Political Economics II Spring 2016

Lectures 4-5 Part II Partisan Politics and Political Agency

Torsten Persson, IIES

Introduction: Partisan Politics

Aims

continue exploring policy choice in representative democracy when politicians are "partisan" – like citizens, their preferences are defined over policy outcomes, rather than derived from pure electoral – or rent-seeking – objectives this will introduce another set of "work-horse" models

Agenda

- A. Electoral competition with exogenous citizen candidates
- B. Endogenous citizen candidates
- C. Agenda setting and legislative bargaining

A. Electoral competition with given citizen candidates

1. Quick rehash of results from Lecture 1

Study one-dimensional size of government example

simple model with Condorcet winner and discrete $y^J \sim F(\cdot)$ voters have no candidate preferences, initially

"Citizen candidates" in Downsian setting

individuals with $y^J = y^C$, $W^C(g) = (y - g)\frac{y^C}{y} + H(g)$

2 candidates C = L, R with *exogenous* ideal points on opposite sides of the median voter's

$$y^{L} < y^{M} < y^{R}, \quad g^{L} = G(\frac{y^{L}}{y}) > g^{M} = G(\frac{y^{M}}{y}) > g^{R} = G(\frac{y^{R}}{y})$$

2. Different equilibria

Crucial assumptions

(V1) voters preferences only over policy $W^{J}(g)$

(V2) V1 plus preferences over candidates

(P1) politicians can commit to electoral platforms (g_L, g_R) (P2) such commitments not feasible

Outcomes

policy convergence: under (V1), (P1), we get $g_L = g_R = g^M$ policy divergence: if replace (V1) by (V2), or (P1) by (P2), we get $g^R \leq g_R < g < g_L \leq g^L$

But if candidate (party) preferences are endogenous, are we back to convergence of policy through convergence of candidate types?

B. Endogenous citizen candidates

Add entry stage ahead of election

any citizen, with income y^C , can enter as candidate at cost ε stay in size of government example: \mathcal{J} still a large number after entry, model like no-commitment case in Lecture **1.E.2.b**

Timing: three stages

- 1. citizens make entry decisions, if no entry $\Rightarrow q = \overline{q}$, "status quo" policy
- 2. plurality election among entering candidates, voters cast their ballot *strategically*
- 3. winning candidate chooses policy

Stage 3

if elected, C with y^C implements $g^C = G(\frac{y^C}{y})$

Stage 2

voter in group J casts ballot for C that maximizes $E[W^J]$, given strategy of other voters (meaning of strategic voting)

Stage 1

a member of group J enters only if that raises $E[W^J]$, given entry strategy of other candidates a. One-candidate equilibria

Existence?

yes, several equilibria may exist (due to entry cost) of focal interest: will somebody with y^M run, and win? y^M beats any other candidate y^C , as g^M Condorcet winner

Equilibrium conditions

 y^M can run uncontested if

$$W^M(g^M) - W^M(\overline{g}) > \varepsilon$$

and no other type J finds it profitable to enter, she cannot win against y^M and entry is costly and no other member of group M enters either, this does not change g and entry is costly b. Two-candidate equilibria

Existence?

yes, several with C = L, R $y^L < y^M < y^R$

Two equilibrium conditions

$$W^M(G(\frac{y^L}{y})) = W^M(G(\frac{y^R}{y}))$$

i.e., each candidate has equal chance of winning, and

$$\begin{aligned} &\frac{1}{2}[W^L(G(\frac{y^L}{y})) - W^L(G(\frac{y^R}{y})) > \epsilon \\ &\frac{1}{2}[W^R(G(\frac{y^R}{y})) - W^R(G(\frac{y^L}{y})) > \epsilon \end{aligned}$$

i.e., each gains enough expected utility by entering

Additional condition

3rd candidate does not enter in between y^L and y^R voters' equilibrium strategies keep entry unprofitable y^L and y^R balance each other, votes from either side of y^M

Implications

never policy convergence in two-candidate equilibria"candidate identity matters", but predictions are not so sharp because of multiplicity

Why work-horse model?

intuitively appealing

why can it handle multi-dimensional policy problems? because it restricts voter choices to ex-post optimal policies

