• A consistent set of events Ω is a ”Sigma-algebra” of a sample

space S.



Power set P(S)

For a set S with a finite, or countably infinite, number of elements,

we can use as Sigma-Algebra the ”power set” of S, written P(S).

Definition: The set of all subsets of S is called the power set of S.

• Example 1: Toss coin once, i.e. S = {H,T}
1. One Sigma-algebra is the power set P = {∅,S , {H}, {T}}
2. But Ω1 = {∅,S} is also a Sigma-algebra for S, called the

”trivial Sigma-algebra”.

• Example 2: Toss coin twice, i.e.

S = {{H,H}, {H,T}, {T ,H}, {T ,T}}
P = {∅,S , {(H,T )}, {(H,H)}, {(T ,T )}, {(T ,H)},
{(H,T ), (H,H)}, {(T ,T ), (H,H)}, {(T ,H), (H,H)}, {(H,T ), (T ,H)},
{(T ,T ), (T ,H)}, {(H,T ), (T ,T )},
{(H,T ), (T ,H), (T ,T )}, {(H,T ), (T ,H), (H,H)}, {(H,H), (T ,T ), (T ,H)},
{(H,H), (T ,T ), (TH,T )}}



Sigma algebra generated by family of subsets C ⊆ P(S)

For C a collection of subsets of S, the smallest Sigma-algebra of S

containing C (more accurately the intersection of all Sigma

algebras containing C, =(C )
.
=

⋂
=⊇C =), is called ”Sigma-algebra

generated by C”.

• Example 1: Consider S = {(H,H), (H,T ), (T ,H), (T ,T )},
the repeated coin toss. The Sigma-Algebra generated by

C = {{(HH), (TT )}} is

=(C ) = { ∅,S , {(H,T ), (T ,H)}, {(H,H), (T ,T )} }



Borel algebra

For S = Rn the n dimensional Euclidian Space, the Borel Algebra

Bn is defined as the Sigma-algebra generated by the open sets in

Rn, or smallest Sigma-algebra containing all open balls in Rn.

Moreover, any B ∈ Bn is a ”Borel set”.



Borel algebra

Proposition 1.1: B, the Borel Algebra for the one-dimensional

Euclidian space contains

• all open intervals (−∞, b),(a,∞),(a, b),(−∞,∞) (by

definition of B)

• all closed and half-closed intervals (−∞, b],[a,∞),[a, b], etc.

(by complementation and intersection of open sets)

• R (by countably infinite union of open sets)

• ∅ (by complementation of R)



Borel algebra

Proposition 1.2: B(R) can be generated by any of the families Ci

of subsets of R defined by the following intervals, where

a, b ∈ R, a < b:

1. (a, b), a < b

2. (−∞, a)

3. (a,∞)

4. [a, b], a ≤ b

5. (−∞, a]

6. [a,∞)

7. (a, b], a < b

8. [a, b), a < b

9. any closed subset of R



”It is a deep and difficult result of measure theory that the Borel

field of the real line is in fact different from the power set of the

real line.” (Gray and Davisson 2004)



Roadmap

• So far,we

• defined events as subsets of a sample space S

• defined consistent sets of events as Sigma-algebras Ω of S

(families of subsets that are closed under complementation and

countable union)

• showed that often we can use the power set of S as

Sigma-algebra

• but defined a smaller Sigma-algebra for the real line, the

Borel-Algebra B(R)

• Now:

• need to find a definition for ”Probabiliy of Event A”

• show how this is a special case of a ”measure” on the

Sigma-algebra of a sample space



Section I Probability spaces and axiomatic probability

theory

I.2 Probability functions as measures



Working definition of Probability

In a random situation, probability aims to attach to possible

statements about the future a number that describes their

likelihood to be true in a consistent manner.



Working definition of Probability

Moreover, probability should at least have the following features

1. It is defined for all elements in a consistent set of events/ in a

Sigma-algebra of a sample space S.

2. The probability of every event is greater or equal to 0 and less

or equal to 1.

3. For any two events A and B that do not share any outcomes

(rainfall tomorrow vs. a dry day), we want the probability of

either of the two occuring to be the sum of their individual

probabilities.

4. The probability that anything occurs, or the probability of the

sample space S is 1 (i.e. there is always some outcome).



Axiomatic Definition of Probability

”Probability of an event A” is a set function P(·) : Ω −→ [0, 1]

s.t.

• P(A) ≥ 0, ∀A ∈ Ω

• P(S) = 1

• P(
⋃∞

i=1 Ai ) =
∑∞

i=1 P(Ai ) for all sequences of disjoint events

{Ai}, i.e. Ai ∩ Aj = ∅,∀i 6= j

Note:

By the definition of the probability set function we can write

the probability of any event as the sum of the probabilities of

its elementary events, as these are by definition disjoint.



Measure µ on =

Definition: For a given measurable space (S ,=), a measure µ(·) is

a function µ : = −→ R+ ∪∞, s.t. if {An}∞n=1 is a countable,

disjoint sequence of subsets in =, then µ(
⋃∞

n=1 An) =
∑∞

n=1 µ(An)

(”countable additivity” or ”σ additivity”).

• The Triple (S ,=, µ) is called a ”measure space”.

• If µ(A) is finite for all A ∈ =, then µ is called a ”finite

measure”.

• If µ(S) = 1, then µ(·) is called a ”probability measure”, and

(S ,=, µ) is called a ”probability space”.



Examples

• Example 1: ”Number of students” on (EUI students, P())

• Example 2: ”Weight” on (Stones on the beach, P()).



Another example: ”Length” L defined on B(R) as

• L(A) = a − b for all open and closed intervals in R, i.e.

A = (a, b), [a, b], etc., with a ≥ b

• L(A) = ∞ for A = (∞, a), [a,∞), etc.

• L(∅) = 0

• L(
⋃N

i=1(ai , bi )) =
∑N

i=1(bi − ai ), for all disjoint intervals

(ai , bi )

is a measure on B(R).

Similarly, area, volume, etc. are measures on higher

dimensional Borel sets.



Proposition: Properties of finite measures

1. µ(∅) = 0 (by noting that the union of empty sets is empty, i.e.

∅ ∪ ∅ ∪ ... = ∅, so µ(∅ ∪ ∅ ∪ ...) =
∑∞

i=1 µ(∅) = µ(∅), which

only holds if µ(∅) = 0)

2. µ(A) ≥ 0, ∀A ∈ = (by the definiton of the range of µ).

3. µ(A1 ∪ A2 ∪ .... ∪ An) =
∑n

i=1 µ(Ai ) for any finite sequence of

disjoint subsets {Ai} of = (by setting An+1,An+2, ... = ∅)

4. µ(A) ≤ µ(B) if A ⊆ B and A,B ∈ = (by noting that

µ(B) = µ(A ∪ B \ A) = µ(A) + µ(B \ A) and µ(B \ A) ≥ 0)



Measures on countable measure spaces

For a countable set S = {s1, s2, ..., sn} (i.e. a set with a finite or

countably infinite number of elements), we can define a finite

measure on its power set P(S) using any sequence of non-negative

numbers {pi}n
i=1 with

∑
i pi finite, as

µ(A) =
∑

i∈IA
pi , for A ∈ P(S) and IA = {i : si ∈ A}.



Properties of probability functions

...follow immediately from those of finite measures:

1. P(∅) = 0

2. P(A) ≤ 1

3. P(Ac) = 1− P(A)

4. P(B ∩ Ac) = P(B)− P(B ∩ A)

5. For A1 j A2, A1,A2 ∈ Ω, P(A1) ≤ P(A2)

6. P(A1 ∪ A2) = P(A1) + P(A2)− P(A1 ∩ A2)

7. If {Ai}N
i=1 is a monotone sequence of events in Ω, then

P(lim({Ai})) = lim(P(Ai )).



Roadmap

So far,we looked at the axiomatic definitions of ...

• the sample space of a RE as the set of all outcomes S

• events Ai as subsets of S, and showed how we can derive

events ”not A”, ”A1orA2”, etc. by 2 set operations

• consistent sets of events as Sigma-algebras Ω of S

• the Borel-algebra as the Sigma-Algebra of R ”generated by”

the open sets, or equivalently the open intervals (a, b),

half-closed intervals (−∞, a], etc.

• probability as a set function P() : Ω −→ [0, 1], with 3

properties: P ≥ 0,P(S) = 1,P(
⋃

i Ai ) =
∑

i Ai for disjoint

{Ai}
• showed that P is just a special case of a σ-additive mapping

from a Sigma-algebra to R+ ∪∞, called ”measure”.

• Defined (S ,Ω,P(·) as a ”Probability Space”



Roadmap

Today we will look at:

• Conditional probability: What is the probability of ”2 Heads”,

once one head has been observed?

• Combinatorics: if all outcomes are equally likely, P(A)=no. of

outcomes in A/no. of all outcomes. How can we count

outcomes in A, or S?

• Random Variables:

• Can we define probabilities of numbers attached to outcomes

by some function X?

• What functions X : S −→ R preserve the probability and event

structure?

• Can we summarise the probabilities of X conveniently?



Section II Conditional Probability, Independence and

Combinatorics

II.1 Conditional Probability



Example

You ring the bell of a house where a couple lives with their two

children.

1. What is the probability that a boy opens the door?

2. The door opens, and a boy says hello to you. What is the

probability that the other child is also a boy?



Definition of Conditional Probability

If for a probability space (S ,=,P()) A,B ∈ = and P(B) ≥ 0, the

”conditional probability of event A, given event B”, is defined as

P(A|B) = P(A ∩ B)/P(B).

This implies the ”Law of Multiplication”

P(A ∩ B) = P(A|B) · P(B) = P(B|A) · P(A).



Proposition 2.1

P(·|B) is a probability set function where we replace S with B, and

= with =B , the Sigma-algebra generated by {Ai ∩ B : Ai ∈ =}.
That is:

1. P(A|B) ≥ 0 for any A ∈ =

2. P(B|B) = 1

3. P(
⋃

i Ai |B) =
∑

i P(Ai |B) for any sequence of disjoint events

Ai ∈ =



Proposition 2.1: Proof

For all A ∈ =

1. P(A ∩ B),P(B) ≥ 0, so P(A ∩ B)/P(B) ≥ 0.

2. P(B ∩ B) = P(B), so P(B ∩ B)/P(B) = 1.

3. For any sequence of disjoint events A1,A2, ..., (A1 ∩ B),

(A2 ∩ B),... are also disjoint events. So

P(A1 ∩ B ∪ A2 ∩ B) = P( (A1 ∩ B) ) + P( (A2 ∩ B) ) from

the definition of probability. The rest follows immediately.



Law of total probability

For {Ci}N
i=1 a partition of the sample space, i.e.

Ci ∩ Cj = ∅,∀ j 6= i and
⋃N

i=1 Ci = S , the probability of any event

C is given by

P(C ) =
∑N

i=1 P(C |Ci ) · P(Ci ).

Note: This implies

1. If C has a partition {Ci}, i = 1, ..., k (for example k

elementary events) with probabilities P(Ci ),

P(C ) =
∑K

i=1 1 · P(Ci ).

2. If Ci s are ”equi-likely” elementary events with probability

p=1/N, P(C ) =
∑K

i=1 1 · p = K/N.



Bayes’ Rule

For any set B and any partition A1,A2, ... of the sample space S,

P(Ai |B) = P(B|Ai )P(Ai )P∞
j=1 P(B|Aj )·P(Aj )

.



Example (Champagne 2003)

An urn contains 10 white balls and 5 black balls. We draw two

balls from the urn at random, without replacement. Given the

second ball is white, what is the probability that the first one was

also white?



Solution

Define events

1. W1=”First ball is white”

2. B1=”First ball is black”

3. W2=”Second ball is white”

and use Bayes’ law noting that W1 and B1 partition the sample

space. Thus

P(W1|W2) =
P(W2|W1)P(W1)

P(W2|W1)P(W1) + P(W2|B1)P(B1)
=

9/14 ∗ 2/3

9/14 ∗ 2/3 + 10/14 ∗ 1/3
= 9/14.



Section II Conditional Probability, Independence and

Combinatorics theory

II.2 Independence



Definition of independence

Two events A and B are ”statistically independent”, if

P(A ∩ B) = P(A)P(B), implying P(A|B) = P(A).

A collection of events A1, ...,An is ”mutually independent” when

for any of its subsets P(
⋂

i∈IA
Ai ) =

∏
i∈IA

P(Ai ) for

IA ⊆ {1, ..., n}.

• Example: The probability to get (H) in second toss is 0.5, no

matter the outcome of the first toss.



Section II Conditional Probability, Independence and

Combinatorics theory

II.2 Independence



Independence

If A and B are two independent events, then so are A and Bc , Ac

and B, Ac and Bc .



Section II Conditional Probability, Independence and

Combinatorics theory

II.3 Combinatorics



Probability of events consisting of K out of N equilikely

elementary events

P(C ) = Number of elementary outcomes where C occurs
Number of all elementary outcomes N = K

N .

So need rules to determine K and N.



Example

What is the probability of 2 aces when drawing twice from a deck

of 52 cards?

1. N = No. of possible first cards drawn×No. of possible second cards
No. of undistinguishable pairs =

52×51
2 = 2652

2. K = No. of distinguishable pairs of aces
=

4×3
2 = 6

3. P = 6/1326 < 0.5%



Counting rules

More generally, when counting the number of selections from a set

(draws from the balls in an urn), we need to make 2 distinctions:

1. ordered (i.e. it matters at which draw we get a particular ball)

vs. unordered

2. with vs. without replacement



Counting rules

When choosing r objects from a set A of n objects, we get the

following numbers of selections

• Ordered, with replacement: nr

• Ordered, without replacement (also called ”r-element

permutation of A”): P(n,r)=n!/(n − r)!

• Unordered, without replacement (also called ”r-element

combination of A”): C(n,r)=n!/(r ! ∗ (n − r)!) = ”noverr”

• Unordered, with replacement: (n + r − 1)!/(r ! ∗ (n − 1)!)



Exercises

1. What is the probability of winning the first prize of a lottery

of 6 from 49 numbers, i.e. getting all 6 numbers right, where

the order of the draws does not matter?

2. What is the probability of winning the second prize of a

lottery of 6 from 49 numbers, i.e. of getting all but 1 number

correct?



Roadmap

• So far,we defined the ingredients of (S ,Ω,P(·), a ”Probability

Space”

• But: Often we are more interested in numbers attached to

outcomes (e.g. salary). How do we define their probability?

• Also, S is an arbitrary set. Often we need to tabulate

outcomes, events, probabilities. Can we transform S into more

standard R but keep the probability characteristics of

(S ,Ω,P(·)?

• Can we summarise the probabilities of values of X by a simpler

function than PX on B?
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Roadmap

• So far,we defined the ingredients of (S ,Ω,P(·), a ”Probability

Space”

• But: Often we are more interested in numbers attached to

outcomes (e.g. salary). How do we define their probability?

• Also, S is an arbitrary set. Often we need to tabulate

outcomes, events, probabilities. Can we transform S into more

standard R but keep the probability characteristics of

(S ,Ω,P(·)?

• Can we summarise the probabilities of values of X by a simpler

function than PX on B?



Section III Univariate Random Variables

III.1 Definition



Random Variables: Intuition

• Often more interest in numbers attached to outcomes (e.g.

salary)

• Suppose we can assign a real number to every elementary

event in S, e.g. ”the number of heads in n coin tosses”. Call

this mapping X. X transforms non-standard S into R.

• But: To be useful, X has to preserve the event structure of

the measurable space (S ,Ω), i.e.

• there must be an event E in Ω that corresponds to any subset

M of the range of X

• to their unions, intersections and complements must

correspond the unions, etc. of the corresponding events in Ω

• Then the probability of any M ⊆ R is simply the probability of

the corresponding event E ∈ Ω.



Definition: Random Variable

Given (S ,Ω,P(·)), a RV is a function X : S −→ R, which satisfies

the condition that for every half-closed interval

Ix = (−∞, x ], x ∈ R, the inverse image

X−1(Ix)
.
= {s ∈ S : X (s) ≤ x} is an event in Ω.