C. Agenda setting and legislative bargaining

1. General modeling

Two steps in developing generalized agenda-setter model

- (i) first: one-dimensional analysis of politician-initiated referenda among voters – readings in syllabus
- (ii) later: multi-dimensional analysis of legislative bargaining among incumbent lawmakers – here and many applications

Incumbent legislators

consider three policy-motivated parties (legislators) Jperfect delegates of three groups: each maximizes $W^J(g)$

General introduction, then apply to two generic policy problems

- **2.a** Size of government example, with J = L, M, R
- **2.b** Composition of government example, with J = 1, 2, 3

Closed-rule, one-round bargaining:

agenda-setter, $A \in \{L, M, R\}$ makes take-it-or-leave-it proposal for single majority vote in legislature

Timing

- 1. nature picks A
- 2. A proposes g_A
- 3. legislature votes:

if at least one of $J \neq A$ in favor $\Rightarrow g^b = g_A$ if not $\Rightarrow g^b = \overline{g}$, "status quo" implemented

Status-quo policy?

$$\overline{g} = 0$$
 "close down government"
 $\overline{g} > 0$ "last year's policy"

Requirement for acceptable proposal at stage 3

 $W^J(g_A) \ge W^J(\overline{g})$ for at least one $J \ne A$

A maximizes $W^A(g)$ subject to such incentive compatibility

General properties of g^b

(i) A puts together minimum-winning coalition: seeks support only from one J = X, if g generates conflict of interests
(ii) X held to status-quo payoff: W^X(g_A) = W^X(ḡ) costly to overfulfill incentive compatibility constraint
(iii) J = N non-coalition member screwed: W^N(g_A) ≤ W^N(ḡ)
(iv) X is legislator whose vote "cheapest to get" – will mean small size α^J or low status-quo payoff W^J(ḡ)

2. Specific results

a. Size of government example

Three different income groups

one party each
$$y^L < y^M < y^R$$
, $g^J = G(\frac{y^J}{y})$

Equilibrium when A = M

 $g^b = g^M$ Condorcet winner in legislature

Equilibrium when A = L (A = R case analogous)

$$g^{b} = \begin{cases} g^{L} & \text{if } \overline{g} \geq g^{L} \\ \overline{g} & \text{if } g^{L} \geq \overline{g} \geq g^{M} \\ \text{Min}[g^{L}, \widetilde{g}^{M}] & \text{if } g^{M} > \overline{g} \end{cases}$$

where $W^M(\widetilde{g}^M) = W^M(\overline{g})$

Intuition

- L seeks support only from closest incumbent Mcf. properties (i), (iii) and (iv) in **1** L never sets g above g^L and need not go below g^M A is maximizing
- L goes to status quo or equivalent, depending on $g^M \gtrless \overline{g}$ cf. property (ii) in **1**

Implications

party representing "center group" M politically powerful: member of every coalition

A 's power related to the status quo

b. Composition of government example

For instance, three different regions J = 1, 2, 3have one (set of) legislator(s) each

Properties of equilibrium g^b

$$g^{b,N} = 0$$

$$H(g^{b,X}) - \alpha^{X}g^{b,X} - \alpha^{A}g^{b,A} = H(\overline{g}^{X}) - \sum_{J} \alpha^{J}\overline{g}^{J}$$

$$H_{g}(g^{b,A}) = \alpha^{A} \frac{H_{g}(g^{b,X})}{H_{g}(g^{b,X}) - \alpha^{X}}$$

$$g^{b,N} = 0 < g^*$$
 (property (iii) in **1**)
 $g^{b,X} \leq g^*$ depending on parameters (property (ii) in **1**)
 $g^{b,A} > g^*$

under weak conditions, in particular α^X not too large note that A spends less than if unconstrained, which would mean setting $H_g(g^{b,A}) = \alpha^A$

Intuition

if A spends more on her own group, she must raise τ then, X is worse off and needs compensation by higher spending equal to $\frac{dg^X}{dg^A} = \frac{\alpha^A}{H_g(g^{b,X}) - \alpha^X}$, which costs $A \quad \alpha^X \frac{dg^X}{dg^A}$ total cost of raising g^A is $\alpha^A + \alpha^X \frac{dg^X}{dg^A} = \alpha^A \frac{H_g(g^{b,X})}{H_g(g^{b,X}) - \alpha^X}$ Who does A choose as majority partner?