In (other) words, every half-closed interval Ix = (−∞, x ], x ∈ R
has a corresponding subset of S in Ω, given by the set of elements

in S that X maps into Ix .

• Note: To check that X is a valid random variable, we have to

show that for every half-closed interval I in R, there is an

event in Ω the elements of which X maps into I .



Points to note:

• X−1((−∞, x ]) ∈ Ω, ∀x ∈ R ⇐⇒ X−1(B) ∈ Ω, ∀B ∈ B.

• A RV X : S −→ R is always defined with respect to some

Sigma-Algebra Ω of S, so ”RV X on (S ,Ω)”.

• Distinguish the random variable X from x, the value it takes in

a particular trial of a random experiment .

• To decide whether X (·) : S −→ R is a random variable, one

needs to proceed from half-closed intervals in R to the

elements of Ω, the Sigma-Algebra of S, not the other way.

• A random variable is a real-valued function on a sample space

with certain properties. It is neither ”random”, nor ”variable”.



Example:

Is X
.
= Number of Heads, a RV for ({H,T}, P(S) )?

• X(H) = 1; X(T)=0

• So

X−1(1) = H; X−1(0) = T ; X−1(a) = ∅, for all a 6∈ {1, 0}.
• So for every B = (−∞, a] we have

• If a < 0, X−1(B) = ∅ ∈ Ω.

• If 0 ≤ a < 1, X−1(B) = {T} ∈ Ω.

• If 1 ≤ a, X−1(B) = {T ,H} ∈ Ω.

• So X is a random variable.



Exercise:

Consider S = {(H,H), (H,T ), (T ,H), (T ,T )}, the repeated coin

toss, and the two Sigma-algebras

1. Ω = { ∅,S , {(H,H)}, {(T ,T )}, {(H,H), (T ,H), (H,T )},
{(T ,H), (H,T ), (T ,T )}, {(H,H), (T ,T )}{(H,T ), (T ,H)} }

2. Ω = { ∅,S , {(H,T ), (H,H)}, {(T ,H), (T ,T )} }

• Take the Random Variable X = ”number of heads”. Write

down the sets {s ∈ Ω : X (s) = a} where a ∈ {0, 1, 2}.

• Now consider the half-open intervals defined by

(−∞, a], a ∈ R. Write down the sets {s ∈ Ω : X (s) ≤ a}
where a ∈ {−1, 0, 1, 2, 3}.

• Using this, show that X is a random variable with respect to

the first but not the second Sigma-Algebra.



Exercise continued:

Consider S = {(H,H), (H,T ), (T ,H), (T ,T )}, the repeated coin

toss, and the two Sigma-algebras

1. Ω = { ∅,S , {(H,H)}, {(T ,T )}, {(H,H), (T ,H), (H,T )},
{(T ,H), (H,T ), (T ,T )}, {(H,H), (T ,T )}{(H,T ), (T ,H)} }

2. Ω = { ∅,S , {(H,T ), (H,H)}, {(T ,H), (T ,T )} }

1. Consider the random variable Y defined by

Y ({H,H}) = Y ({H,T}) = 1,Y ({T ,T}) = Y ({T ,H}) = 0.

With respect to which of the two Sigma-Algebras is Y a

random variable?



Measurable functions

Definition: Given a measurable space (S ,=) a real-valued function

g(·) : S −→ R is ”Borel measurable with respect to =” if for all

open sets A ⊆ R the sets g−1(A) = {s ∈ S : g(s) ∈ A} are in =.

• Let Ci be a collection of subsets of R s.t. =(Ci ) = B. Then

X−1(C ) ∈ =, ∀C ∈ Ci ⇐⇒ X−1(B) ∈ Ω, ∀B ∈ B.

• So for (S ,=) a measurable function g(·) : S −→ R has an

inverse image in = for all Borel sets.

• Thus a random variable is simply a measurable function on a

probability space.



Exercise:

For S = {0, 1}, consider =1 = {∅, {1}, {0},S} and =2 = {∅,S}.
Show that all functions on S are =1-measurable, but only constant

functions are =2-measurable.



Proposition: Properties of measurable functions

• All monotone functions g(·) : (a, b) −→ R are measurable on

(R, B(R)).

• All continuous functions g(·) : R −→ R, are measurable on

(R, B(R)).

• For Borel-measurable functions f : S −→ R and g : R −→ R
the composite function g ◦ f : S −→ R is Borel-measurable on

(S ,=).



Proposition: Properties of measurable functions

continued

• For (S ,=) a measurable space and

f (·) : S −→ R,g(·) : S −→ R two Borel functions, the

following are Borel functions

1. af + b, a, b ∈ R
2. f + g

3. |f |α, ∀α ≥ 0

4. if f never vanishes, 1/f

5. f*g

6. max{f,g}, min{f,g}

Proof: see script and Wilde, p. 6-8



Properties of random variables

Again, properties of measurable functions translate of course to

those of random variables, i.e.

• A measurable function g : R −→ R of a random variable

X : S −→ R is itself a random variable.

• The sum of n random variables is a random variable, so is

their mean.

• etc.



Roadmap: So far ...

• Defined the elements of the probability space (S ,Ω,P(·)).

• showed that P is just a special case of a Sigma-additive

mapping µ : = −→ R+ ∪∞, called ”measure”.

• Defined a RV as a mapping X : S −→ R, such that we can

assign to all half-closed intervals Ix in R events in Ω.

• ... or formally: X is a RV if

X−1(Ix) = {s ∈ S : X (s) ∈ (−∞, x ]} ∈ Ω, for all Ix ⊆ R

• Stated without proof that this implies that the inverse image

X−1(B) is an event in Ω for all Borel sets in R.

• Showed that RVs are simply measurable functions on a

probability space.



Roadmap: So far ...

• Showed that monotone and continuous functions f : R −→ R
are measurable w.r.t. the Borel-sets, and that sums, linear

transformations and certain composites of measurable

functions are measurable.



Roadmap: Now ...

• Define a probability measure PX on the Borel sets for a given

random variable X on a given probability space .

• Summarise these probabilities conveniently using distribution

functions.



Section III Univariate Random Variables

III.2 Distribution functions of random variables



Defining probability measures for random variables

• We know: Given a probability space ((S ,Ω,PΩ()), a random

variable X : S −→ R associates to every Borel set B, an Event

in Ω.

• This establishes a new probability measure

PX : B(R) −→ [0, 1] on the Borel sets, with

PX (B) = PΩ(X−1(B)) = PΩ({s ∈ S : X (s) ∈ B}) for all

B ∈ B(R).

• So a RV transforms a probability space (S ,Ω,PΩ) into a new

one (R, B,PX ).



Summarising probability measures for random variables

by their cumulative distribution

• We want: A way to summarise PX : B(R) −→ [0, 1]. If

possible a point function F : R −→ [0, 1].

• Try as summary the probabilities of X to fall in half-closed

intervals C = {(−∞, x ] : x ∈ R}, i.e. PX ( (−∞, x ] ),∀x ∈ R,

a set function on the half-cosed intervals.

• But: Every set {(−∞, x ] : x ∈ R} is completely characterised

by its upper bound x. So we get a point function

FX : R −→ [0, 1] with

FX (x) = PX ( (−∞, x ] ) = Prob(X ≤ x) the ”Cumulative

distribution function of X”.



Cumulative Distribution function (CDF)

The function FX (x)
.
= Prob(X ≤ x) is called the ”Cumulative

Distribution function of random variable X” or simply its

”Distribution function”.

Proposition 4.1: A function F (·) is a CDF if and only if it

satisfies the following three properties:

1. limx−→−∞ = 0, limx−→∞ = 1

2. F(x) is nondecreasing in x

3. F(x) is right-continuous



Cumulative Distribution function and measures

• The measure PX (B) = PΩ(X−1(B)) on the Borel-sets assigns

probabilities to all half-closed intervals, so we can define the

CDF on the basis of PX . But does the reverse hold?

• FX : R −→ [0, 1], a measure on the half-closed intervals,

uniquely characterises a measure v(·) on ALL Borel sets,

called the ”Lebesgue-measure on (R, B) given by F (·)”. This

is a result from measure theory called ”Carathéodory’s

extension theorem”.

• Corollary: Whenever we know F (·), it gives us all the

information we need about probabilities of values of X in R.