compute cost for each level of g^A and each prospective majority partner – i.e., solve 2nd condition for each $J \neq A \Rightarrow$

$$g^J = Z(g^A, \overline{g}^J, \alpha^J) ,$$

where Z increasing in all arguments pick $J \neq A$ whose vote is cheapest (property (iv) in **1**) \Rightarrow pick X such that \overline{g}^X and/or α^X are low

Implications

groups with powerful lawmakers – i.e., with J = A – are better off: their representatives often make policy proposals small, or rather overrepresented, groups – i.e., low α^J – are better off: their lawmakers often part of coalition and so are "weak" – i.e., low \overline{g}^J – groups, in apparent contrast with standard, unanimity, bargaining

3. Discussion – three natural extensions

Extend to *open*-rule bargaining

proposals can be amended by other legislator(s) dilutes power of agenda setter, A

Extend to *multi-round* bargaining

 $A_N \neq A_{N-1}$ makes N^{th} round proposal if $g_{A_{N-1}}$ fails same logic, only A_N has to offer coalition partner continuation value, rather than status-quo value dilutes agenda-setter power

Extend to multi-*period* setting with dynamic status quo

$$\overline{g_t} = g_{t-1}$$

strategic concerns enter the setting of current policy

Why work-horse model?

framework is intuitively appealing

it can handle multi-dimensional policy problems

can easily be extended to represent alternative legislative arrangements – will do so in Lecture 7

Introduction: Political Agency

Aims

explore agency problem between voters and elected representatives how serious is it? does it spill over on policy? can voters discipline politicians?

theory:

begin by slightly extending size of government example modify to illustrate three different functions of elections

Agenda

A. Electoral competition with rent-seeking

B. Electoral accountability

C. Electoral selection

A. Electoral competition with rent-seeking

1. Policy efficiency

Introduce endogenous rents in size of government model

 $r \geq 0~$ interpreted as diversion of funds for personal gain, party finance, or mismanagement of government funds

$$\tau y = g + r \tag{1}$$

 $\mathbf{q} = (g,\tau,r)$ denotes policy vector

Candidate objectives

rewrite as

$$E(v_C) = p_C(R + \gamma r) \tag{2}$$

 γ "transaction cost"

direct conflict of interest between politicians and voters

Voters

rewrite policy preferences

$$W^J(\mathbf{q}) = [y - (g + r)]\frac{y^J}{y} + H(g)$$

new dimension, r, is a "valence" issue

preferences are again monotonic and well-behaved, despite two dimensions: satisfy condition for "intermediate preferences" \Rightarrow Condorcet winner exists

$$g^M = G(\frac{y^M}{y}), \quad r^M = 0$$

Benchmark Downsian model

same assumptions as in Lecture 1 $y^{J} \sim F(\cdot)$ discrete with many groups 2 candidates make binding commitment to platforms \mathbf{q}_{C} Probability of winning

as before, p_A is discontinuous in policy

$$p_A = \begin{cases} 0 & \text{if } W^M(\mathbf{q}_A) < W^M(\mathbf{q}_B) \\ \frac{1}{2} & \text{if } W^M(\mathbf{q}_A) = W^M(\mathbf{q}_B) \\ 1 & \text{if } W^M(\mathbf{q}_A) > W^M(\mathbf{q}_B) \end{cases}$$

by monotonicity in y^J

Equilibrium

unique outcome is

$$g_A = g_B = g^M, \quad r_A = r_B = r^M = 0$$

identical to the outcomes in Downsian models with (i) opportunistic and (ii) citizen (partisan) candidates

Intuition

competition for exogenous rents R is fierce enough (p_A discontinuous in policy) to keep endogenous rents r to zero cf. results on policy convergence for partian candidates another type of political agency (relative to majority of voters)

2. Policy inefficiency

Competition may not deliver efficiency when less fierce

Illustrate in probabilistic voting set-up

consider version of model in Lecture 1.3 $\phi^J = \phi$ all J, timing as in A.1

Probability of winning

swing voters in each group

$$\sigma^{J} = W^{J}(\mathbf{q}_{A}) - W^{J}(\mathbf{q}_{B}) - \delta$$
(3)

same type of calculations as in Lecture $\mathbf{1.3} \Rightarrow$ $p_A = \frac{1}{2} + \psi[W(\mathbf{q}_A) - W(\mathbf{q}_B)]$