Discrete random variables and their distribution

A random variable X is called ”discrete” if its CDF is a step

function.

• For X a discrete RV, the ”probability mass function

(PMF)” of X is pX (x) = P(X = x), with

1. pX (x) > 0 for all {x ∈ R : F (x−)− F (x) > 0}
2. pX (x) = 0 otherwise, and

3.
∑

x∈R pX (x) = 1.



Discrete random variables and their distribution

Note:

• Any random variable on a discrete (i.e. finite or countably

infinite) sample space is discrete.

• More generally, any random variable with discrete range is

discrete.

• The ”support of X” D is defined for a discrete random

variable as the set of ”jumps”, i.e. the points with positive

mass, i.e. D = {x ∈ R : PX (x) > 0}.



Discrete random variables and their distribution

Example The random variable ”number of heads in the repeated

coin toss” with the sigma algebra the Power set.



Continuous random variables and their distribution

A random variable X is called ”continuous” if its CDF is

continuous for all x ∈ R. In this case, P(X=x)=0, for all x ∈ R.

• F (·) is ”absolutely continuous” if there is a ”probability

density function” (pdf) fX (x) that satisfies

FX (x) =
∫ x
−∞ fX (x)dx , such that

• f (x) = d
dx FX (x), and

• Prob(a ≤ x ≤ b) =
∫ b

a
fX (x)dx



Properties of a pdf

• A function fX (x) is a pdf if and only if

1. fX (x) ≥ 0 for all x ∈ R
2.

∫∞
−∞ fX (x)dx = 1

• The ”support of X” D is D = {x ∈ R : fX (x) > 0}.



Example: Uniform Distribution on [0,2]

• The uniform distribution with support [a, b] is defined as one

that has a constant pdf f (x) = c , for all x ∈ [a, b], f (x) = 0

otherwise.

• Find the constant c for a=0,b=2.

• Find its CDF.

• What is P(x ≤ 1.5)?



Mixed random variables

If a random variable is neither discrete, nor continuous, it is called

a ”mixed random variable”.



Summarizing distribution functions: measures of

location and spread

• Three numbers to summarise the location of F (·) on the real

line are

• Its expectation, or mean, E(X) (see next section)

• The ”middle observation” or ”median” mx defined by∫ mx

−∞ fX (x)dx = 1/2 for continuous variables

• The ”mode” defined as the most frequent observation, or

value with highest density

• The spread around its location can be summarised e.g. by the

variance, or standard deviation.



Distributions of functions of RVs and the change of

variables formula

• Suppose we know the pdf of a continuous RV X : S −→ R,

but want the pdf of Y = g(x), with g(·) measurable.

• A measurable function of a RV is a RV, so has a distribution.

• But FY (y) = P({s ∈ S : g(X (s)) ≤ y}) can be very

complicated.

• So can we get FY (·)directlyfromFX (·)?

• Yes, if g one-to-one, differentiable and invertible.

• Distinguish 2 cases: g increasing vs. decreasing.



Change of variables formula Case 1: g(X) increasing

1. Find F(y):

• g(x) ≤ y ⇔ x ≤ h(y), where h(·) = g−1.

• So FY (y) = Prob(Y ≤ y) = Prob(g(X ) ≤ y) = Prob(X ≤
h(y)) = FX (h(y))

2. Find f(y): Differentiating both sides w.r.t. y and applying

Leibniz rule, we get

f (y) = d
dy FX (h(y)) = d

dy

∫ h(y)
−∞ fX (t))dt = fX (h(y)) d

dy h(y).



Change of variables formula Case 2: g(X) decreasing

1. g(X ) ≤ y ⇔ X ≥ h(y). So FY (y) = Prob(Y ≤ y) =

Prob(g(X ) ≥ y) = 1− Prob(X ≤ h(y)) = 1− FX (h(y))

2. So f (y) = − d
dy FX (h(y)) = −fX (h(y)) d

dy h(y)

3. Combine both cases:

Given that in the first case d
dy h(y) is positive, in the second

negative, we can write f (y) = fX (h(y))| d
dy h(y)|.



Change of variables formula - step-by-step

• Step 1: Write y=g(x), and get x = g−1(y) = h(y).

• Step 2: Get d
dy h(y).

• Step 3: Calculate fY (y) = fX ((h(y))| d
dy h(y)|.

• Step 4: Transform the domain of X DX = {x : x ∈ A} into

that of y by writing DY = {y : h(y) ∈ A}.

• Step 5: Check that
∫
DY

fY (t)dt = 1.



Change of variables formula - Example 1

Suppose X is distributed uniformly on [0, 1], and define

Y = 2− 3x . What is the pdf of Y?

• Step 1: Write y=g(x), and get x = g−1(y) = h(y).

• Step 2: Get d
dy h(y).

• Step 3: Calculate fY (y) = fX ((h(y))| d
dy h(y)|.

• Step 4: Transform the domain of X DX = {x : x ∈ A} into

that of y by writing DY = {y : h(y) ∈ A}.

• Step 5: Check that
∫
DY

fY (t)dt = 1.



Change of variables formula - Example 2

Suppose X is distributed uniformly on [0, 1], and define

Y (x) = −ln(x). What is the pdf of Y?

• Then we have h(y) = e−y , and | δ
δy (h(y)) |= e−y .

• fX (x) = 1 for x ∈ [0, 1], so fX (h(y)) = 1 for y ∈ [0,∞]

• Thus fY (y) = e−y , y ∈ [0,∞], an exponential density.

• Y maps values in DX = [0, 1] into DY = [0,∞].



Roadmap

• So far,we

• defined the probability set function on a probability space

(S ,Ω,P() as P(·) : Ω −→ [0, 1]

• Defined a RV as a function X : S −→ R with inverse images in

Ω for all half-closed intervals (and thus all Borel-sets)

• Summarised the probabilities of the Borel sets by the

Distribution function X

FX (x) = Prb(X ≤ x) = P({s ∈ S : X (s) ∈ (−∞, x ]})
• Saw that for every random variable on (S ,Ω,P()) as

P(·) : Ω −→ [0, 1] there is a unique measure v(·) on (R, B,

where v() is the Lebesgue-Stieltjes measure with respect to X’s

CDF F (·)



Roadmap

Now we want to characterise RVs further:

• Calculate the ”mean” of a random variable, that weighs

values of X in R by their measure µ.

• Calculate other ”moments”, weighted averages of functions of

RVs.

• So need ”weighting scheme” to weigh (functions of) values of

a RV X : S −→ R by the probability measure P.

• The integral does this.



Integration theory

• ...

• (See script for a very basic introduction.)



Section V Integration theory, mathematical expectation,

and moments of random variables

V.2 Mathematical expectation



Mathematical expectation - General and simplified

The expectation of a random variable X : S −→ R on a probability

space (S ,Ω,P) is defined as

E (X ) =
∫
S X (s)dP.

• This is called the ”(Lebesgue) integral of X over the sample

space S with respect to the probability measure P”.

• Note: Our high-school (”Riemann”) integral
∫
(a,b) Xdx only

works on (a, b) ⊆ R, and weighs by ”length” of (very small)

subintervals, not on general measurable spaces S ,Ω with any

probability measure P.



Mathematical expectation - General and simplified

The expectation of a random variable X : S −→ R on a probability

space (S ,Ω,P) is defined as

E (X ) =
∫
S X (s)dP.

• But: P is uniquely characterised by the CDF of X. So we can

use a simpler measure based on F (” Lebesgue-Stieltjes

measure”) and write

E (X ) =
∫
S XdP =

∫
R xdFX , where FX denotes the CDF of X.

• And if X is absolutely continuous, i.e. Fx(x) =
∫ x
∞ f (x)dx for

some PDF f (·), then

E (X ) =
∫
S XdP =

∫
R xdFX =

∫
R xf (x)dx

• So we recover the usual Riemann integral!!



Expectation of functions of a continuous random

variable

Measurable functions g(·) of RV are a RV. So more generally:

Definition: For a probability space (S ,Ω,P), the expectation of a

measurable function g(·) of an absolutely continuous RV

X : S −→ R is defined as

E (X ) =
∫∞
−∞ xf (x)dx

• X is said to have ”finite expectation” if the integral exists.