Candidate objectives

if purely opportunistic (maximize $p_C R$), (4) gives efficiency but, here, objective is (2) \Rightarrow trade-off between r and p_C intuition analogous to case with partial candidates (4)

Equilibrium spending?

candidates converge on policy that maximizes (2), given (4) $\frac{\partial E[v_A]}{\partial g_A} = (R + \gamma r_A) \frac{\partial p_A}{\partial g_A} = (R + \gamma r_A) W_g = 0$ i.e., $g = g^*$, efficient spending Equilibrium rents?

may not be driven to zero trade off probability of winning vs. marginal rents

$$\begin{split} \frac{\partial E[v_A]}{\partial r_A} &= (R + \gamma r_A) \frac{\partial p_A}{\partial r_A} + p_A \gamma \\ &= -(R + \gamma r_A) \psi + p_A \gamma \leq 0 \quad [r_A \geq 0] \\ \text{have } (p_A = \frac{1}{2} \text{ in eq.}), \, r = \text{Max } [0, \frac{1}{2\psi} - \frac{R}{\gamma}] \end{split}$$

Rents positive if

we

R small, γ large, or ψ small

Intuition

candidates not perfect substitutes (except for swing voters) as probability of winning continuous in r, candidates have room to pursue their own agenda – analog to the results on policy divergence for partisan candidates

Positive implications

r > 0 means that $\tau > \frac{g^*}{y}$ rents (measured spending) higher if more illegitimate regimes (low ego-rents): R small weaker checks and balances: γ large large electoral uncertainty (weak voter response to r): ψ small (asymmetric popularity: see Problem 4.1 in P-T, 2000)

B. Electoral accountability

Assumption of binding commitment too strong? enforcement and information problems credibility of platform promises becomes a real issue 2nd function of elections

in models, so far, voters act "prospectively", i.e., they choose between policies candidates have committed to now instead: vote to influence the behavior of incumbent when there is no commitment

all voters have same utility: $W(\mathbf{q}) = y - (g + r) + H(g)$ and act "retrospectively", to punish bad behavior

Timing

(i) voters set reservation utilities ϖ^i , (ii) incumbent I sets policy \mathbf{q}_I , (iii) election is held

Incumbent objective

$$E[v_I] = \gamma r_I + p_I \beta R \tag{5}$$

reflects new timing

Opponent

identical to I in all respects (no incumbency advantage)

Voter coordination

all voters coordinate on same strategy $\varpi^{i} = \varpi$ $p_{I} = \begin{cases} 1 & \text{if } W(\mathbf{q}_{I}) > \varpi \\ 0 & \text{otherwise} \end{cases}$ (6)

alternative assumption: distribution of reservation utilities, works basically as prior probabilistic voting model (see model in \mathbf{C})

Basic incentive constraint

intertemporal trade off for I

$$\gamma r_I + \beta R \ge \gamma y \tag{7}$$

comply (LHS): hold back to get re-elected and earn future rents deviate (RHS): maximize current diversion give up re-election

Best feasible policy for voters?

maximize $W(\mathbf{q})$ subject to (7) and (1) \Rightarrow

$$r^{*} = \operatorname{Max}\left[0, y - \frac{\beta R}{\gamma}\right]$$

$$g^{**} = \operatorname{Min}\left[g^{*}, \frac{\beta R}{\gamma}\right] \quad [\tau \leq 1]$$

$$(8)$$

I gets away with some rents, unless βR high, γ and y low - cf. results in A.2.

How can voters implement (8)?

I sets policy according to (8) to earn re-election if voters set ϖ at

$$\varpi^* = y - (g^{**} + r^*) + H(g^{**})$$

Extension: asymmetric information (about cost of g)

more complex case

I earns additional (state-dependent) rents

voters worse off

C. Electoral selection

3rd role of elections

neither pick a policy, nor reward good behavior,
but rather select competent leader
assume that competence (ability): (i) comes in different types,
(ii) affects performance, and (iii) lasts over time

Simplified two-period model – election at end of period 1

period utility of voter i

$$w_t^i = y - \tau_t + \alpha g_t - D_2^I \sigma^i \tag{9}$$

linearity in $g \Rightarrow$ risk neutrality σ^i taste bias against I_1 , uniform on $\left[-\frac{1}{2\phi}, \frac{1}{2\phi}\right]$ $D_1^I = 0, D_2^I > 0$ only applies in period 2 if I_1 re-elected note: there is no average popularity shock δ , but "ability" shock η (see below) will play similar role Government policy

$$g_t = \overline{\tau} - r_t + \eta_t + \nu_t \tag{10}$$

 τ_t fixed at $\overline{\tau}$, $r_t \leq \overline{r}$, i.e., upper bound on r_t

- $\begin{array}{l} \eta_t \ \text{any } new \ \text{politician's ability is iid} \thicksim N(\overline{\eta}, \mathrm{Var}(\eta)) \\ \text{but lasting over time} \mathrm{see \ below} \end{array}$
- ν_t productivity shock is iid ~ $N(0, \operatorname{Var}(\nu))$

Incumbent objective

$$E(v_I) = \ln(r_1) + p_I \beta[(R + E(\ln(r_2))]$$
(11)

set $\gamma = 1$, add curvature over rents, to get simple solutions

Assumptions about politician ability

 I_1 does *not* know η_1 (and ν_1) when sets r_1 (avoid signaling) as in Holmström's career-concern model

 I_1 re-elected: $\eta_2^I = \eta_1^I$ (incumbent ability lasts), $E(\eta_2^I) = E(\eta_1^I)$ I_1 ousted: $E(\eta_2^O) = \overline{\eta}$ (opponent expected to have average ability)

Period 2 choice of r

all incumbents set
$$r_2 = \overline{r}$$
 (as world ends)
 \Rightarrow from (9)-(10) $E(g_2) = \overline{\tau} - \overline{r} + E(\eta_2^C), C = I, O$ and
 $E(w_2^i) = y - \overline{\tau} + \alpha(\overline{\tau} - \overline{r} + E(\eta_2^C)) - D_2^I \sigma^i$

voters like able politicians better, ceteris paribus

Optimal voting strategy

$$I_1 \text{ has } E(\eta_2^I) = E(\eta_1^I), \text{ opponent has } E(\eta_2^O) = \overline{\eta}$$

$$\Rightarrow \text{ vote for } I_1 \text{ if } \sigma^i < \alpha [E(\eta_1^I) - \overline{\eta}] \text{ such that}$$

$$\pi_I = \frac{1}{2} + \phi \alpha [E(\eta_1^I) - \overline{\eta}] \tag{12}$$

is vote share of incumbent

Information at t = 1 pins down $E(\eta_1^I)$: we will study two cases

- **1.** informed voters: observe g_1 and $\nu_1 \Rightarrow E(\eta_1^I \mid g_1, \nu_1)$
- **2.** uninformed voters: observe only $g_1 \Rightarrow E(\eta_1^I \mid g_1)$

1. Informed voters

Voters' inference problem

given (10), can perfectly gauge incumbent ability \Rightarrow

$$E(\eta_1^I \mid g_1, \nu_1) = \eta_1^I = g_1 - \overline{\tau} + r_1^* - \nu_1, \qquad (13)$$

where r_1^* is expected equilibrium rents

Incumbent choice of r

when I_1 sets r_1 uncertain about η_1 (and ν_1) and hence g_1 , so has to form an expectation $\mathbb{E}(E(\eta_1^I \mid g_1, \nu_1))$ knows how $E(\eta_1^I \mid g_1, \nu_1)$ is formed and takes r_1^* as given by (10), (12) and (13), his anticipated vote share conditional on η_1 and r_1 becomes

$$\pi_{I} = \frac{1}{2} + \phi \alpha [\eta_{1}^{I} - \overline{\eta} + r_{1}^{*} - r_{1}]$$

and the perceived probability of winning is

$$p_I = \operatorname{Prob}_{\eta} \left[\pi_I \ge \frac{1}{2} \right] = 1 - F(\overline{\eta} - r_1^* + r_1)$$
 (14)

where F is the c.d.f. of η – clearly, larger r_1 cuts (perceived) p_I

Optimal policy

maximize (11) over r_1 subject to (14), and set $r_2 = \overline{r}$ to get $r_1 = \frac{1}{f(\overline{\eta} - r_1^* + r_1)\beta \widetilde{R}}$

where $\tilde{R} = R + \ln(\bar{r})$, and f is the p.d.f. of η

Equilibrium

voters expectations are correct, such that $r_1^* = r_1$, and $r_1 = \frac{1}{f(\overline{\eta})\beta \widetilde{R}}$