• If the integral is not bounded, evaluate the integral for

negative and positive values of g separately:

• If I+ = ∞ and I− < ∞, E (g(x)) = ∞.

• If I+ < ∞ and I− = ∞, E (g(x)) = −∞.

• If both integrals are ∞, the expectation is not defined.



Expectation of functions of a discrete random variable

• Definition: For a probability space (S ,Ω,P) with finite S, the

expectation of a Ω measurable function g(·) of a discrete

random variable X with support D = x1, ..., xn is defined as

E (g(x)) =
∑n

i=1 g(xi )pX (xi ), where pX is the pmf of X.



Section V Integration theory, mathematical expectation,

and moments of random variables

V.3 Moments of Random Variables



Mean and other raw moments

The ”expectation” or ”mean” of a random variable X, defined as

• E (x) =
∫∞
−∞ xfX (x)dx

• or E (x) =
∑

i xipX (xi ) for discrete random variables,

is also called the ”first moment about 0”, ”first raw moment”,

or simply ”first moment” of X.

• The mean of X is often denoted µx .

• More generally, for any positive m the mth (raw) moment of

X is defined as E (xm).



Properties of the mean

• E(a) = a

• By the linearity of the sum or integral operators

E(a+bg(X)) = a+bE(g(X)).

• E(XY)=?



Variance and other central moments

• The mth ”central” moment of X is defined as E ((x − µx)
m).

• The ”variance of X” is the second central moment, denoted as

Var(X ) or σ2
x .

• Variance in terms of central moments:

Var(X ) = E ((x − µx)
2 = E (x2 − 2xµx + µ2

x) = E (x2)− µ2
x .

”The variance is the expectation of the square minus the

square of the expectation.”

• The square root of the variance, σ, is called the standard

deviation of x.

• The third central moment is called ”skewness”, the fourth

”kurtosis”.



Properties of the variance

• Var(a) = 0

• Var(a + bX ) = E ([a + bX − (a + bµx)]
2) = b2Var(X ).



Moment generating function (MGF)

• The MGF of a random variable X is defined for both discrete

and continuous distributions as M(λ) = E (eλX ).

• It does not exist for all random variables.

• If ∃h > 0 s.t. for − h < λ < h E (eλX )) is defined and finite,

then dm

dmλM(λ)|λ=0 = E (Xm).

• Thus, the mth derivative of the moment generating function

evaluated at 0 gives the mth raw moment of the random

variable X.
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Moment generating function (MGF)

• The MGF of a random variable X is defined for both discrete

and continuous distributions as M(λ) = E (eλX ).

• It does not exist for all random variables.

• If ∃h > 0 s.t. for − h < λ < h E (eλX )) is defined and finite,

then dm

dmλM(λ)|λ=0 = E (Xm).

• Thus, the mth derivative of the moment generating function

evaluated at 0 gives the mth raw moment of the random

variable X.



Moment generating function - Example

Consider X uniform on [0,10], i.e. f (x) = 1/10, x ∈ [0, 10], 0

otherwise.

• E (eλx) =
∫
[0,10] e

λx1/10dx .

• E (X ) = M1(X ) = d
dλE (eλx |λ=0) =

∫
[0,10] xe

0·x1/10dx =

1/10
∫
[0,10] xdx = 1/10(1/2x2)|10

0 = 5

• M2(X ) = d2

dλ2 E (eλx |λ=0) =
∫
[0,10] x

2e0·x1/10dx =

1/10
∫
[0,10] xdx = 1/10(1/3x3)|10

0 = 1000/30

• Var(X ) = E (X 2)− E (x)2 = 1000/30− 750/30 = 25/3



Exercises

• Using the MGF, show that the expectation and variance of

the Poisson distribution P(X = x) = e−λλx

x! are equal to λ.

• Using the MGF, show that the expectation and variance of

the exponential distribution f (x) = 1
θe−θx are equal to θ

and θ2 respectively.



Section VI Common univariate distribution functions



Summary Criteria

When looking at distribution functions, we consider the following

criteria:

• What is its support, i.e. what are the values of the underlying

random variable X with positive probability density or mass?

These may be the integers, the positive real numbers, etc.

• What parameters characterise the distribution, or its pdf /

pmf?

• What are its moments?

• Not generally the CDF.
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Summary Criteria

When looking at distribution functions, we consider the following

criteria:

• What is its support, i.e. what are the values of the underlying

random variable X with positive probability density or mass?

These may be the integers, the positive real numbers, etc.

• What parameters characterise the distribution, or its pdf /

pmf?

• What are its moments?

• Not generally the CDF.



Section VI Common univariate distribution functions

VI.1 Discrete univariate distributions



Bernoulli Distribution

• Takes value 1 (”success”) and 0 (”failure”) only.

• Defined by one parameter 0 ≤ p ≤ 1 such that

Prob(X = 1) = p, and Prob(X = 0) = 1− p

• Or more compactly P(X = x) = px(1− p)(1−x), x ∈ {0, 1}
• Moments

• E(x)=p

• Var(x)=p(1-p)



Binomial Distribution

• Sum of N independent Bernoulli distributed random variables

with identical p.

• Defined by the two parameters N and p. The support of X are

the integers from 0 to N.

• Its PMF:

Prob(X = x) = Prob(”x times 1 and N − x times 0”) =

( N!
x!∗(N−x)!) ∗ px ∗ (1− p)(N−x).

• Exercise: Show that the moments of the Binomial

distribution are given as E (X ) = n · p, Var(X)=np(1-p).



Poisson Distribution

• Has PMF P(X = x) = e−λλx

x! , for x = 0, 1, 2, 3, ....

• It is characterised entirely by the parameter lambda.

• Exercise: Using the definition of the exponential function,

show that E (X ) = Var(X ) = λ.



Section VI Common univariate distribution functions

VI.1 Continuous univariate distributions



Uniform Distribution

• Has pdf f (x) = 1
b−a , for x ∈ [a, b]. It is characterised by the

two parameters a,b.

• Exercise: Show that the moments of the uniform distribution

are E (X ) = b−a
2 , Var(X ) = (b−a)2

12 .



Exponential Distribution

• Has pdf f (x) = 1
θe

x
θ , for ∞ > x ≥ 0 and θ > 0 its only

parameter.

• Exercise Using the moment generating function show that

E (x) = θ and Var(x) = θ2.



Standard normal Distribution

• The standard normal distribution X has pdf

f (x) = 1√
2π e

−x2

2 , x ∈ R.

• Its CDF has no closed form solution.

• As it is symmetric around 0, all odd central moments are 0.

• Also, E (X 2) = Var(X ) = 1, so one writes often X ∼ N(0, 1)



General univariate normal Distribution

Exercise: Show, using the change of variables technique, that

Y = µ + σX has

• f (y) = 1√
2π

1√
σ2 e

− (y−µ)2

2σ2 , x ∈ R

• using iterated integration by parts, that E (X ) = µ, and

Var(X ) = σ2.

• Y has a general univariate normal distribution, also written as

Y ∼ N(µ, σ2).

• It is entirely characterised by its mean and variance.



Roadmap: So far, we have looked at

• General probability spaces (S ,Ω,P)

• RVs X : S −→ R that transform this into (R, B, v(·)), where

v(·) is a probability measure that can be summarised by X’s

CDF

• Properties of CDF and its link to PDF (for abs. continuous

RVs) and PMF (for discrete RVs)

• Moving from the pdf of X to that of g(x) for invertible and

differentiable g

• Mathematical Expectations and their properties

• (Raw and Central) ”Moments” of RVs

• The moment generating function M(λ) = E (eλx), with
dm

dλm M(λ) = E (xm)

• Some common univariate distributions and their

characteristics



Roadmap

Now we would like to

• Look at the probability of ”My salary in 5 years is lower than

yours” - 2 random variables on the same probability space

(S ,Ω,P).

• More general: vectors of k RVs on the same (S ,Ω,P).

• Look at some new objects:

• Distribution of (X,Y).

• Distribution of Y.

• Distribution of X given Y=y.

• ”Covariance” of X and Y.

• etc.