Interpretation

voters look like they follow retrospective strategy, rewarding high performance (utility) with re-election but current performance is an indicator of future ability and this creates an intertemporal trade-off for I_1

Positive implications

rents higher (cf. results in **A** and **B**) when electoral reward is small: $\beta \widetilde{R}$ low electoral uncertainty is large: $f(\overline{\eta})$ low, i.e., $Var(\eta)$ large like result in **A.2** about uncertainty over δ (value of ψ) 2. Uninformed voters

Voters' inference problem

can no longer gauge η_1^I perfectly, as ν_1 unobserved using (10), they can only infer the sum \Rightarrow

$$E(\eta_1^I + \nu_1 \mid g_1) = \eta_1^I + \nu_1 = g_1 - \overline{\tau} + r_1^* , \qquad (15)$$

let voters form an optimal (OLS) estimate of η_1^I , given that they see $E(\eta_1^I + \nu_1 \mid g_1)$ and have unconditional (prior) mean $\overline{\eta}$

This yields

$$E(\eta_1^I \mid g_1) = h_\eta \overline{\eta} + h_\nu E(\eta_1^I + \nu_1 \mid g_1) , \qquad (16)$$

where
$$h_{\eta} = \frac{\operatorname{Var}(\nu)}{\operatorname{Var}(\eta) + \operatorname{Var}(\nu)}$$
 and $h_{\nu} = \frac{\operatorname{Var}(\eta)}{\operatorname{Var}(\eta) + \operatorname{Var}(\nu)}$
so, observation of g_1 is less valuable in inference about η_1^I the more noisy is ν_1

Incumbent expectations

by (10), (12), (15) and (16), *I* anticipates a vote share $\pi_I = \frac{1}{2} + \phi \alpha h_{\nu} [\eta_1^I + \nu_1 - \overline{\eta} + r_1^* - r_1]$

 π_I responds less to rents when voters uninformed perceived probability of winning is

$$p_I = \operatorname{Prob}_{(\eta+\nu)} \left[\pi_I \ge \frac{1}{2}\right] = 1 - G(\overline{\eta} - r_1^* + r_1)$$
 (17)

where G is the c.d.f. of random variable $\eta + \nu$: the sum of two normals with mean $\overline{\eta} + 0$ and variance $\operatorname{Var}(\eta) + \operatorname{Var}(\nu)$

Optimal policy

maximize (11) over r_1 subject to (17) to get $r_1 = \frac{1}{g(\overline{\eta} - r_1^* + r_1)\beta \widetilde{R}}$ where g is the p.d.f. of $\eta + \nu$

40

In equilibrium
$$(r_1^* = r_1)$$

 $r_1 = \frac{1}{g(\overline{\eta})\beta \widetilde{R}}$

Compare to the case with informed voters

G, distribution of $\eta + \nu$, has same mean (i.e., $\overline{\eta}$), but larger variance (i.e., $\operatorname{Var}(\eta) + \operatorname{Var}(\nu)$) than F, distribution of η therefore, it must be that $g(\overline{\eta}) < f(\overline{\eta})$ so r_1 is larger with uninformed voters, and more so the

larger is $Var(\nu)$ – the more difficult is inference about η

3. Discussion – three natural extensions

Informed and uninformed voters combination of **1** and **2** larger share of uninformed (less availability of media) implies larger rents and smaller voting response to misbehavior

Embed in multi-period model

elections every two periods, and MA process for $\eta \Rightarrow$ electoral cycle: cut r (raise spending) in election periods, unless there is a term limit

Assume η known by incumbent \Rightarrow incentives to signal more complex solution, but many results similar