Section VII Multivariate Random Variables

VII.1 Bivariate Random Variables



Bivariate Random Variables - Definition

A pair of random variables (X,Y) on the same probability space

(S ,Ω,P(·)) make a measurable function from the sample space

into R2, and are called a ”bivariate random variable”.



Joint distribution function

• Given a probability space (S ,Ω,P()), and two RVs

X : S −→ R, Y : S −→ R,

{s ∈ S : (X (s),Y (s)) ∈ B2} = {s ∈ S : X (s) ∈ B1} ∩ {s ∈
S : Y (s) ∈ B2} is a well-defined event for all Borel-sets

B2 ∈ B2.

• Again, we can summarize the probability measure

PX ,Y (B2) = {s ∈ S : (X (s),Y (s)) ∈ B2} by the probabilities

of the half-closed sets, or their joint cumulative distribution

function F (x , y) = P(X ≤ x ,Y ≤ y).



Properties of the joint cumulative distribution function

1. 0 ≤ F (x , y) ≤ 1 for all (x , y) ∈ R2

2. F (·) is a non-decreasing function in both of its arguments.

3. F (·) is right-continuous in both of its arguments.

4. F (−∞, y) = F (x ,−∞) = F (−∞,−∞) = 0

5. F (∞,∞) = 1



Joint probability mass function

If X and Y are both discrete random variables on the same

probability space, or ”jointly discrete”, with positive mass on the

support DX = {x1, x2, ...},DY = {y1, y2, ...}, we can define the

bivariate probability mass function as p(x , y) = P(X = x ,Y = y),

with properties similar to those of univariate PMFs, i.e.

1. 1 ≥ p(x , y) ≥ 0

2. p(x , y) = 0 ∀ x /∈ DX , y /∈ DY

3.
∑

x∈Dx

∑
y∈Dy

p(x , y) = 1.



Joint probability density function

If X and Y are both absolutely continuous random variables on the

same probability space, or ”jointly continuous”, there is a bivariate

pdf f (x , y), that satisfies F (x , y) =
∫ x
−∞

∫ y
−∞ fXY (x , y)dxdy with

the properties

1. f (x , y) ≥ 0

2.
∫ ∫

R2 f (x , y)dxdy = 1



Marginal distribution function

• For every Borel set A, X ∈ A is a well-defined event with

probability P(X ∈ A) = P(s ∈ S : X (s) ∈ A) = P(s ∈ S :

X (s) ∈ A and Y ∈ R).

• The marginal CDF of X is obtained from the joint CDF by

calculating the limit Y −→∞, for any given x:

F (x ,∞) = P(X ≤ x ,Y ≤ ∞) = P(X ≤ x) = FX (x).



Marginal PMF of X

For jointly discrete X and Y this yields the marginal PMF of X∑
y∈DY

p(x , y) = P(X = x) = px(x) and marginal CDF of X

FX (x) =
∑

sx∈DX :sx≤x

∑
y∈DY

p(sx , y), where DX ,DY are the

supports of X and Y.



Marginal PDF of X

• For jointly (absolutely) continuous X and Y, the marginal

probability density of X is fX (x) =
∫∞
−∞ f (x , y)dy .

• The marginal CDF of X then satisfies

FX (x) =
∫ x
−∞

∫∞
−∞ f (x , y)dxdy = limy−→∞F (x , y).



Conditional distribution function

• For a bivariate random variable (X,Y) on S ,Ω,P and given

Borel sets A and C, the event {s ∈ S : X ∈ A,Y ∈ C} is

well-defined.

• So whenever Y (s) ∈ C for some s ∈ S we can calculate the

conditional probability of X ∈ A given Y ∈ C as

P(X ∈ A | Y ∈ C ) = P(X∈A,Y∈C)
P(Y∈C) .



Conditional PMF of X, given Y=y

• For jointly discrete random variables X and Y, we can

calculate the conditional PMF of X, given Y=y

pX |Y (x | y) = P(X = x , | Y = y) = p(x ,y)
pY (y) .

• The conditional CDF is simply

F (x | y) =
∑

sx∈DX :sx≤x pX |Y (sx | Y = y).



Jointly continuous RVs: Conditional Distribution of X

given Y=y

• Problem: PY (Y = y) = 0, so using simple definition of

conditional probability impossible.

• Using limits, we can write

FX |Y (x | Y = y) = limε−→0+P(X ≤ x | y − ε < Y < y + ε).

• The conditional PDF is then fX |Y (x | y) = f (x ,y)
fY (y)

• Proof

• fX |Y (x | y) = δ
δx FX |Y (x | y)

= δ
δx limε−→0+

P(X≤x ,y−ε<Y <y+ε)
P(y−ε<Y <y+ε)

= δ
δx limε−→0+

F (x ,y+ε)−F (x ,y−ε)
FY (y+ε)−FY (y−ε)

= δ
δx limε−→0+

F (x,y+ε)−F (x,y−ε)
ε

FY (y+ε)−FY (y−ε)

ε

= δ
δx

δ
δy

F (x ,y)
δ
δy

FY (y)
= f (x ,y)

fY (y)



Example: Uniform distribution on the plane

• Two jointly distributed continuous RVs have the bivariate

uniform distribution on (0, a)× (0, b) if their joint density is a

constant, i.e. f (x , y) = c , c ∈ R++.

• Determining c:
∫ a
0

∫ b
0 cdydx = 1, so c = 1

ab .

• Joint CDF of x and y, F (x , y) =
∫ x
−∞

∫ y
−∞

1
abdxdy ; 5 cases:

1. F (x , y) = 0 for x , y : x < 0 or y < 0

2. F (x , y) = 1
ab xy for {x , y : 0 ≤ x ≤ a, 0 ≤ y ≤ b}

3. F (x , y) = 1
ax for {x , y : 0 ≤ x ≤ a, b < y}

4. F (x , y) = 1
b y for {x , y : a < x , o ≤ y ≤ b}

5. F (x , y) = 1 for {x , y : a < x , b < y}



Example: Uniform distribution on the plane

• Marginal pdf of X is f (x) = 1
a on {x : 0 ≤ x ≤ a} and 0

otherwise. So the marginal CDF of X is simply F (x , y) = 1
ax

for {x : 0 ≤ x ≤ a}, 0 for x < 0 and 1 for x > a.

• Conditional pdf of X given Y=y is

fX |Y (x | Y = y) = f (x ,y)
f (y) = 1

a . The conditional CDF follows

as above.



Exercise (Champagne 2003)

A rope of length L is cut into three pieces in the following way:

• The first piece of length X is obtained by cutting the rope at

random (with uniform probability for all points x ∈ [0, L]).

• The second piece of length Y is obtained by cutting the

remaining segment of length L− X at random.

• The third piece is obtained as the remaining segment of

length L− X − Y .

1. Find fY |X (y | x), the conditional PDF of Y given

X = x , (0 < x < L).

2. Find f(x, y), the Joint PDF of X and Y , and illustrate the

region of the plane where it takes on non-zero values.

3. What is the probability that both X and Y be less than L = 2?



Expectations and moments of bivariate random variables

• The expectation of a bivariate RV is simply the expectations

of the individual random variables written as a vector.

• The expectation of a measurable function g(·) : R2 −→ R of

two jointly distributed random variables X and Y is:

• For jointly discrete RVs with support

DX = {x1, x2, ...},DY = {y1, y2, ...} we have

E (g(x , y)) =
∑

DX

∑
DY

g(x , y)pXY (x , y).

• For jointly (absolutely) continuous random variables we have

E (g(x , y)) =
∫∞
−∞

∫∞
−∞ g(x , y)f (x , y)dxdy .



Covariance -Definition

For two jointly distributed RVs X and Y with unconditional means

µX and µY , the covariance of X and Y is defined as

Cov(X ,Y ) = E [(X − µX )(Y − µY )].



Properties of the covariance

1. Cov(X ,X ) = Var(X ) = σ2
X

(by the definition of variance and covariance)

2. Cov(X ,Y ) = Cov(Y ,X )

(by the commutativity of the product operator)

3. Cov(aX + b, cY + d) = acCov(X ,Y )

(by the linearity of the expectations operator)

4. Cov(X ,Y ) = E (XY )− E (X )E (Y )

• (as E (XY − XµY − Y µX + µXµY ) =

E (XY )− 2E (X )E (Y ) + E (X )E (Y ))

5. Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y )

• (as E ((X + Y − µX − µY )2) = E ((X − µX )2 + (Y − µY )2 +

2(X − µX )(Y − µY )) = Var(X ) + Var(Y ) + 2Cov(X ,Y ))



Definition: Correlation coefficient ρ

The correlation coefficient ρ of two jointly distributed RVs is

defined on the basis of their covariance as ρ(X ,Y ) = Cov(X ,Y )
σX σY

,

where σX and σY are the standard deviations of X and Y.



Properties of the correlation coefficient

1. ρ is dimensionless even for RVs that have units.

2. −1 ≤ ρ ≤ 1

(as | Cov(X ,Y ) |≤
√

Var(X )Var(Y ) = σXσY )

3. ρ(X ,X ) = 1

(as Cov(X ,X ) = Var(X ) = σXσX )

4. ρ(X ,Y ) = ρ(Y ,X )

(as Cov(X ,Y ) = Cov(Y ,X ))

5. ρ(aX + b, cY + d) = sign(ac)ρ(X ,Y )

• (as Cov(aX + b, cY + d) = acCov(X ,Y ), for Z = aX + b

σZ =| a | σX , etc.)



Properties of the correlation coefficient continued

1. ρ(X ,Y ) = 1 ↔ Y = aX + b for any a > 0, and any b ∈ R
ρ(X ,Y ) = −1 ↔ Y = aX + b for any a < 0, and any b ∈ R
(by a similar argument)

2. Note: The correlation coefficient is a measure of linear

association between two RVs. From 1. it equals 1 or -1

whenever one random variable is a linear affine function of the

other, e.g Y = a + bX .



Independence of 2 jointly distributed RVs

• The RVs X and Y are defined to be independent if the events

X ∈ A and Y ∈ B are independent for any pair of Borel sets

A and B, i.e.

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B), ∀A,B ∈ B.

• Applied to half-open intervals:

F(x , y) = P(X ≤ x ,Y ≤ y) = FX (x)FY (y). This implies:

1. PMF of independent jointly discrete RVs

p(x , y) = pX (x)pY (y).

2. PDF of independent jointly continuous RVs

f (x , y) = fX (x)fY (y).



Properties of independent RVs

For any 2 independent jointly distributed RVs X,Y

1. The random variables defined by measurable function g(x)

and h(y) are also independent.

2. Conditional distributions are equal to marginal distributions,

e.g. FX |Y (x | y) = FX (x), and equivalently for PMF, PDF.

3. E (g(x)h(y)) = E (g(x))E (h(y)) for all measurable functions

g , h.

4. Particularly, E (xy) = E (x)E (y).

5. So the moment generating function for the sum of two

random variables is the product of the individual moment

generating functions.

6. X,Y indep. → Cov(X ,Y ) = corr(X ,Y ) = 0. But not vice

versa.



Conditional expectation

Unconditional vs. conditional expectation for bivariate RVs:

1. The unconditional expectation of X is a real number

defined by

E (X ) =
∫
X

∫
Y xf (x , y)dxdy =

∫
X xfX (x)dx = µX , or

E (X ) =
∑

i

∑
j xip(xi , yj) =

∑
i xipX (xi ) = µX

2. The conditional expectation of X given Y = y is a

function µX |Y (·) : DY −→ DX that maps every value y into

the conditional expectation of X given Y=y.

EX |Y (X | y) =
∫
X xfX |Y (x | y)dx = µX |Y

EX |Y (X | y) =
∑

i xipX |Y (xi | y)dx = µX |Y



Conditional variance

Unconditional vs. conditional expectation for bivariate RVs:

1. Equally, the conditional Variance of X given Y=y is

defined as

σ2
X |Y = EX |Y ((X − EX |Y (X | y))2 | y) = EX |Y (X 2 |

y)− (EX |Y (X | y))2.

2. Replacing the particular value y with the RV Y, EX |Y (X | Y)

and σ2
X |Y are measurable functions of the RV Y, and thus RVs

themselves.



Law of iterated expectations and Decomposition of

Variance

• The simple law of iterated expectations:

EY (EX |Y (X | Y )) = E (X ).

• In words: the unconditional expectation of X equals the

”expectation over Y of the conditional expectation function of

X given Y=y”.

• Thus:

1. E (X ) =
∫
Y

EX |Y (X |Y )dy

Proof E (X ) =
∫
X

∫
Y

xf (x , y)dxdy =∫
X

∫
Y

xfX |Y (x |y)fY (y)dxdy =
∫
Y

∫
X

xfX |Y (x |y)dxfY (y)dy =∫
Y

EX |Y fY (y)dy = EY (EX |Y (X |Y ))

2. E (X ) =
∑

j EX |Y (X |Y = yj)



Decomposition of Variance

The Variance decomposes into

Var(X ) = VarY (EX |Y [X | Y = y ]) + EY (VarX |Y (X | Y = y)).



Conditioning Theorem

EX |Y (g(y)X | y) = g(y)EX |Y (X | y).



Example (Champagne 2003)

Let RVs X and Y be jointly uniform over the region

D = {(x , y)} : 0 < x < y < 1.

1. Draw the region D.

2. Find the real number u such that x,y are jointly uniform on D

with pdf f (x , y) = u, ∀x , y ∈ D, and f (x , y) = 0 otherwise.

3. Find E (X ), E (Y ), E (X 2), E (XY )



Section VII Multivariate Random Variables

VII.1 Multivariate Random Variables



Definition: Random Vector

A list of n random variables (X,Y) on the same probability space

(S ,Ω,P(·)) make a measurable function from the sample space

into Rn, and is called an ”n-dimensional random vector”.



Joint distribution function

• The event {s ∈ S : (x1, x2, ...xn) ∈ B} is a well-defined event

for all n-dimensional Borel-sets B = (B1,B2, ....,Bn) ∈ Bn

• So the joint probability P(x1 ∈ B1, x2 ∈ B2, ..., xn ∈ Bn) is

well defined.

• As in the bivariate case, it can be summarized by the joint

CDF of X1, ...,Xn, defined as

F (x1, x2, ...xn) = P(X1 ≤ x1,X2 ≤ x2, ...,Xn ≤ xn).



Properties of the Joint CDF

These are equivalent to those of the bivariate case, i.e.

1. 0 ≤ F (·) ≤ 1

2. F (·) is non-decreasing in all of its arguments.

3. F (·) is right-continuous in all of its arguments.

4. limxi−→−∞F (x1, x2, ...xn) = 0, i ∈ {1, ..., n}

5. limx1−→∞,x2−→∞, ...F (x1, x2, ...xn) = 1



Joint PDF and PMF

• For jointly (absolutely) continuous X1,X2, ... there exists a

multivariate pdf f (x1, x2, ...xn) satisfying

f (x1, x2, ...xn) = δn

δx F (x1, x2, ...xn) with

δx = (δx1, δx2, ..., δxn).

• The joint PMF for jointly discrete random variables is

equivalent to the bivariate case.



Marginal distribution function

1. The marginal CDF of a subvector XI , I ⊆ {1, 2, ..., n} is

obtained by letting all xj −→∞, for

Xj ∈ XJ , J = {1, 2, ..., n}\I .

2. For n jointly continuous RVs, the marginal PDF of a

subvector XI is obtained from the joint PDF by integrating

over all Xj ∈ XJ , J = {1, 2, ..., n}\I , i.e.

fXI
=

∫
J f (x1, x2, ..., xn)dxJ .

3. For n jointly discrete RVs, the marginal PMF of a subvector

XI is obtained by summing over all possible values of

Xj ∈ XJ , J = {1, 2, ..., n}\I , i.e. pXI
=

∑
J p(x11, x2, ..., xn).



Conditional distribution function

1. The conditional CDF of subvectors XI given values xj of

subvector XJ is FXI |XJ
(xI | xJ) = P(XI ≤ xI | XJ = xJ) =

limε−→0+
P(XI≤xI ,xJ−ε≤XJ≤xJ+ε)

P(xJ−ε≤XJ≤xJ+ε) .

2. The conditional PMF of n jointly discrete random variables is

pXI |XJ
(xJ | xJ) = p(xI ,xJ)

pXJ
(xJ)

, wherever pXJ
(xJ) > 0.

3. The conditional PDF of n jointly continuous random variables

is fXI |XJ
(xI | xJ) = f (xI ,xJ)

fXJ
(xJ)

.



Expectation and covariance of n random variables

• The expectation of a measurable function g(·) : Rn −→ R of

an n-dimensional random vector is E (g(X1,X2, ...,Xn)) =∫
X1

∫
X2

...
∫
Xn

g(x1, x2, ..., xn)f ((x1, x2, ..., xn))dx1dx2...dxn.

• Or for the special case of jointly discrete random variables

E (g(X1,X2, ...,Xn)) =∑
X1

∑
X2

...
∑

Xn
g(x1, x2, ..., xn)p((x1, x2, ..., xn)).



Expectation and covariance of n random variables

• The covariance being a bivariate concept we can extend it to

the n-variable case by defining the Variance-Covariance

Matrix of the multivariate random variable

X = (X1,X2, ...,Xn) as

Σ =


VarX1 Cov21 ... Covn1Cov21 Var22 ... Cov1n

... ...

Cov1n Cov12 ... Varnn





Independence of n random variables

The random variables X1,X2, ...,Xn are called independent if for all

Borel sets Bi ∈ B, i = 1, ..., n, the events

(X1 ∈ B1), (X2 ∈ B2), ..., (Xn ∈ Bn) are mutually independent.

• This implies P((X1 ∈ B1), (X2 ∈ B2), ..., (Xn ∈ Bn)) =

P(X1 ∈ B1)P(X2 ∈ B2)...P(Xn ∈ Bn).

• For jointly discrete RVs the joint PMF is

p(x1, x2, ..., xn) = pX1(x1)pX2(x2)...pXn(xn)

• For jointly continuous random variables, the joint PDF is

f (x1, x2, ..., xn) = fX1(x1)fX2(x2)...fXn(xn).

• The VCM of n independent random variables is diagonal.



General law of iterated expectations

A more general version of the law of iterated expectations is

EY |Z (EX |Y ,Z (X | y , z)) = EX |Z (X | z).



Multivariate Transformations

• The transformation theorem, or ”change-of-variables

formula”, extends to functions of n-dimensional random

vectors, g(·) : Rn −→ Rn that are one-to-one, differentiable

and invertible.

• Defining a new random vector Y as Y = g(x), and the inverse

function h(y) = g(x)−1, and using the definition of the

Jacobian matrix as the determinant of the matrix of first

partial derivatives of a vector valued funtion, i.e.

J(y) = det( δ
δy ′ h(y)), the probability distribution function of Y

is then fY (y) = fX (h(y)) | J |.



Multivariate Transformations: Example

Let random variables X and Y be jointly uniform over the region

A = {(x , y)} : 0 < x , y < 1. Let R and Q be defined by

R = x + y , and Q = x − y . What is the joint pdf of R and Q?

1. The constant pdf of (x,y) equals 1 for all points in the domain.

2. Note that h(r , q) =

[
x

y

]
=

[
−1/2 −1/2

−1/2 1/2

] [
r

q

]
So

the absolute value of the Jacobian is | − 1/2| = 1/2.

3. Thus we get f (r , q) = f (h(r , q)1/2, so r and q are uniformly

distributed with parameter 1/2.



Multivariate Transformations: Example

Let random variables X and Y be jointly uniform over the region

A = {(x , y)} : 0 < x , y < 1. Let R and Q be defined by

R = x + y , and Q = x − y . What is the joint pdf of R and Q?

1. The Domain of (R,Q) is the set

B={r,q:

[
−1/2 −1/2

−1/2 1/2

] [
r

q

]
≤[

1

1

]
,

[
−1/2 −1/2

−1/2 1/2

] [
r

q

]
≥

[
0

0

]
}.

• Draw this set in r,q space.

• Check that the integral of c=1/2 over this set is 1.



Multivariate Normal Distribution

For non-singular ΣX , the PDF of an n-dimensional normal random

variable X is

f (x) = 1

(2π)
n
2 det(ΣX )1/2

e−
(x−µX )′Σ−1

X
(x−µX )

2 .

• Its domain is x ∈ Rn.

• Its expectation µX and the (n + 1)n/2 distinct elements of the

variance-covariance matrix ΣX are the parameters that

completely characterise its distribution, so we write

X ∼ N(µX ,ΣX ).



Multivariate Normal Distribution - equivalent

Definitions

The following are equivalent definitions of an n-dimensional normal

random vector X, allowing for singular ΣX

• Every linear combination Y = a1X1 + ... + anXn is normally

distributed.

• There is an m-dimensional random vector Z whose elements

are independent normal random variables, a vector of real

numbers µ = (µ1, ..., µn), and an nxm matrix A such that

X = µ + Az .

• There is a vector of real numbers µ = (µ1, ..., µn), and a

positive semi-definite matrix ΣX , such that the Moment

generating function of X is eλ′µ+λ′ΣX λ/2.



Multivariate Normal Distribution - equivalent

Definitions

The following are equivalent definitions of an n-dimensional normal

random vector X, allowing for singular ΣX

• Every linear combination Y = a1X1 + ... + anXn is normally

distributed.

• There is an m-dimensional random vector Z whose elements

are independent normal random variables, a vector of real

numbers µ = (µ1, ..., µn), and an nxm matrix A such that

X = µ + Az .

• There is a vector of real numbers µ = (µ1, ..., µn), and a

positive semi-definite matrix ΣX , such that the Moment

generating function of X is eλ′µ+λ′ΣX λ/2.



Conditional and marginal distributions of subvector

xI = (x1, ..., xk), k ≤ n

• Partition X into a kx1 and an (n-k)x1 vector as X = (XI ,XJ),

and accordingly µX = (µI , µJ) and

ΣX =

[
Σ11 Σ12

Σ21 Σ22

]
with Σ11 kxk, Σ21 kx(n-k), etc.

• The conditional distribution of XI given XJ = xJ is

multivariate normal XI | XJ = xJ ∼ N(µI |J ,ΣI |J), where

µI |J = µI + Σ12Σ
−1
22 (xJ − µJ) and ΣI |J = Σ11 − Σ12Σ

−1
22 Σ21.

• So knowing the value of xJ alters mean and variance of XI .

• The marginal distribution of XI is simply N(µI ,Σ11).



Conditional and marginal distributions of subvector

xI = (x1, ..., xk), k ≤ n

• Partition X into a kx1 and an (n-k)x1 vector as X = (XI ,XJ),

and accordingly µX = (µI , µJ) and

ΣX =

[
Σ11 Σ12

Σ21 Σ22

]
with Σ11 kxk, Σ21 kx(n-k), etc.

• The conditional distribution of XI given XJ = xJ is

multivariate normal XI | XJ = xJ ∼ N(µI |J ,ΣI |J), where

µI |J = µI + Σ12Σ
−1
22 (xJ − µJ) and ΣI |J = Σ11 − Σ12Σ

−1
22 Σ21.

• So knowing the value of xJ alters mean and variance of XI .

• The marginal distribution of XI is simply N(µI ,Σ11).



Example (Banerjee Sample questions)

Suppose that y, x1 and x2 have a joint normal distribution with

parameters µ′ = [1, 2, 4] and covariance matrix Σ =


2 3 1

3 5 2

1 2 6


Compute E (y |x1); var(y |x1);E (y |x1 = 2, 5; x2 = 3, 3); var(y =

x1 = 2, 5; x2 = 3, 3)



Exercises

• Using the fact that the covariances of independent RVs are

zero, show that the joint pdf of n independent jointly normal

RVs is the product of the univariate normal pdfs. This also

shows, that for normal RVs, independence implies 0

covariance AND vice versa.

• Using the multivariate change-of-variables formula, show for

an n-dimensional normal vector X, and Y = A + Bx , that

linear affine transformations of multivariate normal RVs are

also normally distributed, with

fY (y) = 1

2π
n
2 det(BΣX B′)1/2

e−
(y−BµX )′(BΣX B′)−1(x−BµX )

2 =

1

2π
n
2 det(ΣY )1/2

e−
(x−µY )′Σ−1

Y
(x−µY )

2 .
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